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Abstract

Pests and diseases are relevant factors for production

losses in agriculture and, therefore, promote a huge invest-

ment in the prevention and detection of its causative agents.

In many countries, Integrated Pest Management is the most

widely used process to prevent and mitigate the damages

caused by pests and diseases in citrus crops. However, its

results are credited by humans who visually inspect the or-

chards in order to identify the disease symptoms, insects

and mite pests. In this context, we design a weakly super-

vised learning process guided by saliency maps to automat-

ically select regions of interest in the images, significantly

reducing the annotation task. In addition, we create a large

citrus pest benchmark composed of positive samples (six

classes of mite species) and negative samples. Experiments

conducted on two large datasets demonstrate that our re-

sults are very promising for the problem of pest and disease

classification in the agriculture field.

1. Introduction

Pests and diseases in orchards are dangerous to the world

of agriculture and have caused significant losses. Particu-

larly, the Greening (Diaphorina citri), also called Huang-

longbing (HLB), — the actual most destructive disease in

citrus agriculture [9] — cost $13.2 billion to Florida State

between 2005 and 2016 [27]. The real losses are more

significant when we consider other pests and diseases that

infect the country’s production, such as Citrus Variegated

Chlorosis (Xylella fastidiosa), Citrus Canker (Xanthomonas

axonopodis), and Citrus Leprosis (Citrus leprosis virus).

One way to detect and prevent these threats is the use

of Integrated Pest Management (IPM). It describes how to

avoid the problems and what are the rules to apply inputs

before the problem occurs [24]. Usually, human inspectors

walk along the orchards streets collecting samples to ana-

lyze them and reporting the results in paper sheets or mo-

bile tools for data acquisition [24]. The inspectors examine

stalks, leaves, and fruits for hours, trying to find mites and

insects to quantify them. Depending on the level of the in-

fection, when the number of dispersers (mites or insects)

past from a safety limit, the IPM describes the rules to ap-

ply inputs, cuts parts of the plant, removes the whole plant

or eliminates the plant and its neighborhood. The IPM is

a mechanical process that can be done by machines to help

small farmers to enforce its rules. In addition, as expected,

when humans handle the job, the IPM process is prone to

errors due to the inability or fatigue of the handlers.

It is common to see mobile technology in the field to

perform a wide range of tasks, such as data acquisition,

employee communication, and production management. In

this scenario, employing mobile devices to detect pests and

diseases would not be an additional hurdle. In fact, the use

of Convolutional Neural Networks (CNNs) in mobile de-

vices, such as MobileNets [29], NasNet-A Mobile [46], and

EfficientNet [36], can greatly help inspectors in doing their

work more efficiently and effectively.

As a consequence of the lack of other image collections,

we created a novel dataset called Citrus Pest Benchmark

(CPB). It contains images collected with mobile devices of

mites in citrus plants, which is unseen in the literature. Our

dataset supports the evaluation of our classification method.

Unlike the IP102 [41] database for insect pest recognition,

for instance, our benchmark is composed of very tiny re-

gions of interest (mites) compared to the remaining area of

the image. In this sense, the straightforward use of CNNs

in our citrus pest classification problem would not be effi-

cient. Inspired by recent approaches to cancer classification

and object detection [21, 26, 32, 39], we develop a weakly

supervised learning method that computes saliency maps to

automatically locate patches of interest in the original im-

ages.

The main contributions of our work are: (i) creation of

a new benchmark for the citrus pest recognition problem,

where tiny regions of interest containing different types of

mites are present in the original images; (ii) development



of a weakly supervised multiple instance learning method

guided by saliency maps to automatically identify patches

in the images and reduce the task of image labeling; (iii)

implementation of a weighted evaluation strategy for prop-

erly generating a final probability for every extracted image

patch; and (iv) achievement of promising classification re-

sults on two large pest benchmarks in the agriculture field.

This text is organized as follows. In Section 2, we briefly

review some relevant concepts and approaches related to

disease and pest classification and multiple instance learn-

ing. In Section 3, we describe our Citrus Pest Benchmark.

In Section 4, we present our weakly supervised multiple in-

stance learning method. We report and discuss the exper-

imental results achieved on two datasets in Section 5. Fi-

nally, some concluding remarks and directions for future

work are presented in Section 6.

2. Related Work

In this section, we first overview the literature of dis-

ease and pest classification, in particular we focus on CNN-

based approaches. Then, we describe relevant aspects re-

lated to multiple instance learning and weakly supervised

approaches.

2.1. Disease and Pest Classification

In the era of Convolutional Neural Networks (CNNs),

the first works on disease and pest classifiers have the pri-

mary goal of improving the classification metrics on a given

database. As CNNs require a large amount of training data,

many approaches have focused their efforts on creating im-

age databases for classifying pests and diseases in the field

(for instance, [1, 12, 41]).

Concerning disease classification, Hughes and Salathé

[12] created an image database called PlantVillage, which

consists of 55,000 images (captured in laboratories) from

disease symptoms in leaves. Mohanty et al. [23] used

the Inception [34] and AlexNet [13] networks to train

their models on the PlantVillage. Ferentinos [7] intro-

duced a new version of the PlantVillage with 87,848 im-

ages (not publicly available) to evaluate CNNs for plant

disease detection and diagnosis. They also proposed its

use in mobile applications, but they did not present any ex-

periments. The PlantVillage database was the first large-

public database on disease detection area, and many works

evaluated well-known CNNs with little or no modifica-

tion [3, 18, 20, 25, 37].

With respect to pest classification, before 2018 few

works explored CNNs. Liu et al. [19] used saliency maps

constructed by a histogram. They used the color variation

between the pests and backgrounds to extract paddy pests

and created a database of 5,136 images. Alfarisy et al. [1]

collected from Internet 4,511 images of paddy pests and

classified them with a CNN.

Lee and Xing [15] created a pest tangerine database of 10

macro-insects, including the Psyllid (Diaphorina Citri, the

greening vector) and they evaluated several CNNs on their

data. Similar to ours, Li et al. [17] proposed a database in

which the insects are very tiny concerning to the entire im-

age. They applied a two-stage object detector to find groups

of insects in the images and then extracted these regions to

detect each insect. In contrast to our approach, we do not

have object annotations, so we benefit from a weakly su-

pervised method to classify the pests. Chen et al. [5] used

the Google image search engine to collect 700 images from

four pests, including Spider mites (Tetranychidae). They

used CNNs to classify the images captured from sensors in

the field, but they did not show any results related to these

types of images.

The largest database for insect pest classification was in-

troduced by Wu et al. [41]. The IP102 database consists of

102 classes and 75,222 images. The authors applied differ-

ent CNNs (AlexNet, GoogleNet, VGGNet, and ResNet) to

report their results. Ren et al. [28] improved the classifi-

cation performance on IP102 by modifying ResNet blocks.

Xu and Wang [42] used the IP102 dataset to demonstrate

the use of XCloud, a cloud platform proposed to facilitate

the use of AI.

In brief, agricultural works on the Machine Learning

area lack of proposition on new methods. Usually, the

works only apply the well-known CNNs in its databases. To

the best of our knowledge, no work uses mite images col-

lected with mobile cameras using a strict protocol directly

in the field.

2.2. Multiple Instance Learningbased Approaches

Multiple instance learning (MIL) is a weakly supervised

category of problems where its training data is arranged in

bag sets and sets of patches from the bags, called instances.

The labels are provided only for the bags and the instances

inherit from the bags creating a weakly supervised environ-

ment [4].

The standard MIL assumption, in a binary problem,

states that negative bags contain only negative instances and

positive bags contain at least one positive instance. This as-

sumption can be relaxed to use the evaluation of the interac-

tion of several positive instances, as we use in this work [8].

Sun et al. [33] proposed a weakly supervised CNN

framework, called Multiple Instance Learning Convolu-

tional Neural Networks (MILCNN), which fuses residual

network and multiple instances learning loss layer. The ar-

chitecture received the number of instances from a bag, in-

ferring the instances as separated images, and used a func-

tion to mix the probabilities to calculate a final probability

for the entire bag in the last layer.

Choukroun et al. [6] introduced an MIL method for

mammogram classification using a VGGNet followed by



a refining fully connected neural network modified to the

MIL paradigm.

He et al. [11] created a Multiple Instance Deep Convo-

lutional Network for image classification (MIDCN) based

on a feature extractor from CaffeNet. They calculated the

differences between feature vectors from instances and pre-

calculated features, called prototypes, and predicted the

classes using these differences. Li et al. [16] developed an

attention-based CNN model for MIL, which used an adap-

tive attention mechanism into a CNN to detect significant

instances for histopathology images.

The previously mentioned works used all instances of

one bag at the same time in the training phase, as a batch of

instances. For this, the researchers must adapt the original

CNNs changing the first layers and the loss functions. In

our proposal, we use the CNN architecture in its original

version.

Out of the MIL methods, some works used the same idea

of patches, however, in supervised ways as [26, 39]. It was

not different for disease and pest classification, as Li et al.

[17]. Unlike the other, Liu et al. [19] used a weakly super-

vised method based on saliency maps to cut the pest from

the original images to create their dataset.

According to Zhou et al. [45], we can classify our trans-

fer learning technique as a pseudo-label for CNNs. How-

ever, most of the pseudo-label works came from the in-

ference of the unlabeled part of the databases for models

already trained with the labeled part, for instance, the ap-

proach developed by Lee [14]. In the case of our work,

we use pseudo-labels from the original bags. Tao et al. [38]

and Zhang and Zeng [44] also used pseudo-labels with mul-

tiple instances in their projects, but not as our work does.

To the best of our knowledge, we have found neither

MIL methods applied to disease and pest classification tasks

nor MIL architectures for mobile devices, which encour-

ages our investigation into these research topics.

3. Our Citrus Pest Benchmark

As an additional contribution of this work, we created

a benchmark1 containing images divided into seven classes

(six mite species and a negative class). The images were

collected via a mobile device coupled with a lens magnifier,

as shown in Figure 1. In the acquisition process, we employ

a Samsung Galaxy A5 with a 13 MP camera coupled with

a 60× magnifier, equipped with a white LED lighting and

ultraviolet LED.

The sizes of the mite species are very small in proportion

to the entire image size, as illustrated in Figure 2. Due to the

hard glass surface present in the device, a significant part of

the images is blurred, as can be seen in Figure 3.

1https://github.com/edsonbollis/

Citrus-Pest-Benchmark.

(a) Magnificent glass (b) Mobile coupled

(c) Insect with normal size (d) Insect after zoom (60×)

Figure 1: (a-b) Devices used to collect the citrus pest im-

ages; (c-d) insect image before and after magnification.

(a) Red Spider (b) Phytoseiid (c) Rust

(d) False Spider (e) Broad (f) Two-Spotted Spider

Figure 2: Mites captured through optical magnification of

60×. The mites are highlighted on the upper-left side of the

images.

(a) Sharp image (b) Blurred image

Figure 3: Samples of False Spider mites from our Citrus

Pest Benchmark.

To generate our citrus pest database, the mite images

were captured at São José Farm, located in the city of Rio

Claro, São Paulo State, in Brazil. The data acquisition pe-



riod was from March 2018 to January 2019. Guided by

MIP inspectors, we carried out scheduled inspections in the

production unit areas, which contain up to 1000 citrus trees

divided into groups arranged in lines. The inspectors chose

samples from the crop lines, not near the border, to analyze

the fruits, new germinations and stem. Then, they moved on

to the next thirtieth plant individuals. We used the samples

examined by the inspectors to obtain the mite images. Af-

ter completing a crop sector line, every three planting lines

were examined.

Our database consists of 10,816 multi-class images cate-

gorized into seven classes: (i) 1,902 images with Red Spider

mites (Panonychus citri, Eutetranychus banksi, Tetranychus

mexicanus), the largest of all other species which produces

a yellowish symptom on the leaves and fruits (Figure 2a);

(ii) 1,426 images with Phytoseiid mites (Euseius citrifolius,

Iphiseiodes zuluagai), the predator mite that helps control

other mites (Figure 2b); (iii) 1,386 images with Rust mites

(Phyllocoptruta oleivora), responsible for the rust symptom

and significant crop losses (Figure 2c); (iv) 1,750 images

with False Spider mites (Brevipalpus phoenicis), a vector of

the Leprosis virus (Figure 2d); (v) 806 images with Broad

mites (Polyphagotarsonemus latus), responsible for causing

a white cap on the fruits (Figure 2e); (vi) 696 images with

Two-Spotted Spider mites, which do not bring significant

crop losses, however, they are clearly visible in the field

(Figure 2f); and (vii) 3,455 negative images.

We partitioned the image collection into three groups,

referred to as training, validation and test, containing ap-

proximately 60%, 20%, and 20% of the mites from each

class totaling 6380, 2239 and 2197 images, respectively.

Some of the classes are very similar to each other for

untrained eyes. In addition, the differences in luminosity

and zoom make the database very challenging. The multi-

class problem turns the tasks more interesting once we have

5% (599) of images with up to three classes simultaneously.

Although we collected the images with the aid of human

inspectors, the errors inter-classes are significant due to the

size of the mites. The inspectors are currently revising the

multi-class labels and, for this reason, we are publishing

images of 1,200×1,200 pixels for the negative and positive

classes, more precisely, 7,966 mite images and 3,455 nega-

tive images.

In Table 1, we compare our benchmark to various ex-

isting databases related to the pest and disease recognition

task and cited in our work.

4. Methodology

In this section, we introduce our weakly supervised ap-

proach, which is guided by saliency maps. In Section 4.1,

we describe our problem within the framework of multiple

instance learning (MIL). Next, in Section 4.2, we detail the

proposed Patch-SaliMap, a multi-patch selection strategy

based on saliency maps. Finally, in Section 4.3, we explain

how to evaluate an image considering the generated patches.

We depict the main stages of our pipeline in Figure 4.

4.1. Multiple Instance Learning Framework

In brief, our method consists of four steps: (1) we train a

CNN (initially trained on the ImageNet) on the Citrus Pest

Benchmark, (2) we automatically generate multiple patches

regarding saliency maps, (3) we fine-tune our CNN model

(trained on the target task) according to a multiple instance

learning approach, and (4) we apply a weighted evaluation

scheme to predict the image class.

As mentioned before, multiple instance learning (MIL)

is a form of weakly supervised learning where training data

is a set of labeled bags X = {xi, i = 1, ..., n}, and each bag

contains several instances X = {xij , j = 1, ..., k}, where

xij is part of xi, n is the number of images, k is the number

of instances, and j is the number of images from X . In

this context, in Step 1, the CNN model (trained on a set of

labeled bags) is our Bag Model.

In Step 2, we generate patches from the bags, as detailed

in Section 4.2. Our algorithm uses the saliency of the maps

to identify the regions on the images where mites are highly

likely to be located. In other words, we apply the algorithm

in each xi ∈ X to generate {xij , j = 1, ..., k} patches of xi,

with k = 5. Thus, we create a new instance database X =
{xij , i = 1, ..., n, j = 1, ..., k} for MIL.

In Step 3, we assume the class label of an instance is the

same of its bag (in MIL the labels are only assigned to bags).

That is, if yi = f(xi) is the label of xi ∈ X then f(xij) =
yi, xij ∈ X . Next, we finetune the same Bag Model on the

X , exploring a transfer learning scheme to MIL. Since we

have more mites than negative images, we use five instances

of each negative bag and two instances of positive bags to

balance the data and decrease the probability to miss mites

on positive images.

We highlight that it is possible to use the same model

with no changes for images with different sizes because

there is a global pooling after the last convolutional layer

for every CNN. The pooling transforms a feature map of

dimension w × h × c in a feature map of size 1 × 1 × c.

Therefore, we are able to reuse bag models and instances

regardless of the image sizes.

In Step 4, all the models trained in X are evaluated on its

subsets that contain patches of X , producing the evaluation

for the bags, as described in Section 4.3. The best model

evaluated in X is referred to as Instance Model and it pro-

vides a final probability for every instance and, applying the

proposed Weighted Evaluation Method, for every bag.



Author Database Name Size Type Year

Hughes and Salathé [12] PlantVillage 55,000 symptoms of diseases 2015

Barbedo et al. [2] N/A 1,335 symptoms of diseases 2016

Nachtigall et al. [25] N/A 2,539 symptoms of diseases 2016

Tan et al. [37] N/A 4,000 symptoms of diseases 2016

Liu et al. [19] Pests ID 5.136 pests 2016

Bhandari et al. [3] N/A N/A symptoms of diseases 2017

Liu et al. [18] N/A 13.689 symptoms of diseases 2018

Alfarisy et al. [1] Paddy Pest Image 4,511 pests 2018

Lee and Xing [15] Pest Tangerine 5,247 pests 2018

Wu et al. [41] IP102 75,222 pests 2019

Li et al. [17] Aphid Images 2,200 pests 2019

Chen et al. [5] N/A 700 pests 2020

Our work CPB 10,816 pests 2020

Table 1: Pest and disease databases. N/A means that the value was not available from the original paper.

Figure 4: Our method consists of four steps. In Step 1, we train a CNN (initially trained on the ImageNet) on the Citrus

Pest Benchmark. In Step 2, we automatically generate multiple patches regarding saliency maps. In Step 3, we fine-tune our

CNN model (trained on the target task) according to a multiple instance learning approach. In Step 4, we apply a weighted

evaluation scheme to predict the image class.

4.2. Multipatch Selection Strategy Based on
Saliency Maps

Our aim here is to learn fine-grained details since most

citrus mites are not readily visible to the naked eye. We

propose to select significant image patches according to the

saliency map, called the Patch-SaliMap algorithm. In Algo-

rithm 1, we formally describe our proposal.

Let xi ∈ X ⊂ R
h×w×3 be a tensor of an image,

where h,w ∈ N
+ are the height and width of xi. Let

S : Rh×w×3 → R
h×w be a saliency map function, where

S(xi) is the saliency map of xi. The Patch-SaliMap takes as

input xi, S(xi), k, l and produces {xij ∈ X ⊂ R
l×l×3, j =

1, ..., k}, where k ∈ N
+ is the total number of instances,

j ∈ N
+ is the index of instances, and l ∈ N

+ is the height

of a square patch.

The algorithm uses the prior knowledge that the mites

are small enough to fit in images with a size smaller than

the patch size, l × l pixels. As a consequence, the algo-

rithm achieves a higher probability of obtaining instances

with mites in the first patches.

Using the maximum of the saliency map matrix is an ex-

cellent choice at the inference time. However, when we are

training the Instance Model, the regions of the maximum

gradient for negative instances usually bring features easy

to learn, which makes the algorithm addicted to find these

features only. Thus, to fix it for the training set of X , we

produce random patches xij , where xi has negative labels

to force the Instance Model to learn more robust features.



Algorithm 1 Patch-SaliMap

Input: xi, S(xi), k, l
Output: instances

1: function PATCH SALIMAP:

2: l = l/2
3: for i := 1 : k do

4: a, b := get maximum indices from values of S(xi)
5: if a± l, b± l is out of xi border then

6: a, b := fix a,b using l

7: # get a new patch around the indices

8: new patch := xi[a− l : a+ l, b− l : b+ l, :]
9: min := get minimum value of S(xi)

10: # occlude using saliences

11: S(xi)[a− l : a+ l, b− l : b+ l, :] := min

12: instances[i] := new patch

13: return instances

4.3. Weighted Evaluation Method

To predict the class of bag images, we propose the

Weighted Evaluation method. It uses static weights to

calculate a weighted average and reports the final prob-

abilities. Thus, given xi ∈ X, i = 1, ..., n, its xij ∈
X, j = {1, ..., k}, and the probabilities p(.) from the In-

stance Model, the final probability P (.) for each bag is ex-

pressed in Equation 1.

P (xi) =

k
∑

j=1

(k − j + 1)p(xij)

k
∑

j=1

(k − j + 1)

. (1)

The Weighted Evaluation Method assigns a higher

weight k to the first instance xi1, that intuitively comes from

the first saliency obtained from the Patch-SaliMap algo-

rithm. Since the Patch-SaliMap in the first iteration achieves

the highest value for the regions of the saliency map, this re-

gion has the major probability. The next saliency values are

smaller than the first, so the algorithm assigns decreasing

costs until the last saliency receives the weight equal to 1.

5. Results

In this section, after describing our experimental setup

(Section 5.1), we report and discuss our empirical results

on IP102 [41], a database for insect pest classification, and

our Citrus Pest Benchmark (introduced in Section 3). In

Section 5.2, we evaluate different CNNs on IP102 database.

Next, in Section 5.3, we explore our proposal method on our

benchmark, considering the best CNN evaluated on IP102.

5.1. Experimental Setup

We evaluated our experiments on five CNNs that are

widely used in computer vision problems: Inception-

v4 [35], ResNet-50 [10], NasNet-A Mobile [46],

MobileNet-v2 [29], and EfficientNet-B0 [36]. We chose

these networks because they cover different common fea-

tures (and number of weights) presented in today’s CNNs.

We trained each CNN with Stochastic Gradient Descent

with AdaDelta optimizer [43], batch size of up to 128, a

learning rate of 0.1, weight decay of 0.0005, and cross-

entropy function on top of the softmax output as a loss func-

tion. All CNNs are pre-trained on the ImageNet [13] and

then fine-tuned on the target database. We normalized the

images, subtracting from the mean and dividing by the stan-

dard deviation, based on the ImageNet. For the experiments

conducted on IP102, we resized all images to 224×224 pix-

els.

We applied in training time an automatic data augmen-

tation to our images. All of our experiments used a zoom

range between 0.6 and 1.4×, a rotation range between 0

and 360 degrees with values multiple of 15 degrees, ver-

tical and horizontal reflection, and translation from 0 to 4

pixels along both axes.

To reduce overfitting, for IP102 database, we used

dropout [31] between each of the EfficientNet-B0 modules

(20%), and after every depth-wise convolution (30%). For

Citrus Pest Benchmark, we also used dropout between each

of the EfficientNet-B0 modules (20%), after every depth-

wise convolution (40%) and before the final layer (30%).

We used the Gradient-weighted Class Activation Map-

ping (Grad-CAM) method [30] to extract the saliency maps.

Our models are trained on an NVIDIA RTX 5000 and

an RTX 2080 Ti. We conducted all experiments using

Keras/TensorFlow. Auxiliary code was developed using

NumPy, Pandas and Scikit-Learn libraries. For the Grad-

CAM2 and all CNNs (except for the EfficientNet3), we ran

the experiments using the Keras implementation.

For every setup, we used five separate training sets to

reduce the effects of randomness. The code and data are

available at our Github repository4.

5.2. Results for IP102

The IP102 [41] database contains 102 classes and 75,222

images split into 45,095 training, 7,508 validation, and

22,619 test images for insect pest classification task. In ad-

dition, the database has a hierarchical structure and each

sub-class is assigned with a super-class according to the

type of damaged crops: field (e.g., rice, corn, wheat, beet,

and alfalfa) and economic crop (e.g., mango, citrus, and vi-

tis). All images were collected from the Internet.

We used this database to compare different CNN ar-

chitectures to classify insect pests. The classification per-

2https://github.com/jacobgil/keras-grad-cam
3https://github.com/qubvel/efficientnet/blob/

master/efficientnet
4https://github.com/edsonbollis/

Weakly-Supervised-Learning-Citrus-Pest-Benchmark



formance is evaluated using the standard metrics for this

database, accuracy and F1-score.

Our results for IP102 are reported in Table 2. Not sur-

prisingly, the EfficientNet (the state of the art in CNNs)

reached the best classification performance (59.8% of ac-

curacy). However, we used its smallest version B0. That

might indicate that the number reported does not represent

the limit of classification performance achievable by the Ef-

ficientNet.

Regarding the number of weights (taking into account a

mobile scenario), the MobileNet-v2, the smallest CNN in

our experiments, reported 53.0% of accuracy, an absolute

difference of 6.8% when compared to the EfficientNet per-

formance.

CNNs Accuracy (%) Weights (M)

Inception-v4 48.2 41.2

ResNet-50 54.2 23.6

NasNet-A Mob. 53.4 4.4

EfficientNet-B0 59.8 4.1

MobileNet-v2 53.0 2.3

Table 2: Classification accuracy (in %) results of different

CNNs on the IP102 validation set. Here, we opted for eval-

uating on the validation set to not optimize hyperparameters

on the test set. Weights (in M) mean the number of weights

in millions of each CNN and the highlights in bold corre-

spond to the best results.

For reference purposes, we show in Table 3 the best re-

sults reported to date on the IP102 test set. The ResNet-

50 [41] result is the best outcome achieved by the dataset

creators. They also reported statistics for the benchmark,

which demonstrates that it is strongly unbalanced com-

pared to other databases. The FR-ResNet [28] approach

changed the residual blocks internally, adding convolutions

and reusing the initial features, since they hypothesized that

the reuse of features from previous blocks improved the per-

formance. They compared different types of convolutions

in the blocks to the same number of parameters, since it is

time consuming to test with many images in benchmarks as

IP102. The DenseNet-121 [42] approach did not bring any

information about how the authors reached the accuracy re-

ported, neither how many times they trained the network

nor if the value reported followed the database protocol. In

addition, other metrics were not reported in their study, for

instance, F1-score.

5.3. Results for Citrus Pest Benchmark

In this section, we evaluate our method using

EfficientNet-B0. As we show in Table 4, we split the re-

sults into three parts, namely:

CNNs Accuracy (%) F1-Score (%) Weights (M)

ResNet-50 [41] 49.4 40.1 23.6

FR-ResNet [28] 55.2 54.8 30.8

DenseNet-121 [42] 61.1 N/A 7.1

EfficientNet-B0 60.7 59.6 4.1

Table 3: Classification performance of different CNNs on

the IP102 test set. Weights (in M) mean the number of

weights in millions of each CNN. N/A means that the value

was not available from the original paper, The highlights in

bold correspond to the best results.

• Typical: Since EfficientNet-B0 models require input

images of 224×224 pixels, we resize all images, dis-

torting the aspect ratio to fit when needed. To highlight

the mites in the convolutions, we also feed the network

with the original image size of 1200×1200 pixels.

• Baseline: We first resize all images from 1200×1200

to 897×897 pixels. Next, we crop patches of size

299×299 pixels and we manually select the ones with

mites as positive samples.

• Our Method (detailed in Section 4): To make the

comparisons fair, we extract patches of size 400×400

from images of 1200×1200 pixels, keeping the same

ratio of the number of patches per image of baseline
(

1200× 1200

400× 400
=

897× 897

299× 299
= 9

)

.

EfficientNet-B0 Accuracy (%)

Typical

No patches, 224×224 pixels 75.9

No patches, 1200×1200 pixels 81.2

Baseline

Manually-annotated patches, 299×299 pixels 86.0

Our Method

Automatically-generated patches, 400×400 pixels 91.8

Table 4: Classification accuracy (in %) results on the Citrus

Pest Benchmark validation set. Here, we opted for evalu-

ating on the validation set to not optimize hyperparameters

on the test set. We split the results into three parts, namely:

Typical, Baseline, and Our Method. The value highlighted

in bold corresponds to the best result.

The “overall picture” from Table 4 can be summarized

as follows. Our Method surpasses the classification perfor-

mance over all schemes. The comparison between Typical

results shows that — as usually observed for image classifi-

cation [22, 40] — high-resolution images lead to better per-

formance. Baseline scenario (manually-annotated patches)



shows promising results, however, annotating patches is a

tedious task, time-consuming, and error-prone. In compari-

son to Typical result (no patches, 1200×1200 pixels), Base-

line — even using patches of size 299×299 pixels — signif-

icantly increases the classification performance, indicating

that the model can benefit from patch representations. Com-

paring Our Method to Baseline (automatically-generated

patches vs. manually-annotated patches), we observe an

increase from 86.0% to 91.8%, an absolute improvement

of 5.8%.

Our best model in the test set (we restricted ourselves to

perform experiments in validation set) achieved an accuracy

of 92.1%.

For illustration, we show in Figure 5 the automatically-

generated patches guided by the saliency map. The patches

are ranked according to the highest activation (from Fig-

ure 5c to 5g. The generated patches highlight the positive

impact of our method.

(a) Input image (b) Saliency map

(c) Patch 1 (d) Patch 2 (e) Patch 3

(f) Patch 4 (g) Patch 5

Figure 5: Automatically-generated patches guided by the

saliency map.

6. Conclusions and Future Work

In this work, we presented a new weakly supervised

Multi-Instance Learning (MIL) process to classify tiny re-

gions of interest (ROIs), a Selection Strategy Based on

Saliency Maps (Patch-SaliMap), a Weighted Evaluation

Method, as well as a novel database for agriculture called

Citrus Pest Benchmark (CPB).

The CPB is the first database containing images acquired

via mobile devices from citrus plants for pest recognition. A

number of different mite species, typically invisible to the

naked eye, may affect citrus leaves and fruits. The bench-

mark is a valuable resource for the automation of Integrated

Pest Management (IPM) tasks in agriculture and for the

evaluation of new classification algorithms.

From our experiments, we observed that our classifi-

cation method was able to achieve superior results when

compared to other approaches on the IP102 dataset. In

addition, we discussed the effectiveness of our method on

the CPB dataset, surpassing two different experimental sce-

narios. The weakly supervised multi-instance learning ap-

proach demonstrated to be effective in identifying patches

of interest. The strategy for selecting the multiple patches

reduced the probability of losing relevant regions, conse-

quently improving our classification results. Overall, we be-

lieve that our method has great potential to help inspectors

to classify pests and diseases through magnifying glasses

and mobile devices directly in the field.

As directions for future work, we plan to further analyze

the EfficientNet attention modules, so they can better oper-

ate in small areas of the images. This could reduce those

patches without the occurrence of mites produced by the

Patch-SaliMap. Moreover, we will investigate how small

differences among the mite species would affect the multi-

class task. Finally, we intend to deploy our CNN-based

learning process on mobile devices.
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