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Abstract

Manual determination of plant phenotypic properties

such as plant architecture, growth, and health is very time

consuming and sometimes destructive. Automatic image

analysis has become a popular approach. This research

aims to identify the position (and number) of leaves from

a temporal sequence of high-quality indoor images consist-

ing of multiple views, focussing in particular of images of

maize. The procedure used a segmentation on the images,

using the convex hull to pick the best view at each time

step, followed by a skeletonization of the corresponding im-

age. To remove skeleton spurs, a discrete skeleton evolution

pruning process was applied. Pre-existing statistics regard-

ing maize development was incorporated to help differenti-

ate between true leaves and false leaves. Furthermore, for

each time step, leaves were matched to those of the previ-

ous and next three days using the graph-theoretic Hungar-

ian algorithm. This matching algorithm can be used to both

remove false positives, and also to predict true leaves, even

if they were completely occluded from the image itself. The

algorithm was evaluated using an open dataset consisting

of 13 maize plants across 27 days from two different views.

The total number of true leaves from the dataset was 1843,

and our proposed techniques detects a total of 1690 leaves

including 1674 true leaves, and only 16 false leaves, giving

a recall of 90.8%, and a precision of 99.0%.

1. Introduction

Agriculture is the backbone of the world economy, and a

significant number of countries’ economies are highly de-

pendent on it. Plant diseases, undesirable growth, nutri-

tional deficiency, and disorder in plants not only affect the

quality and quantity of agricultural profits, but also play a

vital role in food crises. Thus, monitoring the condition

of plants is a fundamental step in successful cultivation of

crops and plant breeding. Indeed, plant breeding, with the

assistance of high-throughput phenotyping, is helping to

cultivate crops under extreme climate, and to create novel

plant varieties [30, 8]. This can ultimately contribute to-

wards a greater quantity and quality of food for feeding

the ever-growing population. Until recently, the observation

and analysis of plant growth, disease detection, and pheno-

typic properties, were done entirely manually by experts,

in a time intensive, and largely intuitive fashion. Thus, the

potential of using image processing in plant research to au-

tomate phenotypic inspection has long been recognised as

an important step forward [32]. Now, the food industry

ranks among the top industries using image processing [16]

to help evaluate food quality and consistency while elimi-

nating the subjectivity of manual inspections [13].

Computer vision can be used to extract useful informa-

tion from plant images [31], and to identify phenotypic

traits throughout a plant’s life [12]. Various types of dig-

ital cameras are used to acquire richer information about

plants of interest [2, 35, 26]. Extracting meaningful pheno-

types from plant image sequences is broadly classified into

two categories: holistic and component-based [11]. Holis-

tic plant phenotyping considers the whole plant as a single

object and gives metrics that quantify the basic geometric

properties of the plant (e.g. height, width, plant aspect ratio,

etc). Component-based analysis tries to identify the specific

distinguishing components of a plant (leaves, stem, flower

etc), their positions, and sizes [10].

Problem overview: Our goal is to reconstruct and pre-

dict maize plant growth properties, topology, numbers and

positions of leaves, and their emergence, from indoor time

sequence plant images. Maize is a globally-grown annual

cereal crop, and one of the top three most important cereal

crops in the world [27, 17, 14]. Therefore, maize has a vital

role to play in our agricultural economy, and automated pre-

diction of maize plant growth, topology, components, dis-

ease, and architecture is important.

Automatic determination of plant topology and architec-

ture is highly dependent on accurate plant skeletons. Skele-

tons are a thin, sometimes one-pixel-wide, representation
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of any object that represents an object’s topology; it is also

often useful for feature extraction. After fifty years of re-

search, there is still no perfect skeletonization algorithm for

each individual area of application [21]. Obtaining accu-

rate plant skeletons from images is a difficult problem, as

they are sensitive to small changes leading to extraneous

branches, and incorrectly joined segments (errors in topol-

ogy) [15]. Extra branches, also called spurs, are especially

common in plant skeletons and form due to noise in images

[6]. Spurs are often incorrectly interpreted as leaves.

The complex geometry of plants, their thin structures,

and missing information due to self-occlusion, make skele-

ton extraction and pruning extremely challenging tasks [7].

Occlusion can occur frequently in 2D images, both partially,

and totally. Partial occlusion occurs when a part of a com-

ponent is occluded from an image, e.g. part of a leaf hiding

its branching point. Total occlusion occurs when a leaf is

totally obscured by other components of the plant. For total

occlusion, there is no obvious way to tell from the image

itself that a component is present.

Contribution: This study proposes a novel technique to

improve detection of leaves and topology in maize. The pro-

posed method initially obtains the plant skeleton with image

processing algorithms, and then it applies statistics regard-

ing maize development available in literature to the skeleton

to improve the predicted topology. Lastly, the Hungarian al-

gorithm is applied to match the leaves in each day’s image

with those in the previous and next day’s images to match

skeleton components between days. The Hungarian algo-

rithm, also known as the Munkres algorithm, is an algorithm

on weighted, undirected graphs that determines the one-to-

one mapping between two given sets of vertices where the

matched edges have the mathematically smallest combined

weight [20]. Despite there being an exponential number of

such mappings, the mathematically optimal solution can be

found in polynomial time. This can be used to find the best

matching between leaves in one image of a plant with those

of the same plant on another day, ideally matching the same

leaves together [19]. This can both discard leaves detected

from erroneous spurs, and also properly predict components

even if they are completely occluded. In this way, the anal-

yses are not completely dependent on the skeletonization

techniques and pruning strategies. This contributes not only

to leaf counting, but also to inference of plant topology.

While the analysis was carried out using images of

maize, certain aspects of the analysis would be generaliz-

able to time sequence images from other plant species. For

example, the use of the Hungarian algorithm to match dif-

ferent components of the same plant between days is an

interesting approach generally. Furthermore, the use of

apriori knowledge regarding plant development in a given

species can be used to override the classification of compo-

nents identified by the computer vision algorithms.

2. Dataset

An open dataset was used from the University of

Nebraska-Lincoln [24]. This dataset, called UNL-CPPD-

I, has images of 13 different maize plants (with different

genotypes). Plants were imaged once per day for 27 days

using the visible light camera of the UNL Lemnatec Scan-

alyzer 3D high-throughput phenotyping facility [10]. Im-

ages were taken from two different orthogonal side views

at 0 degrees and 90 degrees; denoted by view-0 image, and

view-90 image, respectively. The 0-degree orientation is not

always fixed across days, thus the best view for segmenting

leaves differs from day to day even for the same plant.

Maize has multiple stages of development; vegetative,

transitional, reproductive, and seed [5]. All images in the

dataset are only from the vegetative stage. During this stage,

the tip of the main stem is short, leaves are arranged in an

alternate phyllotaxy (each leaf develops on the opposite side

of the previous leaf, forming a left-right alternating pattern),

and leaves arise at a certain distance from the top of the

stem. A limited number of axillary buds can develop, but

ears do not develop until further stages. Hence, at this stage,

the topology is dominated by the alternating leaf pattern.

The dataset also contains ground-truth annotated images

with the visible leaves marked. Note that if a leaf is not vis-

ible in a given image, then it is not annotated in the ground-

truth. This is immediately evident because the number of

annotated leaves from the two views can differ substantially.

While this is advantageous from the perspective of identify-

ing leaves on an individual image, it does hinder the eval-

uation of leaf identification procedures that try to identify

leaves even if they are occluded, which is our desired goal.

The imaging started on October 10, 2015, 2 days after

seed planting. The dataset contains 700 images. A detailed

description about the imaging setup, dataset organization,

and their genotypes is given in [10].

3. Methodology

This section discusses the methods, and algorithm imple-

mentations. Each phase is described in a subsection, and are

image segmentation, view selection, plant skeletonization,

a threshold-based pruning method, spur removal based on

statistics from literature on maize, and the use of the Hun-

garian matching algorithm to improve leaf counting. Cer-

tain thresholds calculated within are appropriate for indoor

time-sequence images of maize, and would likely need to

be adjusted for other species and setups. However, the pro-

cess used to derive the thresholds can be applied elsewhere,

along with the aforementioned generalizable elements.

3.1. Segmentation

The first step is obtaining the plant area from the avail-

able images with image segmentation techniques. Back-



ground subtraction was used to extract the foreground,
which, in this case, is the plant itself. Background subtrac-
tion involves removing the background of the image, which
consists of the imaging chambers of the Lemnatec Scan-
alyzer 3D high-throughput plant phenotyping system. This
has a �xed background that remains static over the period of
interest for the image sequence [10] (Figure1a). Then, the
Otsu thresholding algorithm [25] was used on the grayscale
image of the foreground image to obtain the segmented im-
age. Figure1 shows an example of Plant001-9 at day 15
from view-90 (1b), its foreground after background subtrac-
tion (1c), and the resulting segmented plant image (1d).

(a) (b) (c) (d)

Figure 1: (a) Background. (b) Plant001-9 at day 15 from
view-90. (c) Plant foreground. (d) Segmented image.

Preliminary inspection of foreground image histograms
showed that any threshold smaller than0:27 would label
background pixels as foreground (Figure2b). However, for
some images, the detected threshold was smaller than0:27
due to the light affecting the background. Therefore, the
threshold used was the larger of0:27 and that detected by
the Otsu algorithm. At this stage, there were some images
where these thresholds were capturing some pixels from the
plant tub (Figure2e). Hence, another level of thresholding
was performed by calculating the excess green (2G� R� B )
of the foreground image. The initially-thresholded pixels
of the excess green image was thresholded again with a
threshold value of the maximum value between0:1, and the
minimum value between Otsu returned threshold, and0:5;
which is t = max(0 :1; min( to; 0:5)), whereto is the Otsu
threshold, andt is the �nal threshold value. Figure2f shows
how the second level thresholding removed the tub pixels.

3.2. View selection

For each plant and day, a view selection process was ap-
plied to select the view (either 0 degrees or 90 degrees)
where the leaves, stem, and buds are most clearly visible.
It is best to analyze the plant captured from the viewpoint
at which as many leaves as possible are visible. Hence, we
compute the area of the convex hulls of the binarized plant
images of both views (a similar process was also used in
[10]). The view with the largest convex hull was selected.
For example, Figures3aand3b show the binary images of
a maize plant on day 24, from both views. It is apparent that
the area of the convex hull at side view 90 is higher.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a) A plant image at day 11 [10]. (b) Segmen-
tation with Otsu returned threshold smaller than0:27. (c)
Segmentation with threshold value0:27. (d) A plant image
at day 25 [10]. (e) The �rst thresholding with the tub pixels
(the yellow line near the root is from the tub area). (f) After
second thresholding, the tub pixels are removed.

(a) (b)

Figure 3: (a) A segmented plant image at day 24 from view-
0, and (b) view-90. The convex hull is outlined in red.

3.3. Skeletonization

Skeletons are typically computed by either morpholog-
ical thinning, computing the medial axis, geometric meth-
ods, or the fast marching distance transform. Morphological
thinning takes a region, and gradually reduces the bound-
aries of that region until they are only separated by one
pixel. The results of morphological thinning are similar to
those of the medial axis transformation, which �nds me-
dial points by determining the set of points that are local
maxima in terms of distance from the edge of the shape.
Although these methods are straightforward, they require
intensive heuristics to ensure connectivity of the skeleton in
the case of complex dynamic structures such as plants [10].

After extensive preliminary testing, it was observed that
different skeletonization algorithms work better in speci�c
ranges of days since emergence. This preliminary testing
was measured based on the leaf count, spur count, and visu-
















