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Abstract

The utility of aerial imagery (Satellite, Drones) has
become an invaluable information source for cross-
disciplinary applications, especially for crisis management.
Most of the mapping and tracking efforts are manual which
is resource-intensive and often lead to delivery delays.
Deep Learning methods have boosted the capacity of relief
efforts via recognition, detection, and are now being used
for non-trivial applications. However the data commonly
available is highly imbalanced (similar to other real-life
applications) which severely hampers the neural network’s
capabilities, this reduces robustness and trust. We give an
overview on different kinds of techniques being used for
handling such extreme settings and present solutions aimed
at maximizing performance on minority classes using a di-
verse set of methods (ranging from architectural tuning to
augmentation) which as a combination generalizes for all
minority classes. We hope to amplify cross-disciplinary ef-
forts by enhancing model reliability.

1. Introduction

The last decade has witnessed tremendous growth both
in computational power and scientific methods for pattern
recognition and data science. Machine Learning is a tool
driving many technologies across diverse sectors. However
the fuel that drives this growth is data, and as is with every
fuel it’s not directly usable. A critical problem is class im-
balance, both in supervised and unsupervised form of learn-
ing algorithms. A dataset can be treated as imbalanced if
there is a noticeable mismatch between the target variable
and other values. For example, medical-diagnostics data is
conventionally biased towards the negative class. Other ex-
amples are in fraud detection, NLP classification, visual re-
cognition, etc. Experimentally, high instability in perform-
ance metrics has been observed in vanilla models tested on
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imbalanced datasets [3].

Commonly, deep-net models are built to maximize pre-
dictive accuracy (ex. classification) but this metric is un-
eventful for the cases with limited labels, extreme classific-
ation etc. [26]. This happens because the trained classi-
fier focuses only on the most-numerous class (since it has
a higher proportion) while remaining below-par on minor-
ity classes. This may prove catastrophic in critical use cases
like medical diagnostics and self-driving cars where the rare
instances are of utmost importance.

Our use case consists of satellite imagery of African
region which is labelled to help automate the process of
predicting drought, cattle sustenance etc. via estimat-
ing the quality of forage [15]. Usually, non-profit organ-
izations cannot employ a dedicated team of ML engin-
eers/researchers or clusters of GPUs [7], models that can
perform robustly and reliably at low requirements can be
pragmatically utilized by domain-experts and local admin-
istration [29].

Presently, researchers tend to tackle the imbalance issues
(either at input or intermediate pipeline) in its narrow con-
text with domain-specific solutions. We present drawn-out
insights on several techniques to mitigate data-imbalance
problems. The contributions of this paper are:

e We use a deep generative model for synthetic data aug-
mentation of multi-spectral images. To the best of our
knowledge, this specific area is still unexplored.

We also show that certain spectral bands are better for
particular tasks (here, vegetation area analysis).

e We show that a combination of Cyclic Learning Rate
(CLR) [38] + Stochastic Weight Averaging (SWA) [20]
is suitable for extreme imbalance scenarios.

e We further cement the compatibility of LDAM: Label-
distribution aware loss-function [5], which works bet-
ter than crude re-sampling and can be further improved
by using class-balanced loss [6].

The rest of this paper is as follows: Section 2 introduces
the dataset. Section 3 provides details on our modifications



to the base neural-net model. It also includes subsections on
Loss Function (3.1) which gives an overview of sampling
functions, Cyclic Learning Rate (3.2) which is a popular
training routine, and Stochastic Weight Averaging (3.3) as
a powerful regularizer for handling data-imbalance issues.
Section 4 provides details on multi-spectral imagery from
the lens of machine learning. Section 5 presents our exper-
iments with synthetic data augmentation followed by our
overall results. Finally we conclude the paper in Section 7
with a short discussion on performance metrics.

We use intra-class variance (ICV), Balanced accuracy [2]
and Recall as performance metrics (definitions in Sec. 1.1).

We present all our observations in two graph plots -
Figure 2 (ValAcc vs ICV) and Figure 3 (BalAcc vs ICV).

Our codebase will be made publicly available.

1.1. Performance Metrics

As we see in [26, 39, 32, 1], accuracy is not the best met-
ric to evaluate imbalanced datasets, as it can be very mis-
leading. Metrics that provide better insights [34] include:

e Recall: Recall portrays the fraction of true pos-
itives could be detected correctly, It is defined as
TruePositive/(TruePositive + FalseNegative),
Thus a low recall signifies a high number of false
negatives which is undesirable in a real-world setting.

e Balanced Accuracy (BalAcc): The arithmetic mean
of the TPR (True Positive Rate) and TNR (True Neg-
ative Rate). Thus if the model is exploiting class-
imbalanced problem to increase the vanilla accuracy,
the balanced accuracy will drop significantly and re-
flect the poor performance.

¢ Intra-Class Variance (ICV) : Z?:o (acc — class;)?
(where acc denotes the validation accuracy and class;
denotes the accuracy of the i*” class for a given exper-
iment) the main rationale is expose the models which
have high variance amongst the per class-accuracies
owing to overfitting on the frequent class in compar-
ison to robust models i.e. low variance

Table 8 presents a comparative list of our final results as per
the aforementioned benchmarks.

2. Data-set

The expert-labelled, multi-spectral satellite (LANDSAT)
data [15] was released as a bid to enhance drought detec-
tion pipelines. It essentially consists of 100,000 images split
into 86,317 training and 10,778 validation images, having a
spatial resolution of 65x65 pixels over 10 spectrum bands.
Each image is labeled by a human expert as- "the number
of cows the geographical location at the center of the image
can support’, serving as a measure of forage quality of the

location and further as an indicator of whether the location
is arid (drought-hit).

The dataset is highly imbalanced (roughly 60% of the
data gathered is of class 0, classes 1 and 2 have 15%
each, and the remaining 10% is class 3). The model
can erroneously achieve 60% accuracy just by predicting
0 every time. However, such high mis-classification is
very problematic since these algorithms will be deployed
in high-stake real-world settings. We would like to make
dense predictions no matter the location of the pixel, since
there is high amount of sparsity in the labels. Hence, we
need to train a model that is satisfactorily robust to out-of-
distribution (0.0.d) samples and generalizes well on all the
inherent classes i.e. independent-&-identically-distributed
(i.i.d) samples. We focus on striking a pragmatic balance.

3. Network Architectures

Ever since winning the 2015 ILSVRC [33] challenge
ResNet [14] has inspired a family of deep convolutional
neural networks. The skip connections in ResNet allow one
to build deep networks (up to 1000 layers) while still keep-
ing them optimizable, He et. al [14] demonstrated that even
for fixed baseline architecture increase in depth almost al-
ways leads to increased accuracy.

While Scaling in depth [14] is the go-to method to boost
a network’s accuracy, other less popular scaling methods
include scaling by width [44] and resolution [19]. Tan et.
al [41] in their work showed that while scaling (in width,
depth, resolution) improves model accuracy, the accuracy
saturates after a certain level. They argued that different
scaling dimensions (height, width, resolution) are not in-
dependent and the key to successfully scale deep networks
is in balancing scaling in different dimensions rather than
scaling in one direction only. To harmonize the scaling in
all dimensions they proposed a compound scaling method
which utilized ¢ (compound scaling coefficient) to uni-
formly scales the network’s depth, width and resolution.

Depth: d = o, Width: w= 5¢,

Resolution : r = v®

a,B,v=>1

However, scaling doesn’t change the core layer oper-
ations making it imperative to have a solid baseline net-
work for achieving desired outcomes, Tan et al. [41] lever-
aged Neural Architecture Search [47] to propose a new
baseline “Efficient-Net” by optimizing for both accuracy
and FLOPS.

In Table 1 we give a baseline for ResNet-50 and
Efficient-Net B4. We also apply standard data augmenta-
tion e.g. Random Horizontal-Flips, Random Vertical-Flips
and Random Rotation after normalizing the data.
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3.1. Loss Function and Sampling

Deep learning networks for all their might still fare very
poorly on highly imbalanced datasets. Re-sampling and Re-
weighting are the most common techniques used to cope
with class imbalance problem.

1. Re-sampling :

(a) Oversampling [37, 45, 3, 4] : Augmenting
the dataset with multiple copies of minority
class samples, however since we inherently have
low information about the minority class over-
sampling more often than not leads to overfitting
on minority class [6].

(b) Undersampling [13, 21, 3]: Undersampling is
achieved by rejecting samples from the more-
frequent classes. Since we are loosing out on
purpose in order to equalize the class-count, un-
dersampling technique aren’t possible in case of
high class imbalance [6].

2. Re-weighting [17, 18]: Different set of weights (x
1/nj,where n; = total samples of j* class) are as-
signed to different classes. However re-weighting
techniques cause instability in network’s optimization
under extreme class imbalance [6, 37, 4].

Recall
Model Training Details idation Acc

0 1 2 3

ResNetso  eaming Rate : le-3 0.7465 09102 04198 05511 0.5682
Loss : Cross-Entropy

Efficient-Net B4 -eoming Rate : le-3 0.7630 09199 04114 05739 0.6469

Loss : Cross-Entropy

Table 1: Comparison of Baseline Performances on Valida-
tion Set. Efficient-Net B4 attains higher accuracy and per-
class Recall in comparison to ResNet-50.

Recall

Model Training Details Validation Acc

0 1 2 3

Learning Rate : le-3
Sampler : o< 1/n;; 0.7184 0.8154 0.5818 0.5014  0.6880
Loss : Cross-Entropy

ResNet-50

Learning Rate : CLR
Sampler : o< 1/n;; 0.7022 0.7792  0.5719 0.5780 0.6334
Loss : LDAM+DRW

ResNet-50

Learning Rate : le-3

- Efficient-Net B4
clent-Net Loss : Cross-Entropy

0.7630 09199 04114 0.5739  0.6469

Learning Rate : CLR
Sampler : o 1/n; 0.7196 0.7867 0.5900 0.5648 0.7699
Loss : LDAM+DRW

Efficient-Net B4

Table 2: LDAM+Sampling comparison, ’4’ significantly
improves rare-class recall while maintaining decent ValAcc.
(DRW refers to Deferred Re-Weighting Routine)

Both re-sampling and re-weighting conclusively aim to
augment the training distribution to become much more
identical to the test distribution. However, due to the afore-
mentioned flaws performance of minority class is generally
increased on the cost of the network’s ability to learn the
majority class well.

Cao et al. [5] designed a label-distribution aware
loss function (LDAM) that regularizes the minority class
much more strongly than the majority class, motivating the
network to improve generalization on the minority class
without suppressing the network’s ability to learn the ma-
jority class. Strong regularisation here can be understood in
terms of enforcing bigger margins for the minority class as
compared to the majority class. Moreover this approach is
orthogonal to re-weighting and re-sampling, ensuring flex-
ibility depending on level of imbalance in one’s dataset.

In the same work, Cao et al. [5] proposed a “deferred
re-balancing training” procedure which divides the training
procedure into two stages. The first stage uses Empirical
Risk Minimization with LDAM loss, learning a good ini-
tial representation. The second stage employs re-weighted
LDAM loss with a smaller learning rate. The main ra-
tionale behind this is to bypass the problems caused by re-
weighting in the optimization process of a Neural Network
by first learning a good initial representation and then op-
timizing on that. We also employ a re-sampling scheme
(x 1/n;) orthogonal to the LDAM+DRW routine. Table 2
presents our results with LDAM.

In the next subsection we give a brief on Cyclic Learning
Rate (CLR) and it’s advantages.

3.2. Cyclical Learning Rates (CLR)

Learning rate is responsible for scaling the gradients at
each weight update and is one of the most important hyper-
parameters to tune while training a deep neural network as
too small a learning rate will encourage very small steps
and hence the network might not converge at all, whereas
too high a learning rate will propel divergent behavior. The
optimal learning rate depends on the network’s loss surface
and usually is not feasible to calculate.

The cyclical learning rate [38] oscillates between a
range of values, going against the conventional wisdom
of exponentially/step-wise decreasing the learning rate as
training progresses. The advantages of doing this are -

Training Details | Values
Upper Bound le-3
Lower Bound le-5
Stepsize 2
Functional Form | Triangular

Table 3: Training Details for CLR setup



1. Stuck on a sharp minimum [25] - Networks with flatter
minima tend to be more robust than the ones with sharp
minima, as flatter minima ensure that we are in optimal
minima region in the test loss surface as well and hence
generalize better, periodically increasing the value of
learning rate will help to get out of the sharp minima
more quickly.

2. Stuck on saddle points [22, 38] - When training a Deep
network it is very likely that the loss surface topo-
logy contains a lot of saddle points. Thus having per
periodic boost of high learning rate is very useful as
it helps in traversing the saddle points more quickly
(since the gradient value is already very low here).

The next section is on Stochastic Weight Averaging
(SWA) that is a very promising regularization technique and
we outlay the setup details and it’s benefits for our problem.

3.3. Stochastic Weight Averaging (SWA)

Another go-to methodology machine learning practition-
ers generally adopt while training models is ensemble learn-
ing. Ensemble learning improves predictions by combining
[for example voting, averaging etc] results of various mod-
els. However when training Deep Neural Networks it is not
possible to train multiple models on the dataset due to time
and compute constraints.

Garipov et al. [9] in their work on Fast Geometric
Ensembles showed that using cyclical learning rates with
stochastic gradient descent traversed on the periphery of the
optimal weights but never quite reached it’s center, They se-
lected the network with weights on the periphery to form
the ensemble. This helped in training the ensemble in time
required to train one network.

Stochastic Weight Averaging [20] uses the same setup
i.e. high frequency cyclical/constant learning rate with SGD
to traverse around the optimal weight set, and then does av-
eraging in the weight domain only at different snapshots of
training. This allows weights to reach the much desired op-
timal set. The advantages of this are following:

1. Faster inference time compared to Garipov et al. [9],

Recall
Model Training Details idation Accuracy

1 2 3
Efficient-Net B4 Learning Rate : le-3 0.7630 09199 04114 05739 06469
Loss : Cross-Entropy
Stochastic Weight Averaging : No
Efficient-Net B4 Learning Rate : CLR 0.719 07867 0.5900 0.5648 0.7699
Sampler : o 1/n;
Loss : LDAM+DRW
Stochastic Weight Averaging : Yes
Efficient-Net B4 Learning Rate : CLR 0.7292 0.8098 0.6017 0.5409 0.7436

Sampler : o 1/n;
Loss : LDAM+DRW

as we only have one model as the end result, compared
to waiting for k results from k models.

2. Given that the underlying data distribution is the same,
it is fair to assume that the test and train datasets will
have similar loss surfaces. Thus it makes much more
sense to aim for a more flatter minima while training
than a sharp one [even if it leads to higher training er-
ror], as it will ensure that we are in an optimal minima
region in the test loss surface as well, leading to a more
robust network.

We find that using SWA in combination with Adam op-
timizer and the CLR setup we were able to significantly im-
prove the low/mid class accuracy and subsequently train a
more robust network Table 4.

In the next section we present our brief insights linking
the remote sensing community with the machine learning
engineers. The bands are a key component and must be
studied in more detail for better cross-linking when being
used with neural networks.

4. Training On Subset of Bands

Multi-spectral Images (MSI) are described by 3 to 10
narrow spectral bands. This high spectral information is
very beneficial as by combining different spectral bands we
can infer different information, leading up to terabytes of
data produced per day.

Since adjacent bands in MSI are highly correlated, there
is a lot of redundancy in our data. This contrary to conven-
tional wisdom, leads to degradation of accuracy on increas-
ing the number of bands in MS images [12], also using too
many spectral bands incur high computational cost as well
as more inference time.

Thus it makes sense to use only those spectral bands
which motivate the network to learn better feature repres-
entations for separating specific classes. The selected band

Recall
Model Training Details idation Accuracy

1 2 3
Bands: All
Stochastic Weight Averaging : Yes
Efficient-Net B4 Learning Rate : CLR 0.7292 0.8098 0.6017 0.5409 0.7436
Sampler : o 1/n;
Loss : LDAM+DRW
Bands: 4,3.2
Stochastic Weight Averaging : Yes
Efficient-Net B4 Learning Rate : CLR 0.7047 0.7996  0.5356 0.5475 0.6428

Sampler : o< 1/n;
Loss : LDAM+DRW

Bands: 54,3
Stochastic Weight Averaging : Yes
Learning Rate : CLR 0.7022 0.7792  0.5719 0.5780 0.6334
Sampler : o< 1/n;
Loss : LDAM+DRW

Efficient-Net B4

Bands: 6,5.2
Stochastic Weight Averaging : Yes
Efficient-Net B4 Learning Rate : CLR 0.7441 08156 0.5941 06138 0.7584
Sampler : o 1/n;
Loss : LDAM+DRW

Table 4: SWA Experiment

Table 5: Using subset of bands



performance is often conditional on many aspects of the
classification pipeline such as the nature of the adopted clas-
sifier and its parameter configurations [40].

A major hurdle was deciding the importance of each
spectral band, since there is not a lot of literature specific
to neural networks. We experimented with three different
band combinations based on their characteristics. [8]

1. 4-3-2: Natural Color This band combination results
in the image appearing as perceived by the human eye.

2. 5-4-3: Near Infrared Composite This combination
contains near-infrared(5), red(4), green(3) bands, This
combination is particularly useful while analyzing ve-
getation, crops and wetlands as it is able to capture the
near-infrared light reflected by chlorophyll.

3. 6-5-2: Agriculture It is a combination of SWIR-1
(6), near-infrared (5) and blue (2). The short-wave and
near infrared allows this combination to be used for
crop monitoring.

As observed in Table 5, the combination 6-5-2 seems to
work the best for the given dataset.

We believe the original dataset is small but inherently
complex due to overlap of several spectral bands and thus
data augmentation is very beneficial. The next section ex-
pands on the data generation component of our project.

5. Generating Synthetic Images

The introduction of Generative Adversarial Networks
(GANS) [11] sprung up many exciting research directions,
the field has grown steadily with numerous applications in
image super-resolution, in-painting, image-to-image trans-
lation, image enhancement (For example, earth observa-
tion/remote sensing [27, 42]).

Recall

Model Training Details idation A
0 1 2 3

Learning Rate : le-3
Loss : Cross-Entropy 0.76 09199 04114 05739 0.6469
Dataset : Original

Efficient-Net B4

Stochastic Weight Averaging : No
Learning Rate : le-3
Sampler : o< 1/n; 0.67 0.6815 0.6619 0.6258 0.7521
Loss : Cross-Entropy
Dataset : GAN-Augmented

Efficient-Net B4

Bands: 6,5,2
Stochastic Weight Averaging : Yes
Learning Rate : CLR
Sampler : o 1/n;

Loss : LDAM+DRW
Dataset : Original

Efficient-Net B4 0.74 0.8156  0.5941 0.6138 0.7584

Stochastic Weight Averaging : Yes
Learning Rate : CLR
Sampler : o 1/n; 0.70 0.7459  0.5842  0.5540 0.7436
Loss : LDAM+DRW
Dataset : GAN-Augmented

Efficient-Net B4

Table 6: GAN Augmented Dataset Comparison

Training Details | Values
Resolution 64x64
Epochs 45
Learning Rate 2e-4
61 0.5

52 0.999

Table 7: Training Details for GAN

Standard data augmentation has been used as a go-to
technique for enhancing generalizability. Generative ad-
versarial networks offer a novel method for data augmenta-
tion [35], but have still not been adopted by either the earth
observation or remote sensing community. We use DC-
GAN [30], which employs deep convolutional neural net-
works for both the Generator (G) and Discriminator (D), to
generate synthetic images for the low represented classes
as a form of data-augmentation to equalize the number of
samples of each class. We only operate on a subset of bands
(6-5-2), since it is easier to critic the visual perceptibly of
images this way than all the bands combined.

The main motivation behind equalizing the number of
classes was to make the network learn improved discrimin-
atory features and hence becomes more robust.

We monitored the visual perceptibly of generated images
over the training period (60 epochs) and found that the net-
work converges at about 45 epochs, see Figure 4. The fi-
nal dataset (GAN-Augmented) consisted of 120,000 images
with 30,000 images from each class. The architectures used
for D and G are kept same as described in [30]. Training
details are shown in Table 7 and Loss plots are in Figure 1.

Table 6 demonstrates the results we obtained from the
network (in combination with various training methodolo-
gies) on the GAN-Augmented dataset, a significant increase
in the per-class accuracies of rare-classes was observed.
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(a) Generator (G) Loss (b) Discriminator (D) Loss

Figure 1: GAN Losses

6. Results

We evaluate various techniques in a combination set-
ting to facilitate training of robust Deep Neural Networks.
We provide baseline metrics for both architectures (ResNet-



Model Training Details Validation Acc  Balanced Validation Acc  Intra-Class Variance

Learning Rate : le-3

ResNet-50 Loss Crose Entropy 0.7465 06123 04510
Learning Rate : le-3
ResNet-50 Sampler : oc 1/n; 0.7184 0.6467 02757
Loss : Cross-Entropy
Leamning Rate : CLR
ResNet-50 Sampler : o< 1/n; 0.7022 0.2076 0.6406
Loss : LDAM+DRW
Efficient-Net B4 Leaning Rate : l¢-3 07630 0.6380 04443
Loss : Cross-Entropy
Learning Rate : CLR
Efficient-Net B4 Sampler : o 1/n; 0.7196 0.6779 0.2185
Loss : LDAM+DRW
Stochastic Weight Averaging : Yes
Efficient-Net B4 Learning Rate : CLR 0.7292 0.6740 02417
Sampler : o< 1/n;
Loss : LDAM+DRW
Bands: 6,5,2
Stochastic Weight Averaging : Yes
Efficient-Net B4 Leamning Rate : CLR 0.7441 0.6955 02115
Sampler : o 1/n;
Loss : LDAM+DRW
Stochastic Weight Averaging : No
Learning Rate : le-3
Efficient-Net B4 Sampler : oc 1/n; 0.67 0.6803 0.0942
Loss : Cross-Entropy
Dataset : GAN-Augmented
Stochastic Weight Averaging : Yes
Leamning Rate : CLR
Efficient-Net B4 Sampler : oc 1/n; 0.70 0.6569 0.1967

Loss : LDAM+DRW
Dataset : GAN-Augmented

Table 8: Performance Metrics Comparison

50 and Efficient-Net B4) in Table 1, and observe that
the baselines fall prey to overfitting owing to high class
imbalance. Table 2 advocates LDAM loss as a label-
dependent regularizer which leads to a reduction in In-
tra class variance (ICV) and improvements in balanced-
accuracy, see Figure 3. We observe that performance of
SWA+LDAM+CLR (all bands, Table 8 - 6) performs com-
pared to SWA+LDAM+CLR®%:2 (Table 8 - 7).

Lastly we present the results of baseline as well
as SWA+LDAM+CLR%%2 on GAN-Augmented dataset.
There is a substantial decrease in ICV while maintaining
decent balanced-accuracy in the baseline experiment, indic-
ating that the network was able to learn better discriminative
features for all rare-classes. The SWA+LDAM+CLR®->-2
though under-performing on aspect of per-class accuracy
leads to considerable decrease in ICV, see Figure 3.

6.1. Limitations

e In Figure 3 (BalAcc vs ICV) we observe one outlier
result: SWA+CLR+LDAM %°2 -GAN Augmented, as
per our trend this should have been the best result (in-
stead it is the Baseline - GAN Augmented). This ex-
ception may be attributed to incomplete insights on the
GAN data interaction with our network modifications.

e Problems with generating data for all spectral bands.
There is a lack of empirical data to ascertain quality of
output data in such scenario. [27], [42], [23]. We ex-
pect improvements with higher-diversity i images [10].

e We did not explore alternative generative models ex.
Kernel-based GANs [28], Variational Autoencoders
family (VQ-VAEs [43, 31], hybrid VAE-GAN [24]).

e No class-activation mapping for model explanation or
other interpretability mechanism [46, 36, 16].

e We did not incorporate adversarial training/defense.

7. Conclusion

There is a lot of focus on handling or curbing the adverse
effects of imbalanced data. Mitigating class imbalance is an
important research area, as it will allow trust-worthy solu-
tions in the form of deep neural networks in many eclectic
fields. As per trend, deep learning networks are tuned to
maximize the total accuracy over the entire dataset, thus fo-
cusing on the majority-class samples. As a result, the mod-
els under-perform on minority class(es) samples leading to
bad intra-class generalization and low robustness.

We provide a comparative overview of diverse yet latest
methodologies for operating on skewed datasets that is
suffering from class-imbalance problems. This diverse
set of techniques ranges from discussions on state-of-
the-art convolutional neural network architectures, label-
dependent loss functions, learning-rate routines, generating
Deep Neural Network ensembles and finally generating data
samples using DC-GAN.

We conclusively aspire to serve as a toolkit for practi-
tioners and researchers suffering from skewed data prob-
lems in their respective fields as we present the work to
other domain-experts, especially those dealing with mul-
tiple minority classes. Since our ensemble methodology
doesn’t overfit on the rare classes but tries to generalize on
the non-major classes thus achieving a trade-off on overall
accuracy but high robustness.

Acknowledgements

We would like to thank Meenakshi Sarkar and Shivam
Saboo for insightful discussions, also the anonymous re-
viewers for their valuable feedback on the draft. Authors
would like to give a shout-out to Weights & Biases and to
the ICLR’20 CCAI Workshop’s Mentorship Program.

PP extends special thanks to Debasish Ghose (IISc-B)
and Krikamol Muandet (MPI-IS) for supporting this work.

References

[1] Tara Boyle. Dealing with imbalanced data, 2019. to-
wardsdatascience.com.

[2] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno
Stephan, and Joachim M. Buhmann. The balanced accuracy
and its posterior distribution. 20th International Conference
on Pattern Recognition (ICPR), pages 3121-3124, 2010.



Baseline e

0.76
Desired Solution Space
SWA+CLR+LDAMS52 o Baseline #
0.74
oy
I ® SWA+CLR+LDAM
3 High Accuracy
Q
g R CERILDAMS # Oversampling
g
@
=
°
= o7 SWASCLR+LDAMES2 ¢ ® CLR+LDAM
High Variance + ResNet-50
0.68 ® Efficient-Net B4
* GAN - Augmented
o Baseline®>?
0.1 0.15 0.2 0.25 0.3 0.35 04 0.45

Intra-Class Variance

Figure 2: Plot of various training methodologies w.r.t Validation accuracy and Intra-class variance
The solutions in the top(more accurate) - left (less variance) section of the Figure are most desirable i.e. accurate and robust.

0.7
® SWA+CLR+LDAM &52
069 Desired Solution Space
¢ ResNet-50
0.68 e Baseline®>? * Efficient-Net B4
N CLEHDAM S ® GAN - Augmented
) ® SWA+CLR+LDAM
5 067
Q
Q
<
5 0.66
3 High Accuracy SWA+CLR+LDAM"** @
k=i
< 0.65
i # Oversampling
]
2 064 ¢CLR+LDAM
[ Baseline ®
T
o
0.63
High Variance
0.62
Baseline®
0.61
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Intra-Class Variance

Figure 3: Plot of various training methodologies w.r.t Balanced Validation accuracy and Intra-class variance
We observe various models which were performing very well as per the vanilla validation-accuracy plummet when plotted
w.r.t. balanced validation accuracy thus exposing the deep-rooted focus on the frequent class.
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