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Abstract

How can we effectively leverage the domain knowl-

edge from remote sensing to better segment agriculture

land cover from satellite images? In this paper, we pro-

pose a novel, model-agnostic, data-fusion approach for

vegetation-related computer vision tasks. Motivated by the

various Vegetation Indices (VIs), which are introduced by

domain experts, we systematically reviewed the VIs that are

widely used in remote sensing and their feasibility to be

incorporated in deep neural networks. To fully leverage

the Near-Infrared channel, the traditional Red-Green-Blue

channels, and Vegetation Index or its variants, we propose

a Generalized Vegetation Index (GVI), a lightweight mod-

ule that can be easily plugged into many neural network

architectures to serve as an additional information input.

To smoothly train models with our GVI, we developed an

Additive Group Normalization (AGN) module that does not

require extra parameters of the prescribed neural networks.

Our approach has improved the IoUs of vegetation-related

classes by 0.9 − 1.3 percent and consistently improves the

overall mIoU by 2 percent on our baseline.

1. Introduction

Deep learning has been widely adopted in computer vi-

sion across various applications such as diagnosing medi-

cal images[1], classifying objects in photos[2], annotating

video frames[3], etc. However, recognizing the visual pat-

terns in the context of agriculture, especially segmenting

the multi-labeled masks, has not been explored extensively

in detail. One primary reason that hinders the progress is

the difficulty of handling complex multi-modal information

inside the images[4]. Because the sensing imagery in agri-

culture contains Near Infrared band and other thermal bands

that is distinguished from traditional images spanning over

red, green, and blue (RGB) visual bands. Such a multi-band

information is crucial for understanding the land cover con-

text and field conditions, e.g., the vegetation of the land.

Figure 1. An example of an NRGB image and its Vegetation Index

(VI) and ground-truth labels. Top-left: Input RGB channels; Top-

right: Input near-infra red (NIR) channel; Bottom-left: Vegeta-

tion Condition Index (VCI)[5] calculated based on RGB and NIR

channel; Bottom-right: Ground-truth labels, where yellow de-

notes Double Plant and blue denotes the Weed Cluster. VCI is

able to pick up both Weed Cluster (a cluster of very high VI val-

ues) and Double Plant (lanes of different VI values compared to

the background crops). Notice our ground-truth labels miss the

lanes of Double Plant in the bottom left region. Our approach can

identify the pattern successfully.

To leverage the information of multiple distinct bands in

the images, research in the last several decades has focused

on developing different algorithms and metrics to perform

the land segmentation[6, 7]. As discussed in the literature
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review in Section 2, the design of Vegetation Index (VI) has

been essential for studying land cover segmentation[8–11].

The key idea of VI is to assess the vegetation of a region

based on the reflectances from multiple bands, including the

Near-Infrared band and other thermal bands, and hence ulti-

mately approximate the region’s land cover segments. Nev-

ertheless, in the context of deep learning, we have yet to

investigate how to leverage the domain knowledge of VI

while making use of models learned or transferred from

non-agriculture data to segment the land accurately.

To tackle this question, we describe a general form of

VI that serves as an additional input channel for image seg-

mentation. Such a general form of VI covers many specific

VI variants in existing studies[10–13], which motivate us to

develop a generalized learnable VI block that fuses the VIs

and images in a convolution fashion. Based on the fused

input, we also propose a new additive group normalization,

a natural generalization of the instance normalization and

layer normalization, because the VI channel and RGB chan-

nels can be considered as different groups.

Our work contributes to the research of agriculture land

cover segmentation in three ways. Firstly, we systemati-

cally compare the vegetation indices that primarily depend

on the Near-Infrared, red, green, and blue channels. We

highlight the key idea of calculating VIs and disclose the

connections among them. Secondly, we propose a model-

agnostic module named General Vegetation Index (GVI)

that captures many existing VI features. This module partic-

ularly fits convolutional neural networks, even for the pre-

trained models very well, because it doesn’t need to change

model structures too much. Thirdly, we introduce the addi-

tive group normalization (AGN) that helps to fine tune mod-

els smoothly when GVI is introduced to a pretrained model.

With these components in place, we modified a model based

on DeepLabV3[14] and ran thorough experiments on land

segmentation in agriculture. With careful evaluations, we

achieved a mIoU of 46.89% which exceeds the performance

of the baseline model by about 2 percent.

2. Related Work

Vegetation Index. Vegetation Indices (VIs) are sim-

ple and effective metrics that have been widely used to

provide quantitative evaluations of vegetation growth[9].

Since the light spectrum changes with plant type, water con-

tent within tissues and so on[15, 16], the electromagnetic

waves reflected from canopies can be captured by passive

sensors. Such characteristics of the spectrum can provide

extremely useful insights for applications in environmen-

tal and agricultural monitoring, biodiversity conservation,

yield estimation, and other related fields[17]. Because the

land vegetation highly correlates with the land cover re-

flectance, researchers have built more than 60 VIs in the

last four decades with mainly the following light spectra:

(i) the ultraviolet region (UV, 10-380 nm); the visible spec-

tra, which consists blue (B, 450-495 nm), green (G, 495-570

nm) and red (R, 620-750 nm); (iii) the near and mid-infrared

band (NIR, 850-1700 nm)[18, 19]. Such VIs are validated

through direct or indirect correlations with the vegetation

characteristics of interest measured in situ, such as vegeta-

tion cover, biomass, growth, and vigor assessment[9, 20].

To our best knowledge, the first VI, i.e., the Ratio Vegeta-

tion Index (RVI), was proposed by Jordan[8] in 1969. RVI

was developed with the principle that leaves absorb rela-

tively more red than infrared light. Widely used at high-

density vegetation coverage regions, RVI is sensitive to at-

mospheric effects and noisy when vegetation cover is sparse

(less than 50%)[7]. The Perpendicular Vegetation Index

(PVI)[21] and The Normalized Difference Vegetation In-

dex (NDVI)[10] followed the same principle but dedicated

to normalize the output, having a sensitive response even

for a low vegetation coverage. To eliminate the effects

of atmospheric aerosols and ozone, Kaufman and Tanre

[22] proposed the Atmospherically Resistant Vegetation In-

dex (ARVI) in 1992, and Zhang et al. [11] improved the

ARVI by eliminating its dependency to a 5S atmospheric

transport model[23]. Another direction was to improve

VI’s robustness against different soil backgrounds[21]. The

Soil-Adjusted Vegetation Index (SAVI)[24] and modified

SAVI (MSAVI)[25, 26] turned out to be much less sensi-

tive than the RVI to changes in the background. On top

of ARVI and SAVI, Liu and Huete introduced a feedback

mechanism by using a parameter to simultaneously cor-

rect soil and atmospheric effects, which turns out to be

the Enhanced Vegetation Index (EVI)[27]. With the recent

progress in remote sensing (increasing number of bands

and narrower bandwidth)[28], more VIs are built captur-

ing not only the biomass distribution and classification,

but also chlorophyll content (Chlorophyll Absorption Ra-

tio Index(CARI))[29], plant water stress (Crop Water Stress

Index (CWSI))[30], light use efficiency (Photochemical Re-

flectance Index (PRI))[20, 31].

A summary of VIs that derives from NIR-Red-Green-

Blue (NRGB) images can be found in Table 1. We refer to

a full literature review of VIs in [32] and [9].

Remote Sensing with Transfer Learning and Data

Fusion. As an emerging indiscipline, remote sensing (on

both aerial photographs and satellite images) with deep

learning has witnessed quite a few benchmark datasets been

released in recent years, such as FMOW[33], SAT-4/6[34],

EuroSat[35], DeepGlobe 2018[36], Agriculture-Vision [4]

and etc. Most of those datasets come with more than the

visible band (i.e., RGB), but also near and mid-infrared

band (NIR) and sometimes shortwave red (SW). The dif-

ferent input structure, together with the context switch from

a human-eye dataset (such as ImageNet[37]) to a bird-eye

dataset, makes Transferring Learning less straightforward.



Penatti et al. [38] systematically compared ImageNet pre-

trained CNN with other descriptors (feature extractors, e.g.

BIC) and found it achieve comparable but not the best

performance in detecting coffee scenes. Xie et al. [39]

has shown simply adopting the ImageNet pretrained model

while discarding the extra information does not achieve the

best result in predicting the Poverty Level. Zhou et al. [40]

has also observed the similar phenomena in their Road Ex-

traction task. In addition, a two-stage fine-tuning process is

proposed in [41], where an ImageNet pretrained network is

further fine-tuned on a large satellite image dataset with first

several layers frozen. An alternative direction in explor-

ing the large-scaled but not well-labeled data is to construct

satellite image specified geo-embedding through weakly su-

pervised learning[42], or unsupervised learning with Triplet

Loss[43].

In [44], Sidek and Quadri defined data fusion as “

... deals with the synergistic combination of information

made available by different measurement sensors, informa-

tion sources, and decision-makers.” Studies in deep learn-

ing community have also proposed data fusion approaches

which are specific to satellite images at a different level

in practice. For example, [45] concatenates LiDAR and

RGB to predict roof shape better. In DeepSat [34], Basu

et al. achieves the state of the art performance on SAT-4

and SAT-6 land cover classification problems by incorpo-

rating NDVI[10], EVI[12] and ARVI[11] as another input

channel. A recent study[46] proposed a novel approach to

select and combine the most similar channels using images

from different timestamps. Apart from the multi-channel

data fusion, fusions at multi-source [47, 48] and multi-

temporal[49] level have also shown their empirical value.

Multi-spectral Image Data Fusion. Multi-spectral im-

age data fusion is also widely used in robotics, med-

ical diagnoses, 3D inspection, etc[50]. Color related

techniques represent color in different spaces. Intensity-

Hue-Saturation (IHS fusion)[51] technique transforms three

channels of the data into the IHS color space, which sep-

arates the color aspects in its average brightness (inten-

sity). The values in IHS space corresponds to the surface

roughness, its dominant wavelength contribution (hue), and

its purity (saturation) [52, 53]. Then, one of the compo-

nents is replaced by a fourth channel that needs to be in-

tegrated. Statistical/numerical methods introduce a math-

ematical combination of image channels. The Brovey

algorithm[54] calculates the ratio of each image band by

summing up the chosen bands, followed by multiplying

with the high-resolution image.

In addition to concatenating multi-spectral channels,

several deep learning architectures were proposed for multi-

spectral images. [55] pretrains a Siamese Convolution Net-

work to generate a weighted map for infrared and RGB

channels in the inference time. Liet al. [56] decomposes

the source images into base background and detail content

first and then applies a weighted average on the background

while using a deep learning network to extract multi-layer

features for detail content.

3. Proposed Method

3.1. Overview

In general, our approach hinges on fusing Vegetation In-

dex with raw images. We first introduce using well-known

VIs as another input channel. Then we generalize the idea

of VI to a fully learnable data fusion module. Last but not

least, we propose an Additive Group Normalization (AGN)

to handle the warm-start with a pretrained model. We will

describe the technical details in the following subsections.

3.2. Vegetation Index for Neural Nets

During the practice of remote sensing, more than 60 VIs

are developed in the last four decades, according to [9].

However, not all of VIs derives from NIR and RGB chan-

nels, few of which generalize across datasets without tuning

its sensitive parameters manually. For example, the Perpen-

dicular Vegetation Index (PVI) [21] is defined as follows:

PVI =

√

(ρsoil − ρveg)
2
R
− (ρsoil − ρveg)

2
NIR

, (1)

where ρsoil is the soil reflectance and ρveg is the vegetation

reflectivity. However, PVI is sensitive to soil brightness and

reflectivity, especially in the case of low vegetation cover-

age and needs to be re-calibrated for this effect[22]. Such

sensitivity introduces unsentimental difficulty as we try to

feed the VI into the neural net work as another input chan-

nel. There are also VIs designed for a specific dataset in

the first place. On top of the Landsat Multispectral Scan-

ner (MSS), Landsat Thematic Mapper (TM) and Landsat 7

Enhanced Thematic Mapper (ETM) data, Cruden et al. [19]

applied a Tasseled Cap Transformation and came up the em-

pirical coefficients for Green Vegetation Index (GVI) as:

GVI = −0.290MSS4 − 0.562MSS5 + 0.600MSS6

+ 0.49MSS7, (2)

where MSSi denotes the ith band of Landsat MSS, Landsat

TM, and Landsat 7 ETM and are not usually available for

satellite and aerial imagery outside this product family.

In table 1, we summarized some representative vege-

tation indices that are derived from NIR-Red-Green-Blue

(NRGB) images, together with their definitions and value

ranges. Based on the definitions, we calculate the pixel-

wise correlation matrix for all 12 VIs, and it is presented

in Figure 2. The correlation coefficients are calculated at

pixel level using all data released for training. For SAVI,

we choose L to be 0.5. Except for certain pairs (such as



Index Definition Meaningful Range

NDVI∗ [10]
NIR − R

NIR + R
[0, 1]

IAVI∗† [11]
NIR − (R − γ(B − R))

NIR + (R − γ(B − R))
, γ ∈ (0.65, 1.12) [−1, 1]

MSAVI2∗ [21] 0.5
(

(2NIR + 1)−
√

(2NIR + 1)2 − 8(NIR−R)
)

[0, 1]

EVI∗ [12] 2.5 ∗
NIR − R

NIR + 6R − 7.5B + 1
(−∞,∞)

VDVI∗ [13] 2 ∗
2G − R − B

2G + R + B
[−1, 1]

WDRVI∗ [6]
0.2NIR − R

0.2NIR + R
[−1, 1]

MCARI [57]
1.5 ∗ (2.5 ∗ (NIR − R)− 1.3 ∗ (NIR − G)
√

(2NIR + 1)2 − (6NIR − 5R)− 0.5
(−1.6, 4.88)

GDVI [58] NIR − G [−1, 1]

SAVI∗† [24] (1 + L) ∗
NIR − R

NIR + R + L
, L ∈ {0, 0.5, 1} [0, 1]

RVI∗ [59]
R

NIR
[0,∞)

VCI [5]
NDVI − NDVImin

NDVImax + NDVImin

[0, 1]

GRVI∗ [58]
NIR

G
[0,∞)

NDGI∗ [60]
G − R

G + R
[−1, 1]

Table 1. Summary of vegetation indices that are derived from NIR-Red-Green-Blue (NRGB) images
∗: These vegetation indices share the general format as equation 3

†: Parameters need to be calibrated and this VI cannot be fed into the neural network directly

Figure 2. Pair-wise correlation coefficients of all 12 available veg-

etation indices

NDVI v.s. SAVI), the correlation between different VIs are

with in the range of (−0.2, 0.9). We include all 12 VIs as

extra input channels in our experiments when leveraging the

information from existing vegetation indices.

3.3. Learnable Vegetation Index

Some high correlations between VIs stems from not only

the fundamental vegetation status, but also the empirical

function that researchers have introduced. We notice that

9 out of the 13 VIs from Table 1 shares the following gen-

eral form:

VI =
α0 + αRR + αGG + αBB + αNIRNIR

β0 + βRR + βGG + βBB + βNIRNIR
, (3)

where αc, βc, ∀c ∈ {R,G,B,NIR} are parameters to be de-

termined, and could be learnable in deep learning models.

As suggested in [5], we can normalize the response (out-

put) by nearby regions to supress outliers. By extending the

pixel-wise operation to each neighbourhood of image chan-



nels, we introduce a learnable layer of Generalized Vegeta-

tion Index (GVI):

GV I(x, α, β) =
x⊛ α

x⊛ β
, (4)

where ⊛ denotes the convolution operation, x is our NRGB

inputs and α, β are the learnable weights. In practice, we

clip both the numerator and denominator to avoid numerical

issues. Depending on the output channels, this layer has the

capacity to express a variant number of VIs when learned.

An illustrative example can be found in Figure 3.

NRGB

VI/GVI
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Model
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Map
AGN

Figure 3. Our model-agnostic data fusion module. The VI or GVI

input channel is compatible to any segmentation model trained on

NRGB image. Additive Group Normalization (AGN) is applied in

the Near-Infrared channel with a linear combination of the batch

normalization.

3.4. Additive Group Normalization Index

In contrast to explicitly normalizing the constructed in-

dices using a ratio (e.g., in Equation (4)), we could normal-

ize the value using nearby regions and channels, as we saw

in VCI[5]. Fortunately, the deep learning community has al-

ready developed the counterpart approaches such as Batch

Normalization (BN)[61], Layer Normalization (LN)[62],

Instance Normalization (IN)[63] and Group Normalization

(GN)[64]. However, we found that the neural network, even

equipped with the most widely used BN, has an internal dif-

ficulty in fitting existing VIs, as shown in Figure 4. The rel-

ative high errors in prediction indicate that BN is not able

to captured channel-normalized features, while VIs are usu-

ally normalizing the inputs across the spectrum. Such ob-

servations motivate us to introduce the Additive Group Nor-

malization. Unlike BN that normalizes each channel of fea-

tures using the mean and variance computed over the mini-

batch, GN splits channels into groups and use the within-

Figure 4. Mean L1 error over standard deviation (%). At each

pixel, We trained a two-layer fully-connected Neural network with

the NRGB channels to fit the Vegetation Indices using a batch size

of 16. We plot the relative error for each vegetation index, i.e.,

the L1 error over the mean standard deviation in percentage. The

additive group normalization fits almost all VIs better compared to

batch normalization.

group mean and variance to normalize the particular group:

x̂GN

nchw =
xnchw − µ

(GN)
nc

√

σ
2(GN)
nc + ǫ

µ(GN)
nc =

1

HWG

∑

c∈Gc

∑

H

∑

W

xnchw

σ2(GN)
nc =

1

HWG

∑

c∈Gc

∑

H

∑

W

(

xnchw − µ(GN)
nc

)

, (5)

where G is the number of groups, Gc is the group assign-

ment of channel c, and x̂
(GN) = {x̂

(GN)
nchw

} is the GN re-

sponse. Depending on the number of groups, such a nor-

malization can be reduced to either Instance Normalization

(G = C) or Layer Normalization (G = 1).

Inspired by the adaptive Instance-Batch Normaliza-

tion [65], we designed our Additive Group Normalization

(AGN) as follow:

x̂
(AGN) = σ(ρ) · x̂(GN) + x̂

(BN), (6)

where ρ is a learnable parameter controlling the contribu-

tion of Group Normalization in each layer and x̂
(AGN) ∈

RN×C×H×W is the response of AGN. This normalization

does not introduce extra parameters (except for the running

mean and standard deviation) but leverages the existing ca-

pacity of the underlying network.

When ρ is a large negative number, term x̂
(G) gets a neg-

ligible weight and x̂
(AGN) ≈ x̂

(B). This property makes



Figure 5. Examples of segmentation results. We include four examples (rows) of their RGB input, ground-truth labels, predictions of the

baseline model, and predictions of the baseline model with VIs inputs (columns). Segmentation labels: Green for background, Blue for

Weed Cluster, Red for Double Plant and Yellow for Waterway. Including VIs helps the model perform better in vegetation-related classes

(e.g. Weed Cluster) as well as non vegetation classes (e.g. Waterway).

fine-tuning of experiments much smoother on a pretrained

model with an architecture of Batch Normalization: To con-

trol the “ramping up” of Group Normalization, we initialize

ρ with a negative number, e.g., −10, and the model weights

are updated gradually. We show experimental results for

both training from scratch and fine-tuning in Section 4.

4. Experiments

4.1. Architecture Setup

We use EfficientNet-B0 / EfficientNet-B2[66] as our

base encoder in DeepLabV3[14] framework. They are

parameter-efficient networks that achieve the same perfor-

mance of ResNet-50 / ResNet-101 respectively with much

less number of parameters.[67]

4.2. Training Details

We use backbone models pretrained on ImageNet in all

our experiments. We copied the pretrained weights for the

red channel filter to the one for NIR channel in the first layer

during initialization. We train each model for 80 epochs

with a batch size of 64 on eight GeForce GTX TITAN X

GPUs. Unless specified, we used a combination of Focal

Loss[68] and Dice Loss[69] with weights (0.75, 0.25) re-

spectively. We did not weight classes differently, albeit the

dataset is unbalanced. We also masked all the pixels that

are either not valid or not within the region of farmland. We

use Adam optimizer [70] with a base learning rate of 0.01

and a weight decay of 5 × 10−4. During the training, we

monitor the validation loss and stop the experiments if the

loss doesn’t decrease within ten epochs. Once a model is

trained, we fine-tune it with VI, GVI, or AGN modules. We

adopt the cosine annealing strategy [71], with the learning

rate ranges from 0.0001 to 0.01 and a cycle length of 10



Architecture Method mIoU (%) Background
Cloud

Shadow

Double

Plant

Planter

Skip

Standing

Water
Waterway

Weed

Cluster

DeepLabV3 Baseline 44.92 78.84 40.59 33.14 0.74 51.03 60.64 49.48

Baseline + VI 46.04 78.75 41.17 33.66 0.46 56.67 62.06 49.50

Baseline + GVI 46.05 79.81 34.58 35.24 0.83 58.08 63.47 50.32

AGN 46.87 79.28 41.22 34.56 1.05 57.14 63.53 51.28

Table 2. mIoUs and class IoUs of baseline models, baseline models with Vegetation Index as additional models and our proposed general-

ized vegetation index model.

epochs. For a fair comparison, we also fine-tune our base-

line model in this stage.

4.3. Dataset and Evaluation Metric

We evaluate our approach on Agriculture-Vision[4] with

mean Intersection-over-Union(IOU) across classes. Since

our annotations may overlap while we model the segmenta-

tion as a multi-class classification problem pixel-wisely, we

also describe the mean IOU calculation in the followings.

Agriculture-Vision. Agriculture-Vision is an aerial im-

age dataset which contains 21,061 farmland images cap-

tured throughout 2019 across the US. Each image is of size

512x512 and with four color channels, namely, RGB and

Near Infrared (NIR). By the time the experiments are done,

the labels for the test set have not been released yet, and we

use the verification set to test the trained model.

IOU with overlapped annotations. We follow the proto-

col from the data challenge organizer to accommodate the

evaluation for overlapped annotations. For pixels with mul-

tiple labels, a prediction of either label will be counted as

a correct pixel classification for that label, and a prediction

that does not contain any ground truth labels will be counted

as an incorrect classification for all ground truth labels.

4.4. Results

Table 2 presents the validation results of the baseline

model, together with several proposed methods to lever-

age the information from the NIR band. Our model con-

sistently outperforms a) Only use NIR bands without ex-

tra information from vegetation indices; b) adding vegeta-

tion indices directly as inputs. And we can see gains in

vegetation-related classes (e.g., Weed Cluster) as well as

non-vegetation classes (e.g., Waterway). We includes some

examples in Figure 5.

5. Conclusion

In this work, we introduced the General Vegetation In-

dex that enhanced the power of neural networks in agricul-

ture and highlighted the connection between this GVI and

other existing VIs. When starting from a pretrained model

with minimal modifications, our proposed GVI and additive

group normalization can achieve, and in some cases, exceed

state-of-the-art performances. Our best result of mIOU is

about 2% better than the baseline model. Such a result is

a promising step forward when incorporating VI related in-

formation with multi-band images for segmentation tasks in

agriculture.

While our approach sheds a promising light on segment-

ing lands in agriculture, we believe several potential direc-

tions could be valuable for future work. Firstly, how the

model architecture can affect the result is still open to ex-

ploring. It is not clear if the segmentation results are sensi-

tive to different models with VI inputs. Secondly, we would

like to incorporate some additional training techniques, e.g.,

virtual adversarial training, which is orthogonal to our data

fusion approach to improve the model performance further.

Lastly, the ability to generalize our method on a larger scale

dataset remains open to investigate.
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