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Abstract

Whiteflies are the major vector responsible for the trans-

mission of cassava related diseases in tropical environ-

ments, and knowing the numbers of whiteflies is key in de-

tecting and identifying their spread and prevention. How-

ever, the current approach for counting whiteflies is a sim-

ple visual inspection, where a cassava leaf is turned up-

side down to reveal the underside where the whiteflies reside

to enable a manual count. Repeated across many cassava

farms, this task is quite tedious and time-consuming. In this

paper, we propose a method to automatically count white-

flies using computer vision techniques. To implement this

approach, we collected images of infested cassava leaves

and trained a computer vision detector using Haar Cas-

cade and Deep Learning techniques. The two techniques

were used to identify the pest in images and return a count.

Our results show that this novel method produces a white-

fly count with high precision. This method could be applied

to similar object detection scenarios similar to the whitefly

problem with minor adjustments.

1. Introduction

The whitefly, Bemisia tabaci, is the most common pest

and plant-viral vector responsible for transmitting cassava

diseases such as Cassava Mosaic Disease and Cassava

Brown Streak disease in Africa[11]. Studies have shown a

correlation between whitefly populations and the spread of

these crop diseases[17]. The most commonly used method

for monitoring pest populations in crop health surveys

is a simple visual inspection – a method that is arduous,

time-consuming and prone to human errors. To overcome

these limitations, computer vision techniques can be used

to efficiently monitor pests in farms and greenhouses. To

accomplish this, cameras are used to capture images of the

plants, and then image processing techniques are applied to

recognize, track and count the pests . Amongst the current

automated pest count methods, none can automatically

count whiteflies for cassava leaf images.

Although recent methods have been proposed for automatic

detection and count of whiteflies on leaves utilizing image

processing and machine learning techniques, there is no

robust deployable method. According to Fishpool and Bur-

ban [6], there are two main existing methods for assessing

populations of adult whiteflies. One is to use attractive or

non-attractive traps for the flying adults while the other

method is to count adults and/or nymphs in situ. The latter

method is commonly used in field surveys. It involves the

direct count of adults on representative shoots of individual

cassava plants. A leaf is held by the petiole and gently

inverted so that the adults present on the underside can be

counted[5]. This is the basis of our approach. Images of

whitefly-infested leaves are captured in this context and our

method returns a whitefly count with minimum bounding

boxes around the whiteflies detected.

Other studies use image processing methods that em-

ploy features such as colour, shape, size and texture to ex-

tract whiteflies from the green leaf background [1, 2]. As

[7] states, the disadvantage in these automated methods for

pest count is that they are site-specific, highly dependent

on ground truth data, and not reusable for other situations.

This is especially of great concern because whiteflies have

a host range of more than 250 plants including cotton, cas-

sava, sweet potato and tomato, which may grow in different

site characteristics. A technique developed for one scenario

does not necessarily work in another scenario due to differ-

ences in the pest site background. To counter this problem,

Boissard et al proposed a general detection system, which
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is not site-specific to detect whiteflies using size, texture,

shape and colour analyses[2]. Based on their results, it is

highly evident that evaluations were done on cropped image

samples/patches of leaves. By using cropping as a form of

background subtraction, it can be said that their evaluation

does not take into consideration cases of infested leaf im-

ages having complex backgrounds. More so it is not evident

whether a concrete evaluation of their method was done on

all types of leaves belonging to various plants; therefore it

is hard to conclusively state that this approach works in all

situations of automatic whitefly pest detection and count.

Machine learning methods have been used for pest recog-

nition, detection and count. To accomplish this, a classifier

is trained on image datasets of the pest to learn its features.

The trained model is then used to make predictions on new

inputs. If the input meets a certain threshold during predic-

tion, the model classifies it as a pest. Sample studies that

propose machine learning include the detection and count

of aphids in soybean leaves, identification of fruit fly[18],

and recognition of vegetable pests[27]. In this study, we

focus on machine learning techniques for the detection and

count of whiteflies on cassava leaves. The key challenge is

classification and localization of the whiteflies on the leaf.

We therefore employ and compare two well-known meth-

ods for object detection; Haar Cascade Method and Deep

Convolutional Neural Networks.

2. Methods and Materials

2.1. Image dataset acquisition and sample prepara
tion

To train the whitefly detectors, 7500 images of whitefly

infested leaves were collected from cassava gardens at the

National Crop Resources Research Institute (NaCRRI) in

Namulonge, Uganda. In whitefly trial fields, cassava plants

that are intentionally exposed to whiteflies to conduct differ-

ent studies of the effect of whiteflies on cassava plants and

it is from these fields that pictures of the whitefly infested

leaves were taken. During the image capturing process, two

human experts randomly selected plants from which the im-

ages were taken and each image was taken by turning the

fully expanded leaves on a plant to expose the underside

where the whiteflies reside and capturing this view. The

pictures were taken using a Tecno Spark 3 android smart-

phone camera with a resolution of 13 megapixels to pro-

duce images with a dimension of 4000 x 1920 pixels and all

the captured pictures were transferred to a laptop for stor-

age. The images that were taken can be grouped under two

major categories; images with a low to moderate abundance

(less than 50 whiteflies) and images with moderate to high

abundance (more than 50 whiteflies) as shown in Figure 1.

(a) Low—moderate infestation (b) Moderate—high infestation

Figure 1. Images of whitefly infested leaves; (a) Low to Moderate

infestation (b) Moderate to high infestation

2.2. Dataset annotation

To train the whitefly detection models, the data was la-

belled by drawing bounding boxes tightly around the white-

fly within an image and a label assigned to the whitefly ob-

ject. Annotation experiments showed that the time required

to annotate an image ranged from 4—15 minutes depend-

ing on the abundance of the whiteflies on the image and

based on this, annotating the entire dataset of 7500 images

would require about 1250 labour hours. Due to a limita-

tion of human resource and time, a set of 2000 images was

randomly selected to be annotated as this was deemed to be

sufficient dataset for this experiment. Using an opensource

tool called LabelImg 1, bounding boxes were drawn around

each whitefly in the selected set of images as shown in Fig-

ure 2 and annotations were saved in the PASCAL VOC (Vi-

sual Object Classes)[4] format. This formed the base data

input for both approaches in this experiment.

Figure 2. Image annotation using labelImg

2.3. Development of models for automated whitefly
count

This section describes our novel methods for detecting

the whiteflies on cassava leaf images. The central aim of

this method is to accurately detect and localize the whitefly

1Tzutalin.LabelImg.Gitcode(2015). https://github.com/tzutalin/labelImg



on a cassava leaf image. We have considered two super-

vised machine learning techniques due to their high perfor-

mance in the task of object detection;Haar Cascade classi-

fier and Faster-RCNN ResNet 101 which both require la-

belled images as training data. Utilizing this labelled data,

we adopt these two machine learning techniques to detect

the whiteflies on the cassava leaf images. In the next sec-

tion, we will explain our implementation of the Haar Cas-

cade detector that has shown immense performance in de-

tection of human faces, then we will describe the deep learn-

ing approach that was implemented using convolutional

neural networks.

2.3.1 Haar Feature-based Cascade Classifier for Ob-

ject Detection

Object Detection using Haar feature-based cascade classi-

fiers was proposed by Paul Viola and Michael Jones[26].

It is an effective object detection method that has been ap-

plied in the detection of faces, road signs, and other objects

[14, 22]. A classifier, namely a cascade of boosted clas-

sifiers, working with Haar-like features, is trained with a

few hundred sample views of a particular object of interest

(positive examples) that are scaled to the same resolution

e.g. 20 x 20, and negative examples - arbitrary images of

the same size. The term ”cascade” is derived from the fact

that the resultant classifier will consist of several simpler

classifiers (stages) that are applied subsequently to a region

of interest until the candidate is rejected or all the stages

are passed. On the other hand, ”boosted” refers to classi-

fiers at every stage of the cascade that are complex them-

selves and are built out of basic classifiers using one of four

different boosting techniques: Discrete Adaboost, Real Ad-

aboost, Gentle Adaboost and Logitboost. The basic classi-

fiers are decision-tree classifiers with at least two leaves and

the inputs are Haar-like features, such as edges and lines.

2.3.2 Haar Cascade Data Preparation

To train the Haar Cascade, positive and negative image sam-

ples are required. Positive samples are images that contain

the object of interest(whitefly) whereas negative samples

are images that do not have any whiteflies. The positive

samples were obtained from the base dataset that was an-

notated in PASCAL VOC with 1800 images and 200 im-

ages forming the training and test set respectively. Negative

samples were generated by creating 200× 200 pixel image

patches that did not contain whiteflies from the annotated

images. A total of 17250 negative samples were created and

the training and test set sizes were 12436 and 4814 images

respectively. To increase variation and size of the positive

sample dataset, new samples were created by rotating the

positive samples 10 times at an interval of 36 degrees.

2.3.3 Configuration and implementation of the Haar

Cascade Classifier

To train a Haar Classifier Rejection Cascade, we used

opencv [3, 16] an open-source library used to perform im-

age analysis tasks which provides a utility to implement

the Haar Classifier. Opencv defines several parameters that

should be specified for training a Haar Cascade classifier

and for this experiment the parameters that were used are

specified in Table 2.3.4. The training was done on a Linux

64bit computer with 16GB of memory and an Intel i7 pro-

cessor running at a maximum clock speed of 3.2GHz and

the output of the training is a cascade file saved in XML

(Extensible Markup Language) format which defines dif-

ferent attributes describing the object of interest.

2.3.4 Inference with the Haar Classifier

The Haar Cascade classifier works by analyzing a region of

interest from an input test image and returns 1 if the region

of interest is likely to contain a whitefly or 0 otherwise. The

region of interest is the same dimension as that defined by

the width and height parameters during the cascade train-

ing. To search for whiteflies in a whole image, a search

window is moved over the entire image and each region is

checked by the classifier for the presence of a whitefly. The

total number of regions classified as having a whitefly are

counted in order to determine the total count of whiteflies on

the image. For the bounding boxes to be drawn around the

whiteflies, the pixel-co-ordinates of the whitefly regions are

extracted using the classifier and a bounding box is drawn

around the whitefly on the image as shown in Figure 3

(a) Input test image (b) Detected whiteflies

Figure 3. Inference by Haar Cascade classifier; (a) Input test image

and (b) red bounding boxes drawn around detected whiteflies.

2.3.5 Deep Learning approach to whitefly detection

Deep Learning is an approach that has significantly ad-

vanced the field of machine learning. In particular, Con-

volutional Neural Networks, which are deep learning al-

gorithms optimized for image processing, have greatly im-

proved the field of computer vision to the extent that some

previously complex image recognition tasks can now be



Parameter Value

Width of training samples 20

Height of training samples 20

Number of cascade stages 20

Minimal hit rate per classifier stage 0.95

Maximal false alarm rate 0.5

Number of positive samples 9000

Number of negative samples 12436

Table 1. Training parameters used for the Haar Cascade classifier.

achieved with human-level accuracy[8, 9]. The whiteflies,

being small white patches on green backgrounds, posed as

a good problem on which to use deep learning techniques.

Specifically, we formulate this task as an object-detection

problem for which we are trying to detect, localize and

count the number of whiteflies on a cassava leaf. We use a

convolutional neural network architecture called Faster Re-

gional proposal Convolutional Neural Network (Faster R-

CNN)[19] with the ResNet 101 [10] backbone as our fea-

ture extractor.

2.3.6 The Faster-CNN Architecture

We employed a regional proposal convolutional neural net-

work – Faster R-CNN[19] for the task of localization and

detection of the whitefly on a cassava leaf. This model

has shown good performance in many detection problems

[9, 24, 20, 28]. Its detection pipeline consists of two stages:

1. The regional proposal network: A set of category-

independent object proposals are generated using se-

lective search. The output of the region proposal net-

work is several boxes (proposals) which form feature

maps that are later used by the neural network to check

the occurrence of objects. A process called Region

of Interest pooling (ROI Pooling) is performed to en-

sure that the generated feature maps are all of the same

sizes. ROI pooling does this by splitting the input fea-

ture map into a fixed number of roughly equal regions.

Max Pooling - a technique to reduce the dimensions of

the feature map is then applied to every region.

2. The second part of the model’s architecture consists

of a convolutional neural network that uses these pro-

posals to perform classification. In our approach,

we adapt the fully convolutional Residual Network

(ResNet 101) [10] as the backbone network. Particu-

larly, we exploit transfer learning by using the ResNet

model pre-trained on the COCO (Common Objects in

Context) dataset [15] which helps us achieve higher

accuracy levels and faster training time as compared to

training a model from scratch.

Parameter Value

Momentum optimizer 0.9

Learning rate 0.0003

Batch Size 1

Image size 1024× 768

Table 2. Training parameters specified for the Faster-RCNN

model.

2.3.7 Data preparation for Faster-RCNN

Input data for this method was involved converting the im-

ages and their corresponding annotations stored as XML

files from the base dataset into TF (Tensorflow) Record

files. This specific data format is required as input for train-

ing when using the Tensorflow Object detection API (Ap-

plication Programming Interface) utility which was utilised

for this experiment. To evaluate both models on the same

set, a test TF record was first created from the same 200

images used as the test set for the Haar Cascade. The rest

of the images were used to create train and validation TF

Records with the training set having 1600 images and the

validation set having 200 images.

2.3.8 Configuration and Implementation of Faster-

RCNN Model

For this experiment, the Faster R-CNN implementation

provided by the Tensorflow Object detection API, a Deep

Learning framework by Google was used to train and eval-

uate the model. In particular, we utilized a machine learning

technique called transfer learning which enables utilization

of CNN’s previously used for different imaging task to be

adopted for use in new sometimes unrelated tasks [23]. In

this case, the Faster-RCNN model used was trained on the

Microsoft COCO dataset. Fine-tuning is an important step

and a best practice when using a transfer learned model. It

gives the ability to share the connection weights between a

previously learned model to the new model, retraining it to

be adapted to our task. However, even though several stud-

ies have reported the effectiveness of fine-tuning in deep

learning[13, 12, 25], it is not always clear which layers of

CNN should be retrained. In this study, all layers except

the fully connected layer were re-trained without freezing

and the weights of the pre-trained model were used as ini-

tial weights. The Tensorflow object detection API provides

a number of parameters that can be defined for training a

model and Table2.3.8 shows the parameters that were spec-

ified for this experiment.

To increase the sample size and variation, random hori-

zontal flipping of images was applied to augment the input

data and the model was trained for 10276 time-steps using

the Google cloud platform Machine Learning Engine and

tensorboard was used to monitor the training process.



The output of the the training process using the Tensorflow

object detection API is a set of checkpoint files containing

learned features from the input dataset. To create a model,

the checkpoint files a frozen into protobuff file which is a

standard representation of machine learning models when

using Tensorflow.

2.3.9 Inference with Faster-RCNN model

The Tensorflow object detection API provides a set of

python scripts which can be used to detect and count the

number of whiteflies from a given set of input images and a

frozen model. The script loads the image into the model

and the model returns co-ordinates of regions in the test

image where whiteflies have been detected and the respec-

tive probability of the presence of a whitefly in each re-

gion. A probability threshold was set at 0.5 and bounding

boxes were drawn for the co-ordinates of regions that met

the threshold as shown in Figure 4 and the corresponding

whitefly count was determined by the total number of such

regions.

Figure 4. Inference by Faster-RCNN model (right) ground truth

annotations (left) detected boxes.

2.4. Evaluation of Models

The whitefly counting task can be approximated to a bi-

nary classification task where the goal is to classify an ob-

ject as a whitefly or not. Following from notion, one of

precision and recall are a good measure of how well a clas-

sifier is performing[21].

Precision is a measure of the ratio of the true positives de-

tected by the model to the total number of detections made

and can be summarized by Equation 1. Recall measures

how many true detections were identified by the model as

shown in Equation 2. Precision and Recall can be combined

to generate the F1 score Equation 3 which gives a better pic-

ture of the overall performance of the model.

Precision =
Number of true detections

Total number of detections
(1)

Recall =
True detected objects

True detected objects+ True undetected objects
(2)

F1Score =
2× (Precision×Recall)

Precision + Recall
(3)

IOU =
Area of overlap

Area of intersection
(4)

The Tensorflow object detection API also caters for eval-

uation of model training jobs using the standard COCO

evaluation metrics [15] and MAP (Mean Average Precision)

is a major measure of how well an object detection task is

performing. The precision of a single detection can be mea-

sured using IOU (Intersection over Union) shown in Equa-

tion 4, which is the ratio of the area covered by annotation

the bounding box to the area of the union between the an-

notation bounding box and the models detected bounding

box for an object. mAP is calculated by getting the average

IOU for all detections made and in this case we considered

an IOU threshold ranging from 0.5—0.95.

3. Results

3.1. Performance of FasterRCNN model and Haar
Cascade Classifier

The models were evaluated against each of their respec-

tive test datasets containing 200 images and their corre-

sponding predictions were obtained. The Precision was

used to determine how many actual whiteflies our mod-

els predicted and the Recall to determine how the models

wrongly classified objects as whiteflies. Using a python

script, the number of detections that overlap with annotated

bounding boxes from the base dataset was calculated to de-

termine the TP (true positives) for the Haar Cascade detec-

tor and the number of non-overlapping detections formed

the FP (false positives). Annotated bounding boxes that

do not have an overlapping detection box make up the FN

(false negative) count. The true positive count, false pos-

itive count and false negative counts for the Faster-RCNN

model were generated with the help of the Tensorflow Ob-

ject detection API and results are presented in Table 3.1.

During training, the Faster-RCNN model achieved an opti-

mum mAP value of 0.62 (@0.5IOU) on the validation set.

The average time taken by each of the models to ana-

lyze an image was recorded with the Haar Cascade classi-

fier taking about 2.1 seconds compared to 4.7 seconds by

the Faster-RCNN model.



Haar Cascade Faster-RCNN

TP 3950 5617

FP 831 140

FN 2997 1330

Precision 0.83 0.98

Recall 0.57 0.81

F1 Score 0.68 0.89

Table 3. TP, FP, FN, Precision, Recall and F1 Score for Haar Cas-

cade classifier and Faster-RCNN model.

3.2. Discussion of Results

This experiment compares two machine learning ap-

proaches for whitefly counting on cassava leaf images. The

Precision values calculated show that the Faster-RCNN

model (0.98) performs better than the Haar Cascade clas-

sifier (0.83) and it can correctly detect a higher number

of whiteflies as illustrated by the true positive count. The

Faster-RCNN model also records a much lower count of

false positives compared to the Haar Cascade which implies

that the model can extract more robust features that are rep-

resentative of whiteflies than the Haar classifier which is

characteristic of convolutional neural networks. Despite the

difference in performance, the scores show that both mod-

els still detect whiteflies in the test images with a high pre-

cision.

Both the Faster-RCNN model and Haar Cascade classifier

record lower recall values with the Haar Cascade classifier

registering an average recall of just 0.57. The Faster-RCNN

model on the other hand scored a recall of 0.81 which im-

plies that it misses out fewer whiteflies than the Haar clas-

sifier as shown by the false negative values in Table 3.1.

Considering the F1 score, the results show that the Faster-

RCNN model overall performs better than the Haar Cascade

classifier at the task of detecting whiteflies when compared

using our test set of 200 images.

Although the Faster-RCNN model achieved a slightly above

mAP value of 0.61(@0.5IOU), this performance was con-

sidered to be very good given the fact that whiteflies are

very tiny objects which therefore have small bounding

boxes and this makes it difficult to achieve very high IOU

values when compared to object detection tasks involving

bigger objects.

4. Conclusion and Future work.

In this paper we presented a method that can be adopted

to automate the task of counting whiteflies on cassava leaves

by utilizing machine learning image analysis techniques.

Results show that both the Haar Cascade classifier and and

Faster-RCNN can accomplish this task with high Precision

and therefore the use of machine learning to count white-

flies is a feasible approach. The Faster-RCNN model par-

ticularly performed exceptionally well with an F1 score of

0.89 which shows that convolutional neural networks are

capable of learning the characteristic features of whiteflies

very well.

These models can be deployed for in field use on portable

devices such as smart phones which would significantly in-

crease the output of experts as they would be able to count

whiteflies from more leaf samples compared to how many

can be analyzed using the manual protocol. Although the

models may not perform with human level accuracy of

counting whiteflies, the high Precision shows that they can

be adopted as a semi-automated solution involving both ma-

chine and human where the human expert would only focus

on counting the false negatives (whiteflies missed out by the

models).

Future work shall involve conducting experiments to eval-

uate the use of a custom feature extractor for the Faster-

RCNN model instead of transfer-learning with ResNet 101.

Although we scored a high precision with transfer learning,

we believe that by training a a custom classifier to detect

whether an image patch contains a whitefly or not, we can

achieve a higher precision with this classifier as a back bone

for Faster-RCNN. The models shall also be deployed as us-

able solutions native applications that can be used on smart

phones and as native desktop applications. API’s shall also

be created to serve the models for others that may want to

integrate whitefly counting in their tools.
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