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Abstract

Modern agriculture is facing a series of challenges to

adopt new technologies to improve sustainability, profitabil-

ity and resilience. One of them is the use of robotic applica-

tions to assist or even replace manual workers for the com-

plex task of interaction with the vegetation. For example,

harvesting and pruning are tasks that need certain dexter-

ity to not only make the cuts, but also to move branches or

foliage in the canopy to reach hidden objects or locations.

For such capability, first the robot should be able to perceive

the vegetation and estimate the dynamics for the interac-

tion. This work mainly focuses on the perception problem,

aiming to digitize commercial tree fruit canopies and esti-

mating how it moves when force is applied to the branches.

We studied the suitability of two known algorithms, viz. the

space colonization and the Laplace based contraction al-

gorithms, to build a geometric model of the tree using point

cloud data from stereo cameras. Such model is then used

to estimate the dynamics of the tree, by considering the

branches as links articulated by spring-damper joints. The

geometric model was evaluated for topological and mor-

phological correctness by comparing it with the ground

truth, obtaining better results with the Laplace based con-

traction algorithm. Furthermore, results of the dynamics

estimation showed that by adjusting the parameters for the

spring-damper model, the motion prediction is promising,

with a maximum mean squared error of 0.073m in the track-

ing of the movement of the branches.

1. Introduction

The research and development of automated or semi-

automated robots to gather information about the vegeta-

tion status has the potential to address many of the chal-

lenges that modern agriculture entails [14]. However, there

are numerous other applications that require physical inter-

action with the vegetation using robotic manipulators, and

these challenges remain largely unsolved. For example, low

availability of skilled human workforce and the hard work-

ing conditions are serious issues in pruning and harvest-

ing that affect not only the productivity but also causes er-

gonomic injuries from repetitive tasks [20, 5]. For a robot to

perform or support these tasks robustly, we hypothesize that

the ability to build a model of the tree structure and its kine-

matics and dynamics is necessary to manipulate the plants.

This leads to the ability to estimate how the structure will

respond during and after the interaction. This feature would

be highly valuable when obstacles need to be pushed away

to reach objects of interest that may be (partially) hidden in

the canopy.

In this work, the structural modeling of a tree refers

to the use of images to build skeletal representation by

detecting certain points of interest (i.e., positions of the

root and leaves) and geometric characteristics including

width of the branches and their position in the space. To

this aim, techniques including L-systems, space coloniza-

tion, graph-based modeling, generalized rotational symme-

try axis (ROSA), among others have proven to get realis-

tic models in different computer graphic applications [34].

However, using the generated models in applications be-

yond simulations and computer games is still a remaining

gap, specially for agricultural robotic applications.

If the skeletons produced by any of the mentioned ap-

proaches are represented as a series of joints and links, they

could be used to estimate the effects of moving one branch

in the overall tree structure. Precisely, the kinematic and

dynamic modeling serves this purpose, providing a way to

estimate not only the motion of the tree when interacting

with the robot, but also in the presence of other pertur-

bations such as wind. Additionally, with a complete and

accurate structural/dynamic model, the robot may be able

to judiciously push away branches or obstacles within the

canopy to deal with the occlusion problem. While any dy-

namic model for an articulated body could serve for this

purpose, there is an additional and important characteris-

tic to be taken into account: the spring-damper behaviour



of branches in a tree [12]. Then, it is natural to think that

branches in a tree can be modeled as a series of elastic rods

with three rotational degrees of freedom, whose dynamics

will be characterized by the relation between the angular po-

sition of the branch, its speed and the spring and damping

coefficients [2].

Given the previous context, we present and evaluate a

methodology for digitization of fruit trees using visual or

range sensing to generate a three dimensional model using

the space colonization algorithm and the Laplace based con-

traction method, respectively. Such geometrical model is

subsequently used to estimate the dynamics of the tree rep-

resented as a series of linked rigid bodies, where the stiff-

ness of each joint is function of spring and damping con-

stants that can be identified for different types of trees.

We do not aim to develop a new tree modeling method-

ology, but the contribution of our work is to use and further

develop computer graphic methods to give a step beyond

and apply them to represent fruit trees in a way that would

be useful to estimate their movement when interacting with

a robot in real world agricultural applications. Furthermore,

we provide a practical methodology to combine the geomet-

ric and dynamic models and to quantitatively evaluate the

fidelity of such representations in real fruit trees.

This paper is organized as follows: Section 2 reviews the

related work about structural and dynamic modeling of trees

for diverse applications. Section 3 describes the hardware

employed, as well as the methodology followed. In Sec-

tion 4, we present the results of evaluating the employed

approach in synthetic and real datasets, along with labora-

tory tests. Finally, the conclusions of our work are described

in Section 5.

2. Related work

Realistic tree modeling aims to faithfully and accurately

represent two aspects of the tree structure: its visual ap-

pearance and movement. The first deals with the generation

of the branching configuration and shape of a tree (which

changes among the different species of trees found in na-

ture). The second focuses on how the generated model

would react in presence of perturbations or when interact-

ing with other objects. Both have been widely studied in the

context of botany to gain understanding about the grow pat-

terns [24, 25], and computer graphics to design virtual envi-

ronments for plant simulation [18]. Procedural approaches

such as Lindenmayer systems (L-systems) and its variations

have proven to produce virtual tree geometries that resem-

ble real structures of diverse types of species [26, 7]. Other

methods employ the concept of competition for resources

(e.g., light or space) to build the structure in a similar way as

nature does in plenty of cases. For example, the space col-

onization algorithm [30] uses a parameterized way to con-

trol the structure growth based on the competition of the

branches to reach the position of the leaves.

Plenty of applications of L-systems and space coloniza-

tion have been used to synthesize virtual trees with simi-

lar characteristics to real ones, but not to reconstruct real

structures using sensors that observe the plants. However,

there are works that reported the use of imagery to ex-

tract parameters for developing L-systems rules that allows

to grow a model that resembles the scanned tree [33, 8].

Other image-based methods propose to build three dimen-

sional tree models based on sketches or silhouettes of the

tree canopy [38, 16]. Although not designed specifically

for tree structures, recent works using statistical inference

and deep learning have shown promising results [15, 23].

As an alternative to images, data from 3D laser scanners

have also been used to build virtual models of trees. The

point cloud generated is usually employed to obtain a skele-

ton representation of the structure as a hierarchical graph.

For example, a branch structure graph was constructed and

refined by a series of optimizations driven by certain as-

sumptions of the tree geometry in [17]. Similarly, an op-

timization approach was used in [36] to estimate a set of

parameters for their model that better resembles the input

tree under shape, structural and geometric metrics. In fact,

geometric properties of a point cloud are also commonly

used to get skeletonized structures of different objects, as

reported in [11]. For tree modeling applications in specific,

the improvement of the centerness and topology of skele-

tons produced by an octree method was proposed in [9].

They re-center the structure based on the symmetry axes of

cylindrical primitives fitted to the branches. The topology

is further refined using clustering algorithms and spline in-

terpolation. In the context of agricultural environments, 3D

point clouds were used in [4] for generating a model to later

estimate the length and width of branches of fruit trees. The

same author in [3] also provided a brief summary of the ap-

plications of the skeletonization of trees for agriculture and

forestry. Additionally, the use of simulated range sensor

readings from artificially generated fruit trees, was studied

in [19].

Complementary to visual modeling of trees, the study

of the mechanics of its movement have also been studied.

Trees are usually represented as articulated bodies with a

spring-damper behaviour on its branches, whose dynamics

are characterized as multiple mass dampers [35, 12]. The

movement is then propagated from the collision point to the

rest of the tree, as in [32, 27] and the references therein. Fur-

thermore, an interesting feature of these approaches is that

they can be parameterized using the stiffness and damping

coefficients, which allowed to model various structures in

[39]. As an alternative, trees have also been modeled as

series of rods interconnected, as presented in [10].

Finally, it is important to note that the majority of meth-

ods for tree modeling discussed here are not originally



quantitatively compared to the real counterparts. This ob-

servation is coherent with the fact that most of them are

computer graphics applications whose aim is to create vir-

tual environments that visually render real looking trees.

However, when the aim is to manipulate the tree, the ac-

curacy of the model obtained is an important feature to be

evaluated.

3. Materials and Methods

The proposed approach comprises two stages: the three

dimensional modeling of the tree and its dynamical simula-

tion. For the first stage, we implemented two methods from

the state of the art: the space colonization algorithm [30]

and the Laplacian based contraction [6]. We consider that

both are purely visual since the sensor employed to get the

real data is a camera system, as will be described in the fol-

lowing Section. These two algorithms were chosen mainly

for the following three reasons. First, they are well known

methods to skeletonize and reconstruct branching structures

[28, 1, 22]. Additionally, they have proven effectiveness in

various scenarios and datasets [8]. Finally, we consider that

they provide a complementary way to model the tree struc-

ture in the case of a tree with foliage, as will be discussed

in Section 4.1.

The dynamic simulation was required to be flexible in

the sense of allowing joints with elastic stiffness with 3

degrees of freedom. Furthermore, the computation of the

movement required a robust and efficient method so later

it can be used for a robot to estimate it movement or actu-

ate on the tree. While known physics engines (e.g., bullet,

open dynamics engine, PhysX) provide these two charac-

teristics, they seemed inadequate to explicitly model and

tune the elastic stiffness in each degree of freedom. For

these reasons, we implemented the model described in [27],

which is a computer graphics application for botanical tree

animation that suits better for the purposes of this work.

Figure 1 summarizes the pipeline we followed to obtain

the geometric structure of a fruit tree and estimate its dy-

namics.

3.1. Development Datasets and Hardware

We used three types of datasets to evaluate the quality

of the 3D reconstruction and the feasibility of the dynamic

modeling for real trees. The development-artificial dataset

consisted in 4 freely available skeletons (with their respec-

tive point clouds) of different shaped and sized trees, pro-

vided in [9]. The skeletons were considered as ground truth

for all of them. The development-real dataset comprised a

set of 14 point clouds from real grape vines, acquired in

field with a semi-autonomous platform equipped with dual

stereo cameras and a gantry system (Fig.2). We basically

used the Iterative Closest Point (ICP) algorithm and rigid

transformations to align the point clouds produced by the

top and bottom cameras. As this paper mainly focus on

the visual 3D reconstruction and dynamic simulation of tree

fruits, the design of the image acquisition system and the

platform are targeted for another independent publication.

The third dataset corresponded to laboratory tests with a

dormant vine, which was mainly used to evaluate the prac-

tical applicability of the movement estimation in real sce-

narios.

3.2. Image-based approach - Space colonization al-
gorithm

The Space Colonization Algorithm (SCA) is an itera-

tive method to build tree structures based on the concept of

competition for space. It takes as input N attraction points

(which can be the leaves or buds of the tree) and the tree root

or other pivot points acting as prior nodes (joints). Then,

the algorithm builds the branching structure of the tree by

attaching new links based on their distance and relative po-

sition to the nearest attraction point(s). A deeper description

of the algorithm, as well as some interesting modifications

can be found in the original work [30].

The natural interpretation of the attraction points from a

practical point of view is to consider them as leaves. How-

ever, we employed other possibility: detect the buds of the

branches and use them as attraction points. In this work,

the detection procedure relied on a Faster-RCNN, which is

a very popular deep neural architecture for object recogni-

tion [29]. The consecutive incoming images from top and

bottom stereo cameras are sent through the object detector

trained to detect dormant buds in 2D images. Using the

optimized transformation of the registered point cloud pro-

duced by the ICP algorithm (see Sec. 3.1), the dormant

buds were filtered and merged. In this case, it was neces-

sary to find appropriate values for the growing parameters

that force the branches to reach the buds. Furthermore, in

some cases (specially for the vines) one additional pivot was

given as input for the tree to obtain a structure similar to the

real. In this case, the algorithm starts trying to reach only

the pivot for later start growing using the other attraction

points.

3.3. Point cloud based approach - Laplacian-based
contraction

Among the diverse algorithms for tree skeletonization,

we employed the Laplacian-based contraction (LBC) [6]. It

is a geometric approach that collapses the input point cloud

maintaining its global shape. The main idea is to obtain

a new point cloud with minimal volume using a repetitive

Laplacian smoothing process. At each iteration i, the point

cloud P is contracted by finding the set of contracted points



Figure 1: Workflow of the proposed approach to digitize and simulate the movement of fruit trees using A) the space colo-

nization and B) a skeletonization algorithms.

Figure 2: A semi-autonomous platform for image acquisi-

tion. The imaging system consists of two stereo cameras

attached to a gantry. The stereo cameras acquire seven dif-

ferent top and bottom views of the vine at a regular interval

along the gantry.

P ′ that solve the linear system:

[

W i
LL

i

W i
H

]

P ′i =

[

0
W i

HP i

]

(1)

where WL, WH are weighting factors to control the con-

traction and attraction constraints, and L is the Laplacian

operator with cotangent weights. For the next step, the new

set of points found in the current iteration, P ′i, is assigned

to P i+1 while the weights and the Laplacian operator are

updated to account for the ”new shape” of P i+1. This pro-

cess repeats until a convergence test is passed.

When carefully designing the weighting factors, this

overall approach provides efficiency and stability when con-

tracting point clouds. As the resulting set of points is a thin

structure that approximates the skeleton of the original point

cloud, it is further necessary to connect the structure ensur-

ing to faithfully represent the topology of the original struc-

ture (a tree in our case).

3.3.1 Topological connection

Various methods have been proposed to convert a point

cloud to a skeleton [13, 31]. However, we used a custom

method to connect the points obtained from the LBC that

aims to resemble the characteristic topological structure of a

tree. We developed this method is specific to account for the

hierarchical pattern that the dynamic simulation requires.

This is, starting from the root, the subsequent links require

a series of parent-child connections that preserves the tree

shape to properly propagate the movement when a force is

applied to any branch.

Firstly, the points are organized in ascending order ac-

cording to their z coordinates, obtaining a point cloud

P = {pi}. Denoting a node in the interconnected graph

as gi =
{

pi, α
i
k

}

, where αi
k is its parent node with index k,

we use the procedure summarized in Algorithm 1.

The main idea is to join the children nodes with their par-

ents based on its Euclidean distance. If a node has multiple

parents during the connection, the one with less distance

adopts that node as child. However, there may be cases

when this distance test is not conclusive (lines 12 and 17).

In this circumstance we use the observation that the con-

nection direction is influenced by the spatial distribution of

the points along the branches or the trunk. The neighbors

oriented search (lines 13 and 18) is used to implement this

idea as follows: we first calculate the directional vectors

from both disputing parents to the current node. Two imag-

inary cylinders oriented in these directions, with fixed ra-

dius ρ and length Lcyl depending on the dimensions of the

tree are then built, as shown in the third row of Fig 3c. The

points lying inside each cylinder are counted and the one

with majority is chosen. Finally, the parent associated to

that cylinder keeps the child.

The overall procedure, is summarized in Fig. 3 as fol-



Algorithm 1 Topological tree connection

1: Make G′(gi) = {pi, ∅} ∀pi ∈ P

2: while nodes without a parent exist do

3: Increase index i

4: Find nodes gj : |pi − pj | < r

5: while gj is not found do increase r

6: For all gj : αj = ∅, connect pj to pi and make

gj =
{

pj , α
j
i

}

.

7: if ∃ g′j = gj : α
j
k 6= ∅ then

8: for all g′j do:

9: dcurr = |pj − pi|, dprev = |pj − αi
k|

10: if dcurr ≤ dprev then

11: if dcurr

dprev

< dthres then

12: Change the parent α
j
k = α

j
i

13: else

14: Do neighbor oriented search

15: else

16: if
dprev

dcurr

< dthres then

17: Keep the previous parent α
j
k

18: else

19: Do neighbor oriented search

20: Make G = G′

21: Remove gi from G′.

lows: the first row shows a simple case when a multi parent

node is found. The parent is assigned based on the shorter

distance to the disputing node. Similarly, the second row

shows a multi-parent node in a branching point, where the

dispute is solved based on the distance. The third row shows

the more complex case where the distance test is not con-

clusive and the neighbor oriented search is performed. As

the orange cylinder has more points inside the original par-

ent is finally chosen. This process is repeated until all the

points have a parent assigned. It is noteworthy that the pre-

sented method requires three design parameters: the radius

to make the initial search r, the ratio to compare the dis-

tances between disputing parents dthres and the radius of

the oriented cylinders ρ. While its length can be also a pa-

rameter we choose to make it function of the tree height to

avoid an over-parametrization of the method.

3.4. Dynamic modeling

The connected structure from the SC and LBC algo-

rithms are just skeletal representations of the tree. To con-

vert them into 3D structures capable to move and interact

with other objects, we assume that each link has a cylindri-

cal shape, whose length is known, but the radius changes

depending of the tree structure. This change was modeled

making the radius a linear function of the number of descen-

dants of each joint (this accounts for the complete lineage,

Figure 3: Topological connection applied to three different

scenarios, increasing in complexity. The red dot depicts the

current node gi, the blue lines are the current connections

based on the distance, and the yellow lines show the con-

flicting connection with previous parents.

not only the current children). The inertial properties of

each link were then included by estimating the mass using

the volume of each cylinder and the density of the wood for

the tree under study. The movement of the tree was calcu-

lated by using the four steps originally proposed in [27] and

described as follows:

• External force computation: For each rigid body

(cylinder), external forces and torques due to gravity,

wind fields or other sources are calculated.

• Composite body update: The inertial characteristics of

a link of the tree are at some extent affected by the

others. Therefore, the total external forces and torques,

mass, and inertia tensor (in world reference frame) of

each rigid body are calculated in base of the branching

structure of its children and its own. These calculations

are backpropagated from the outer links to the root in

order to update all the tree structure.

• Analytic spring evolution: The joint space configura-

tion is then calculated by solving the equation:

Ĩθ̈ + βKθ̇ +Kθ = τ̃ (2)

where θ is the joint position, Ĩ is the local composite

inertial tensor, K is a diagonal 3 × 3 matrix whose

elements correspond to the rotational stiffness of the

joint, βK accounts for the damping coefficients and τ̃

is the local composite external torque.



• Rigid body state update: The state vector of each link

[mi,xi,vi,ai, Ii, Ri,ωi,αi] is expressed in maximal

coordinates and includes its composite mass, position,

velocity, acceleration, composite inertia, rotation ma-

trix, angular velocity and angular acceleration, respec-

tively. Once the solution of Eqn.(2) is found for all the

links, their state vectors are updated, starting from the

root.

While for a virtual environment simulation, tuning K

to obtain different spring behaviors of the joints would be

enough, the modeling real fruit trees requires a more ana-

lytical approach. For that reason, we used the definition of

K described in [21]. In this work, each of the elements of

K is related with the area moment of inertia of the link, and

structural constants (available for various materials) such as

the Young modulus and the Poisson’s ratio. Thus, we have

an a prior knowledge of K, which can be used as an initial

condition when performing identification tests in specific

trees, for example.

4. Evaluation metrics and results

The validation of the tree geometric and dynamic models

were twofold. First, we used the two development datasets

to evaluate the geometric modeling. In these datasets, we

mainly evaluated the topological and morphological cor-

rectness of the obtained model with respect to the input

ground truth and the point clouds.

To assess the topological correctness, we quantified the

matching between branching and termination points (BP

and TP), among the ground truth and our model. The BP

and TP ground truth was manually obtained by visual in-

spection of the development-synthetic skeletons. In the gen-

erated model, a BP is a joint forming a vertex greater or

equal to 3o. On the other hand, a TP is a joint with no chil-

dren. To find the BP and TP in our model that matches the

ground truth, we employed the Euclidean distance. Since

the trees in the dataset had different sizes, we evaluated two

thresholds to define the matching: a fixed value ∆d1 and

another depending on the tree height ∆d2. Then, accuracy

and recall metrics were calculated as,

Accuracy =
MP

TPmodel

, Recall =
MP

TPGT

where MP is the number of matched points, TPmodel and

TPGT are the number of points in the model and the GT,

respectively.

The morphological correctness of the model was eval-

uated using the Hausdorff distance, which allowed us to

measure the geometric difference between two point clouds

or meshes [37]. To generate the point cloud of the model,

we uniformly sampled a set of points around the struc-

ture. Then, the Cloud Compare software was employed

Figure 4: Experimental setup to evaluate the dynamic

model. The contact points are encoded according to its loca-

tion and the axis on which the force was applied. The right

column shows how the sensor was employed to measure the

force magnitude for each axis.

to obtain the Hausdorff distance. Both topological and

morphological correctness were used in complement for

the development-synthetic dataset. However, we only as-

sessed the morphological correctness in the development-

real dataset since it only consisted in point clouds, which

made it impractical to accurately find the ground truth BP

and TP.

To evaluate the dynamic modeling, we used laboratory

tests on a dormant vine. We placed several fiducial tags in

the tree structure to track its movement using cameras in a

stereo pair, as shown in Fig 4. Subsequently, various forces

were applied along each axis x, y and z, and the displace-

ment of the markers saved. The contact point locations for

each case were marked in the real structure and then iden-

tified in the virtual model. Additionally, the magnitude of

the applied force in each trial was measured using a force

gauge with 49N capacity and ±0.4%, 1 digit accuracy. We

then calculated the mean squared error (MSE) between the

measured final tag positions and those predicted with the

dynamic model, as described by Eqn. 3.

MSEj =
1

N

N
∑

i=1

(xi,j − x̂i,j)
2 (3)

where N is the number of markers, xi,j and x̂i,j are the

measured and estimated positions of the tag i for the trial j,

respectively.

4.1. Space colonization algorithm

Results of the evaluation of the topological correctness in

the development synthetic dataset are summarized in Table

1. It can be noted that the SCA fails to accurately match the

BP and TP with the ground truth, specially for ∆d1. This

outcome is at some extent expected since in the model, the

tree growth with no other constraints than the positions of

the buds, acting as attraction points. Additionally, it has



Table 1: Summary of topological correctness performance

for the SCA.

Tree 1 Tree 2 Tree 3 Tree 4

∆d1 ∆d2 ∆d1 ∆d2 ∆d1 ∆d2 ∆d1 ∆d2

Bifurcation

Points

Accuracy 0.231 0.231 0.015 0.162 0.034 0.101 0.002 0.038

Recall 0.286 0.286 0.091 1.000 0.333 1.000 0.052 0.974

Termination

Points

Accuracy 0.429 0.429 0.114 0.343 0.140 0.207 0.016 0.045

Recall 0.273 0.273 0.333 1.000 0.680 1.000 0.328 0.916

∆d1 = 0.25 m

∆d2 = 5% of tree height

to be noted that recall is consistently better than accuracy,

which indicates that the model was able to match the BP

and TP of the ground truth, but it also provided a lot of false

detections.

Figure 5 shows the boxplots for the Hausdorff distance

for the models built using the SCA for both development

datasets. Additionally, right columns of Figure 5 shows ex-

amples of two point clouds built based in the SCA model

for the synthetic and real datasets. They are colorized ac-

cording to the Hausdorff distance to the ground truth data.

In general, it can be seen that various parts of the generated

structures are similar to the ground truth under this met-

ric (blue-colored points), but the distance grows near the

branching points, which agrees with the results of Table 1,

where the accuracy in the BP and TP matching was low.

Despite of the low performance of the SCA in these tests,

the results still show potential considering that trees of both

datasets are dormant, with their branching structure in sight.

However, the SCA can be useful in trees with leaves, where

such structure is hidden beneath the canopy. In this case,

the overall system can work in two iterative stages: first,

detecting the leaves positions (with any object detection al-

gorithm) to use them along with the SCA to compose an

initial “guess” of the branching structure. The second step

would require to move the tree to obtain a better perspective

of its branching configuration, providing thus a feedback to

refine the generated model.

4.2. Laplacian-based contraction

In this case, the accuracy of the BP and TP matching

certainly improved, as Table 2 shows. However, the termi-

nation points recall is specially comparable (and in some

cases worst) to the values obtained with the SCA. This out-

come implies that the TP of the tree model agreed better

to the ground truth, but it also produced extra spurious TP,

producing a decrease in the recall. Making a close insight

of the model, these spurious TP were generated by noisy

points throughout the branches. To improve this issue we

have to explore ways to improve the topological connection

or smooth the skeleton produced by the LBC.

The morphological correctness of the model for the LBC

algorithm outperformed the SCA, as Fig. 6 shows. It can be

seen that the Hausdorff distances are considerable smaller

(a)

(b)

Figure 5: Results for the space colonization algorithm. The

left figures show the boxplots for the Housdorff distances

between our model and the ground truth for the synthetic

and real datasets. The right figures show examples of the

input point clouds (black points) along its generated models,

colorized according to their Hausdorff distances to the input

point cloud, measured in meters.

Table 2: Summary of topological correctness performance

for the LBC algorithm.

Tree 1 Tree 2 Tree 3 Tree 4

∆d1 ∆d2 ∆d1 ∆d2 ∆d1 ∆d2 ∆d1 ∆d2

Bifurcation

Points

Accuracy 0.293 0.293 0.333 0.458 0.417 0.500 0.063 0.556

Recall 0.571 0.571 0.727 1.000 0.833 1.000 0.078 0.687

Termination

Points

Accuracy 0.455 0.455 0.154 0.923 0.120 0.960 0.014 0.986

Recall 0.455 0.455 0.167 1.000 0.120 0.960 0.008 0.605

∆d1 = 0.25 m

∆d2 = 5% of tree height

than the ones obtained previously, which indicates that LBC

algorithm combined with our topological connection pro-

vides an overall reliable representation of the tree morphol-

ogy. This result can be also verified in the right columns of

Fig 6, where two point clouds colorized according to their

Hausdorff distance to the ground truth are depicted.

4.3. Tree dynamics

To generate the tree geometry, we employed the LBC

algorithm for the laboratory vine. As the aim in these tests

was to validate only the dynamics, the input point cloud was

manually enhanced to remove any artifact or spurious point



(a)

(b)

Figure 6: Results for the Laplace based contraction and

topological connection method. The left figures show the

box-plots for the Hausdorff distances between our model

and the ground truth for the synthetic and real datasets. The

right figures show examples of the input point clouds (black

points) along its generated models, colorized according to

their Hausdorff distances to the input point cloud, measured

in meters.

that may affect the geometric model. Additionally, several

prior tests were conducted to adjust the value of the K pa-

rameters that correctly account for the observed movement

of the tree. For these tests, we obtained 5 values of K that

provided the best results in terms of the final tree shape and

the motion of the marked points. The requirement of this

manual adjustment for different cases reveals two impor-

tant points of the dynamic model employed. First, with a

suitable value of K, the model can properly account for the

tree movement in presence of external forces. Accordingly,

it is required an identification/learning approach to estimate

K such that it generalizes to movement in all directions.

Furthermore, the linear mapping of the cylinders radius as

function of the number of descendants is not entirely accu-

rate. Instead, the radius of certain segments of the branches

can be estimated from the point cloud.

The results of the dynamic model validation tests are

summarized in Table 3. Given the tree dimensions in height,

length and depth are 0.8m, 1.65m and 20.26m, respectively;

we consider that the model correctly accounted for the tree

motion, given the remark about the spring stiffness K ex-

plained above.

Table 3: Mean squared error of predicted positions for the

fiducial markers attached to the tree.

Axis of motion x y z

Contact Point Id CP x L CP x R CP y R CP y L CP z R CP z L

Trial 1 0.015 0.051 0.069 0.036 0.034 0.030

Trial 2 0.020 0.043 0.073 0.050 0.038 0.044

5. Conclusions

This work presented the geometric and dynamic model-

ing of fruit trees using computer graphic methods mainly

designed to create virtual environments. In contrast to

common applications in this field, the digitization of real

trees comprises a series of additional challenges that we

addressed. First, it is not enough for the model to have

a structure similar to a generic tree, it needs to have -

approximately- the same branching disposition, shape and

dimensions of the real one. We used point clouds from syn-

thetic and real trees (the latter acquired in field) to generate

a model using two known methods such as the space col-

onization and the Laplacian based contraction algorithms.

They were subsequently assessed quantitatively in order to

test the suitability of each one to account for such charac-

teristics. Results from topological and morphological cor-

rectness test shown that the Laplacian based contraction to-

gether with our topological connection algorithm performed

better in dormant trees. However, the topological correct-

ness tests with the synthetic dataset showed that although it

can properly resemble the BP and TP, it is prone to produce

small spurious termination points.

Another challenge we addressed when digitizing real

trees consisted in obtaining a motion model that accounts

for the springy behaviour of the branches. To this aim, we

used a dynamic model for rigid bodies articulated by stiff

joints. Furthermore, its parametrization allowed a spring-

damper interpretation to simulate diverse behaviours for dif-

ferent trees. Considering the input is a good geometrical

model (using either SCA, LBC or other algorithm), it is ca-

pable to accurately predict the motion of the branches in

presence of external forces, given the proper value of the

parameters.

The ongoing work is focusing in the correct identifica-

tion of the K parameter. This is specially critical since the

overall accuracy of the motion prediction relies on it. Fi-

nally, with a complete geometric and dynamic model of a

fruit tree, the final objective is to use it in practice for a

robot to intelligently interact with the canopy in activities

including automated harvesting or pruning.
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