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Abstract

In this paper, a novel signature of human action recog-

nition, namely the curvature of a video sequence, is intro-

duced. In this way, the distribution of sequential data is

modeled, which enables few-shot learning. Instead of de-

pending on recognizing features within images, our algo-

rithm views actions as sequences on the universal time scale

across a whole sequence of images. The video sequence,

viewed as a curve in pixel space, is aligned by reparame-

terization using the arclength of the curve in pixel space.

Once such curvatures are obtained, statistical indexes are

extracted and fed into a learning-based classifier. Overall,

our method is simple but powerful. Preliminary experimen-

tal results show that our method is effective and achieves

state-of-the-art performance in video-based human action

recognition.

1. Introduction

Action Recognition based on AI-reasoning is one

of the most important research topics in computer

vision[6, 26, 37, 9]. In recent years, this field has witnessed

big breakthroughs, and the research interest is evolving

from learning the joints of human and recognizing human

pose to the understanding of actions and scenes.

With the booming of learning-based AI technology,

precision of action recognition has been raised to a new

level[27]. However, challenges still exist in this field. Most

of these learning-based algorithms are thirsty for large

datasets with tens of thousands of videos and correspond-

ing labels. Although thousands of videos are uploaded to

Youtube every second, they are raw data which can’t be fed

directly into most of existing algorithms. The most time-

consuming part is getting detailed, fine-tuned annotations,

which usually involves some manual efforts[2, 41].

Encoding action into a model is important because this

might lead to effective extraction of motion features, thus

effectively decrease the amount of training data required.

Modeling of human action could be categorized into two

perspectives, namely spatially and temporally. Spatially,

the shape of human could be modeled into several forms

such as skeleton[23], silhouettes[33], virtual skin[39], etc.

Temporally, action could be modeled into video sequence,

audio sequence, dynamic image[3], etc. In this paper, we

focus on the second perspective.

In many application scenarios, actions or scenes need

to be understood on universal time scale. For example,

consider the scenario of service robot in a house as shown

in Fig.1(a). By capturing a single image, the robot could be

confused whether the lady wants to put down or pick up the

cup. What if we capture six consecutive frames and see that

the hand is moving towards table? Does she want to put the

cup onto the table? Still hard to tell. It could be an old lady

with trembling hand trying to pick up the cup. Locally, the

cup could be approaching the table, while globally, the lady

might want to pick up the cup from the table.

Figure 1. (a) Instance of action recognition in the application of

service robots (b) Multimodal distribution

From the aspect of modeling, the problem of action

recognition boils down to decreasing the distance between

the distributions actions from the same class, while at the

same time increasing the distance between that of differ-

ent classes on universal time scale. In order to get a better

understanding of sequences on a global timescale, [7] pro-

posed the theory of globally optimal reparameterization al-

gorithm (GORA) using variational calculus.

Inspired by [7], in this paper, we propose a novel few-

shot learning algorithm using curvature as a signature for

action recognition. In this algorithm, we use the curvature
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of an optimally reparameterized video sequence as a signa-

ture of action. Such a model is based on viewing a video

sequence as a curve in the pixel space, the curve parame-

ters defining the speed of traversal through the sequence.

The proposed algorithm considers and analyzes action from

the global time scale, which is the arclength of the curva-

ture, and expresses actions in a very compact way. After

curvatures are obtained, we gather important features from

these curvatures and input them into the classifier. Random

forest is selected as the classifier. And it should be noted

that our algorithm is robust against flipping, which is to say

walking from left to right has the same signature as walk-

ing from right to left. This algorithm is also invariant to

mirror reflections and rigid-body displacements of image

plane. Moreover, because we modeled the distribution of

data with an effective and compact model, our algorithm

is not thirsty for large-scale data. In order to eliminate the

noise of background, we used state-of-the-art segmentation

algorithm Mask R-CNN as a pre-processing. Experimental

results show that the proposed algorithm is effective and has

good performance.

2. Related Work

In this section, a brief review is given for existing state-

of-the-art methods in the field of action classification and

representation. Due to limitation of space, we could not list

all of them, but please refer to the reviews[24, 34] if you

have further interest.

2.1. Action Classification Based on RGB Videos

In the early stage of the development of action recogni-

tion, histogram of gradient (HOG) and histogram of flow

(HOG) algorithms are widely accepted structures. The

main idea of HOG[8] is dividing images into small cells,

and draw the histogram of the gradients of edges for these

cells. While HOF[17] is based on measuring the angle be-

tween optical flow vector and x-axis. In[31, 32], H.Wang

et al. proposed dense trajectory as a description of videos

to accomplish action classification task, and improved it to

be more robust against camera motions with optical flow.

Thanks to the development of computer structure and learn-

ing theory, recent years have witnessed significant improve-

ments of learning-based solutions for action recognition on

RGB videos. S.Ji et al.[18] extended conventional CNN

from image classification to videos by taking the time scale

into consideration. And D.Tran et al.[10] made further

improvement on CNN based method by modeling appear-

ance and motion simultaneously and found the best ker-

nel for the network. In [19], A.Karpathy et al. proposed

Deep Video algorithm which enables CNN with the ability

to classify large-scale dataset of 1 million videos with the

multi-resolution architecture. Admittedly, these algorithms

show excellent results on most benchmark datsets, the pre-

requisit of them usually includes a large training dataset.

2.2. Representation of Actions

In recent years, more and more attention is paid to al-

leviate the training burden by making improvements to

modeling[35]. Girdhar at al. [13] learned attention maps

instead of whole videos to make classification more effi-

cient. In [15], Guo et al. proposed a graphical representa-

tion for spatial information in 3D data using neural graph

matching networks, which enables few-shot learning. Bilen

et al.[3] proposed a novel compact representation of actions

using dynamic image. In their algorithm, dynamic images

are obtained by directly applying rank pooling on the raw

image pixels of a video, producing a single RGB image

representation for each video. In [40], Zhou et al. used

temporal relational reasoning to analyze the current situ-

ation relative to the past and formulate what may happen

next. Long short term memory (LSTM) algorithm was in-

troduced to cope with video sequences in the field of action

recognition [11, 1]. LSTM, the well known language pro-

cessing algorithm is breaking its way into the vision field,

showing promising results and huge potential. Experimen-

tal results of multiple papers show that LSTM outperforms

CNN-based methods when it comes to understanding action

or scene. The underlying structure is natural because LSTM

architecture models the input as a sequence, which is closer

to the physics meaning of action.

3. Proposed Signature

For human, the task of recognition is one of the first

skills we learn from the moment we are born and is one

that comes naturally and effortlessly as adults. It is com-

monly believed that edge-detection of objects plays impor-

tant role in the eyesight of human. However, the optical

system of the human eye is vastly more complicated than

edge-detector. Medical research carried out by L.Riggs in

literature [22] shows that curvature is a specific feature of

human vision perception, and detectors of curvature exist in

human eyes that generate color-contingent aftereffects. In

[20], M.Kass et.all proposed an active contour model called

snake, which is also a very interesting way to describe cur-

vature in the image plane. L.Gorman proposed in [14] that

conversion of a image into a representation of curves and

line features enable economical storage of information.

Unlike many works, we are not focusing on curvature

of contours in the image plane, but rather curvature of the

video sequence, which is viewed as a curve in d2 dimen-

sional Euclidean space. In this section, we firstly give a

brief review of globally optimal reparameterization algo-

rithm (GORA), then present the generation of curvature

based on GORA.



3.1. Review of GORA

With the goal of comparing the similarity among video

sequences, one important premise is to align the signals on

temporal scale. [7] defined the arc length as a metric for sig-

nal alignment. In this paper, we depart from the arc length

for reparameterization on temporal scale and push it further

to use curvatures in high dimensional Euclidean space to

classify actions.

Variational Calculus addresses the problem of seeking

vector-valued functinos x(t) that minimizes the functional

of the form

J =

∫

1

0

f(x, ẋ, t)dt. (1)

As proved in [7], when the integrand in Eqn. (1) is of the

form

f(x, ẋ) = ẋ2g(x), (2)

we can find the global minimum solution of Eqn. (1) by

solving the Euler-Lagrange equations.

The construction of Eqn. (2) was arisen from the as-

sumption that the metric space is comprised of matrix norm

of the difference of two elements

d(X(t+ dt), X(t)) =
∣
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where X(t) is a matrix describing image pixel intensities

w.r.t time in a video sequence. If we represent the reparam-

eterized version of X(t) as Y (t) = X(τ(t)), then minimiz-
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gives the form of Eqn. (2).

To this light, assume that X1(t) and X2(t) are two sig-

nals on the time scale t ∈ [0, 1], obtained by respectively

vectorizing matrices X1(t) and X2(t), which might have

different temporal frequencies over this range. Reparam-

eterization is carried out by deriving a monotonically in-

creasing function τ(t) that normalize signals onto universal

standard timescale. The expression for τ(t) is derived using

variational calculus, whose result is

τ(t) = F−1(t), (5)

where F has the form of

F (τ) =
1

c

∫

τ

0

∣

∣

∣

∣

∣

∣
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∣

dX

dt
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dt.

Then, if Xi(t) = X(si(t)), for i = 1, 2, where si(t) are

arbitrary monotonically increasing functions of time, repa-

rameterization will recognize them as the same signal, by

quotienting out the effects of si(t).

3.2. Curvature Generation

Intuitively, curvature is the amount by which a geometric

object, such as a surface, deviates from being a flat plane or

a curve from being straight as in the case of a line[30].

That is the narrower definition of curvature. In this paper,

we mean the broader definition of curvature, which is cal-

culated by nth-order derivatives of a curve in n-dimensional

Euclidean space. By curvature, we are referring to the cur-

vature of the curve using the Frenet frame [30]. Assume

that X = X(s) ǫ En is a parametric representation of a gen-

erally curved curve with arclength s. Then the following

derivation equations are valid

dX

ds
= e1, (7)

de1

ds
= e2k1, (8)

de2

ds
= −e1k1 + e3k2, (9)

......

den−1

ds
= −en−2kn−2 + enkn−1, (10)

den−1

ds
= −enkn−1, (11)

where s = F ·c represents the arc length, e1,...,en represents

the orthogonal basis, and k1,...,kn represents the curvatures.

k1 is the curvature that is most widely used, while k2,...,kn
are higher curvatures. Since curvature is an intrinsic quality,

if a reflection, rotation, or translation is applied to the video

sequence, the curvature will be invariant.

4. Action Recognition Based on Curvature Cal-

culation

Now that we already compressed the patterns of actions

into curvatures on the global timescale, we could use these

curvatures to accomplish the action recognition task. In or-

der to achieve that, first of all, consider the curvatures as

one-dimensional distributions with respect to global time

scale. Then, we input these features into a classifier to dis-

tinguish between different actions. Here, we choose to use

Random Forest, which is one of the most powerful machine-

learning based classifiers has a simple structure, very easy

to implement, and usually wouldn’t overfit.



Figure 2. Curvature as a signature obtained on videos provided by Weizzman Dataset [4]

4.1. Feature Selection

When it comes to one-dimensional distributions, most

commonly applied features including

• feature of center position: mean µ, median m

• feature of divergence: range r, standard deviation σ

And fancier statistical features including

• wave rate: ninty-percent-quantile minus ten-percent-

quantile t

• skewness: a measure of asymmetry about a distribu-

tion about its mean

Skew(X) = E

[

(
X − µ

σ
)3
]

(12)

• kurtosis: a measure of sharp or flat about a distribution

Kurt(X) = E

[

(
X − µ

σ
)4
]

(13)

However, all aforementioned statistical features could be

deceiving sometimes when distributions similar to multi-

modal distributions which have similar looks with Fig.1(b)

are considered. That’s to say, even all the aforementioned

indexes are the same for two distributions, the two distribu-

tions still look very different. In order to fix this problem,

we introduce another index Beta [12]

Beta(X) =
Skew(X)2 + 1

Kurt(X)
(14)

4.2. Action Classification

Random forest is a powerful classifier belonging to the

family of ensemble learning, whose component is decision

trees. This ensemble tree bag consists of multiple decision

trees. When a classification problem is given to a random

forest, each tree might have its own idea and vote, the class

that gains most votes would be the result for the final deci-

sion.

In order to generate decision trees, if the training dataset

has the size of N for each tree, we randomly select N data

from the whole dataset and put those N data back to the

dataset after usage. This bootstrapping mode is applied for

sampling.

Assuming that the dimension of features is M , and we

select a constant m << M . A subset consisting of m ran-

domly selected element is formed to train each tree. When

the tree grows, optimal features are considered. No pruning

is required in the structure of random forest.

Each decision tree is a CART (Classification And Re-

gression Tree). The trees are trained by minimizing Gini

coefficient in the form of

Gini(p) = Σpk(1− pk) (15)

where k is the number of classes, and the probability that a

sampled point belongs to class k is pk.



Figure 3. part of trained result of random forest

5. Experimental Results

In order to validate the effectiveness of the proposed al-

gorithm, this section includes four parts. To validate ef-

fectiveness of curvature as a signature of action itself, we

firstly calculate curvatures on a relatively simpler dataset,

which doesn’t have much noise or disturbance from back-

ground. Features are generated from the curvatures and fed

into random forest to obtain the classification result. Robust

analysis against flipping is carried out. Then, to further val-

idate our algorithm, Mask R-CNN is customized as a data-

augmentation process. And comparison experiment among

several different methods are carried out.

5.1. Validation of the Curvature Description

This part aims at validating effectiveness of curvature

as a signature of action recognition. The experiments are

carried out on Weizmann dataset, whose results are shown

in Fig.2. First curvatures (usually refered to as curvature)

and second curvatures (usually refered to as torsion) of

eight different actions are plotted and analyzed. In Fig2,

eight classes of actions are considered, respectively waving

with one hand, waving with two hand, jumping side,

jumping up, bending, walking, siding, and skipping. The

first curvatures are plotted according to equation (4), with

respect to universal time scale. It can be observed that

the first curvatures of each particular action follow certain

particular pattern, and the first curvatures of different

actions show different patterns. Second curvatures are

calculated according to equation (5).

Theoretically speaking, we could calculate as high order

of curvatures as we want. In practice, however, derivative

calculation comes with computational error. And as the

order of derivative goes higher, this error goes larger. In

order to make the calculation of derivative as precise as

possible, we used finite difference method to calculate the

Method Performance

PBMS[36] 0.870

CSTIP[5] 0.967

Vanilla 1st Curvature 0.850

Vanilla 1st, 2nd Curvature 0.950

Table 1. Comparison to other methods on on Weizmann dataset.

Method Performance

MACH[25] 0.692

LTP[38] 0.793

DFCM[21] 0.837

HOG+FV[32] 0.850

Mask R-CNN+1st Curvature 0.759

Mask R-CNN+1st, 2nd Curvature 0.870

Table 2. Comparison to other methods on on UCF Sports dataset.

derivatives. And we found out that second curvature, which

involves third derivative as the highest order, has acceptable

scale of error. And including first curvature and second

curvature is enough for the classification task. So there is

no need to involve curvatures of higher orders here.

Since the curvatures are obtained, statistical features

could be generated from them. Experimental results carried

out on Weizmann dataset are shown in TABLE1.

5.2. Robustness Analysis

Another advantage of the proposed curvature signature

lies in the fact that it is robust against flipping. This is be-

cause the pattern extracted by our algorithm doesn’t depend

on matching the location of pixels between frames. It could

be observed from Fig 5 that symmetric actions result in sim-

ilar pattern in curvatures, with slight intraclass difference.



Figure 4. Transfer learning result of Mask R-CNN to our task on UCF Dataset [29]

Figure 5. Comparison of curvature when filpping happens on Weizzman Dataset [4]

Thus the curvature as a signature is robust against flipping.

5.3. Data Augmentation

With previous experiments, we proved the effectiveness

of curvature as a signature of action. Because background

of Weizmann dataset is basically always the same wall

not moving, simple matrix subtraction could be carried out

to remove the back ground. However, for more complex

videos, which are know as videos in the wild, fancier back-

ground removal algorithm need to be applied. In order

to carry out our algorithm in wild videos, we customize

Mask R-CNN[16] as a data augmentation process. Because

our algorithm is a few-shot learning, experiments are car-

ried out on a smaller sample of the well-known UCF101

dataset[28], namely UCF Soorts dataset. Fig4 shows the

data augmentation result with MASK R-CNN on consecu-

tive frames of a video. It should be noted that MASK R-

CNN was trained on COCO dataset which consists of still

images. When it comes to videos, motion would introduce

extra noises. Background clustering and poor lighting are

also potential reasons that could make transfer learning fail.

We fine-tuned the last layer of MASK R-CNN in order to

accomodate to our task.

5.4. Comparison Experiment

We compare the performances of published methods on

Weizmann dataset as well as UCF Sports dataset in TABLE

I and TABLE II respectively. It could be observed that first

derivative is an effective signature of action, and perfor-

mance is better when both first and second curvatures are

used. We focused most of our narrative on the modeling.

It should be noted that the proposed signature of curvature

is a universal feature. Classifier is not limited to Random

Forest. Other state-of-art classification architectures such

as CNN or LSTM could also be incorporated, and multi-

ple features could be incorporated in order to obtain higher

precision in classification task.



Figure 6. The goal of our future research

6. Conclusions

We proposed a new description of actions based on the

curvatures of sequences. This is in contrast to most previ-

ous learning-based algorithms, which use edges as descrip-

tion for classification. Building upon the curvature descrip-

tion, features are extracted by calculating statistical indexes.

Based on such features, we demonstrate our algorithm in the

global time scale instead of a few frames. One limitation of

this method is that it is suboptimal for subtle actions with

small movement, where noise would do harm to the recog-

nition. Further investigation need to be done in the future

about small movements. It should be noted that the pro-

posed method is proved to be effective in but not limited to

video sequences. It could also be accommodated for inputs

of audio sequence such as language or music. In the fu-

ture, we would like to look into details of how to customize

this algorithm to a fusion of video and audio sequences. As

shown in Fig.6, we believe the fusion of video sequence,

audio sequence, and signature of curvature would lead to

promising performance of advanced scene understanding,

which would open a new prospect for smart service robot.
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