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Abstract

Deep-learning architectures for classification problems

involve the cross-entropy loss sometimes assisted with aux-

iliary loss functions like center loss, contrastive loss and

triplet loss. These auxiliary loss functions facilitate bet-

ter discrimination between the different classes of interest.

However, recent studies hint at the fact that these loss func-

tions do not take into account the intrinsic angular dis-

tribution exhibited by the low-level and high-level feature

representations. This results in less compactness between

samples from the same class and unclear boundary separa-

tions between data clusters of different classes. In this pa-

per, we address this issue by proposing the use of geometric

constraints, rooted in Riemannian geometry. Specifically,

we propose Angular Margin Contrastive Loss (AMC-Loss),

a new loss function to be used along with the traditional

cross-entropy loss. The AMC-Loss employs the discrimina-

tive angular distance metric that is equivalent to geodesic

distance on a hypersphere manifold such that it can serve

a clear geometric interpretation. We demonstrate the effec-

tiveness of AMC-Loss by providing quantitative and qual-

itative results. We find that although the proposed geo-

metrically constrained loss-function improves quantitative

results modestly, it has a qualitatively surprisingly bene-

ficial effect on increasing the interpretability of deep-net

decisions as seen by the visual explanations generated by

techniques such as the Grad-CAM. Our code is available at

https://github.com/hchoi71/AMC-Loss.

1. Introduction

Deep learning methods have witnessed great success in

solving classification tasks. Especially, the convolutional
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Figure 1. The intrinsic ‘angular’ distribution exhibited in deep fea-

tures under the cross-entropy loss in MNIST (a) train set, (b) test

set where we use 10K/10K train/test samples for this visualiza-

tion. We set the output dimension of the penultimate layer as 2

and directly plot them in the 2-dimension space. We select 5 dif-

ferent classes (0, 1, 2, 3, 6 digits) among 10 classes and each color

denotes a class.

neural networks (CNNs) have recently drawn a lot of at-

tention in the computer vision community due to its wide

range of applications, such as object [4, 3], scene [16, 17],

action recognition [1, 6] and so on. The CNN architecture is

formed by a stack of convolutional layers which are a col-

lection of filters with learnable weights and biases. Each

filter creates feature maps that learn various aspects of an

image to differentiate one from the other. In this regard,

an essential part of training the networks is the final soft-

max layer to obtain the predicted probability of belonging to

each class. The most common loss function used in the clas-

sification task is the cross-entropy loss which computes the

cross-entropy over given probability distributions returned

by the softmax layer. However, the cross-entropy loss has a

few limitations since it only penalizes the classification loss

and does not take into account the inter-class separability

and intra-class compactness.

To address this issue, many works have gone into uti-

lizing auxiliary loss to enhance the discriminative power of
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Figure 2. The activation maps generated by the Grad-CAM of the

airplane image from different methods, (a) the cross-entropy loss,

(b) the Euclidean contrastive Loss, and (c) the AMC-Loss. The

first row indicates the input test image used to generate the activa-

tion map in the middle row. The last row shows an overlaid-image

with the activation map and the original image. We can observe

that AMC-Loss highlights more discriminative regions while fo-

cusing less on the background, leading to more interpretable and

explainable models.

deep features along with cross-entropy loss such as center

loss [15] and contrastive loss [14], where features extracted

from the penultimate layer are referred to as deep features

in this work. These approaches have greatly improved the

clustering quality of deep features. For instance, the center

loss which penalizes the Euclidean distance between deep

features and their corresponding class centers is a novel

technique to enforce extra intra-class distances to be min-

imized. Even though center loss can improve the intra-class

compactness, it would not make distances between different

classes not far enough apart, leading to only little changes

in inter-class separability. To this end, as an alternative ap-

proach, one might want to use contrastive loss in taking

into account inter-class separability at the same time. The

contrastive loss can be used to learn embedding features to

make similar data points close together while maintaining

dissimilar ones apart from each other. However, the con-

trastive loss has to choose a couple of sample pairs to get

the loss, so traditional contrastive loss needs careful pre-

selection for data pairs (e.g, the neighboring samples/non-

neighboring samples). Due to the huge scale of the train-

ing set, constructing image pairs inevitably increases the

computational complexity, resulting in slow convergence

during training. Furthermore, the aforementioned auxiliary

loss functions have relied on the Euclidean metric in terms

of approximating the semantic similarity of given samples.

Meanwhile, studies verified by [8, 15] hint at the fact that

the deep features learned by the cross-entropy loss have an

intrinsically ‘angular’ distribution as also depicted in Figure

1, thus seemingly rendering the Euclidean constraint insuf-

ficient to combine with the traditional cross-entropy loss.

In summary, the weaknesses of the Euclidean contrastive

loss include: a) intrinsic mismatch in geometric properties

of the learnt features compared to the loss function itself,

b) increases the computational complexity by constructing

data pairs.

Motivated by these weaknesses, we present the follow-

ing contributions: (1) First, we introduce a simple represen-

tation of images that are mapped as points on a unit-Hilbert

hypersphere, which more closely matches the geometric

properties of the learnt penultimate features. Also, this re-

sults in closed-form expressions to compute the geodesic

distances between two points. We are able to directly de-

ploy this geometric constraint into existing contrastive loss

formulations. Indeed, our approach can deal with intrinsic

angles between deep features on a hyperspherical manifold.

(2) Second, designing efficient data pairs is required to com-

pute the geodesic distance between two instances. As a re-

sult, we adopt the doubly stochastic sampled data pairs as

suggested in [9], leading to reduced overall computational

cost significantly. During training, it does not require much

extra time cost with 1-2 seconds per epoch.

As a preview of the results, we make the surprising find-

ing that the proposed AMC-Loss results in more explain-

able interpretations of deep-classification networks, when

input activation maps are visualized by the technique of

Grad-CAM [12]. Generally, the blue regions indicate small

or inhibitory weights while the red regions represent large

or excitatory weights. Interpreting what parts of the in-

put are most important for the final decision is crucial to

make deep-nets more explainable and interpretable. For in-

stance, as seen in Figure 2, we generated the activation maps

from the model trained by three different loss functions,

the cross-entropy loss, the Euclidean contrastive loss with

cross-entropy loss (refer to this loss as + Eucd in the rest of

the paper) and AMC-Loss with cross-entropy loss (denote

this by + AMC-Loss) respectively. In the airplane image,

the Euclidean variants seem to be reacting to the body parts

of the airplane, but also to the sky. The proposed AMC-Loss

results in a more tightly bounded activation map. Based on

additional visualization shown later in section 4, it appears

that the cross-entropy loss pays attention to important parts

of objects, but also pays attention to a lot of background in-

formation. The Euclidean contrastive loss, when combined

with the basic cross-entropy, leads to fuzzy and generally

un-interpretable activation maps. Whereas, the addition of

the AMC-Loss results in more compact maps that are also



interpretable as distinct object parts, while also reducing the

effect of the background.

The rest of the paper is outlined as follows: Section 2

provides a background study. In Section 3, we describe

the proposed framework in detail and in Section 4 we pro-

vide both qualitative and quantitative results. Section 5 con-

cludes the paper.

2. Background

The cross-entropy loss together with softmax activation

is one of the most widely used loss functions in image clas-

sification [5, 4, 3]. Following this, many joint supervision

loss functions with cross-entropy loss have been proposed

to generate more discriminative features [15, 14, 9]. In this

section, we focus on revisiting these typical loss functions

including related spherical-type loss.

Cross-entropy Loss The cross-entropy loss function is

defined as: LC = − 1

N

∑N

i=1
log e

WT
yi

xi+byi

∑
n
j=1

e
WT

j
xi+bj

, where,

xi ∈ R
d denotes the deep features of the i-th image, belong-

ing to the yi-th class. Wj ∈ R
d represents the j-th column

of the weights W ∈ R
d×n and bj ∈ R

n is the bias term.

The batch size and the class number are N and n, respec-

tively. Although the cross-entropy loss is widely used, it

does not explicitly optimize the embedding feature to max-

imize inter-class distance, which results in a performance

gap under large intra-class variations.

Contrastive loss To address this issue, many related

works have attempted to train the network with an auxiliary

loss and a cross-entropy loss simultaneously during train-

ing. For instance, Yi et al. [13] proposed the contrastive loss

for face recognition to enforce inter-class separability while

preserving intra-class compactness. In specific, one needs

to carefully select data pairs to be grouped into neighboring

and non-neighboring samples beforehand. That is, if sam-

ples belong to the neighbors, the matrix Sij which measures

the similarity between samples sets to 1, otherwise Sij sets

to 0, meaning samples of different classes. We then denote

the contrastive loss as:

LE =

{

‖xi − xj‖
2

if Sij = 1

max(0,me − ‖xi − xj‖)
2, if Sij = 0

(1)

where me > 0 is a pre-defined Euclidean margin and ‖·‖
is the Euclidean distance between deep features xi and xj .

Consequently, the neighboring samples are encouraged to

minimize their distances while the non-neighboring sam-

ples are pushed apart from each other with a minimum dis-

tance of me. The value me is the margin of separation be-

tween neighbors and non-neighbors and can be decided em-

pirically. When me is large, it pushes dissimilar and similar

samples further apart thus acting as a margin.

Spherical-type Loss The existing contrastive loss adopts

the Euclidean metric on deep features. However, as men-

tioned in the previous section, the Euclidean-based loss

functions are incompatible with the cross-entropy loss due

to intrinsic angular distributions visible in deeply learned

features as presented in Figure 1. Weiyang et al. [8] pro-

posed SphereFace to address this issue by introducing an-

gles between deep features and their corresponding weights

in a multiplicative way for a face recognition task. For

example, for binary class case, the decision boundary for

class 1 and class 2 become ‖x‖ (cos(mθ1) − cos(θ2)) and

‖x‖ (cos(θ1)− cos(mθ2)) where m quantitatively controls

the angular margin and θ is the angle between weight Wi

and feature vector x. Other avenues proposed alternatives

to softmax by exploring a spherical family of functions: the

spherical softmax and Taylor softmax [2]. In spherical soft-

max, one replaces the exponential function by a quadratic

function and the Taylor softmax replaces the exponential

function by the second-order Taylor expansion. These al-

ternative formulations allow us to compute exact gradients

without computing all the logits, leading to reducing the

cost of computing gradients. Although they showed that

these functions do not outperform when the length of an

output vector is large e.g, in language modeling tasks with

large vocabulary size, they surpassed the traditional soft-

max on MNIST and CIFAR10 dataset. Our work is com-

plementary to these and can be combined with them in that

AMC-Loss intuitively respects the angular distributions em-

pirically observed in deep features.

3. Proposed Method

In this section, we elaborate on our approach. A brief

overview of the proposed framework for image classifica-

tion tasks is shown in Figure 3. The CNNs take the input

that is passed through a stack of convolutional (Conv.1, 2, 3)

layers, where the filters were used with a small receptive

field: 3× 3. At the last configuration, it utilizes 1× 1 con-

volution filters, which can be seen as a linear transformation

of the input channels. The max pooling is performed over

a 2 × 2 pixel window. The final convolutional layer is then

fed to a global average pooling layer, which yields a vector,

called a deep feature in this paper. Based on the proposed

method, this deep feature is represented as a point on the hy-

persphere by restricting unit-norm features zi = xi/ ‖xi‖,
and apply them to the AMC-Loss. The final fully con-

nected layer has a softmax activation function to produce

the predicted probability of each class. Finally, the cross-

entropy loss function can be used along with AMC-Loss.

That is, during training, our approach estimates a particular



Figure 3. The overall framework of the proposed method. The output of the final convolutional layer is connected to the global average

pooling layer whose output dimension is 128. The fully connected layer with softmax activation outputs the predicted probability of

each class which can be used for cross-entropy loss. In the training phase, the deep features z are learned by AMC-Loss by penalizing

geodesic distance between zi and zj and finally, the network is trained with joint-supervision loss e.g, cross-entropy loss and AMC-Loss.

We described the network architecture in detail in Table 2.

embedding position for an image by the hypersphere repre-

sentations and updates the parameters through the network

such that it keeps similar points together and dissimilar ones

apart by penalizing the geodesic distance between given two

points, d(zi, zj) = cos−1〈 zi, zj〉.

3.1. AMC­Loss

Intuitively, AMC-Loss minimizes the geodesic distance

for points of the same class while encouraging points of

different classes to have a more distinct separation with a

minimum angular margin mg . To this end, we propose

the AMC-Loss while preserving the existing contrastive loss

formulation, as formulated in (2).

LA =

{

(cos−1〈 zi, zj〉)
2 if Sij = 1

max(0,mg − cos−1〈 zi, zj〉)
2 if Sij = 0

(2)

where, instead of the Euclidean margin me, mg > 0 be-

comes an angular margin. In (2), Sij = 0 is assigned to

non-neighboring pairs whereas Sij = 1 is allotted to neigh-

boring pairs. Ideally, all possible training sample combina-

tions can be considered in the matrix Sij . However, due to

the large size of training pairs, instead of updating param-

eters with respect to the entire training set, we perform the

update based on a mini-batch. The CNN model is iteratively

optimized using gradient descent by joint-supervision with

the cross-entropy loss and the AMC-Loss. Even though we

perform updates at the mini-batch level, it still involves the

computational burden to compute the geodesic distance for

all combinations of samples in a batch – thereby resulting

in slow-convergence during training.

Specifically, constructing the matrix Sij involving all

data pairs (xi, xj) ∈ B where mini-batch B is of size

n, requires O(n2) computations in total. Also, computing

geodesic distance between two points related to Sij isO(p)
where p denotes p-dimensional vector, resulting in the over-

all computational cost of O(n2p), which is slow for large

n. To address this issue, following [9], we adopt the doubly

stochastic sampled data pairs in computing the geodesic. In

each iteration, we sample a mini-batch B into two groups,

B1 and B2 groups, where each group has n/2 samples.

Then we are able to directly compare two groups and com-

pute corresponding geodesic distance element-wise. Fi-

nally, the overall cost can be reduced down to O(np
2
). Ad-

ditionally, without the need for pre-selection for data pairs

beforehand, we can build the matrix Sij based on the pre-

dicted labels from the output of networks f̃ as follows:

Sij =

{

1 if ỹi = ỹj

0 if ỹi 6= ỹj .
(3)

The predicted label corresponding to i-th input image is

given by ỹi = argmaxk[f̃i]k, where argmaxk[·]k directly

indicates the class label having the maximum probability

among classes. We present the pseudo-code in algorithm 1.

Clearly, the CNNs supervised by AMC-Loss are train-

able and can be optimized by standard SGD. A scalar λ
denotes the balancing parameter between the cross-entropy



Algorithm 1 Mini-batch training of AMC-Loss

Input: xi= training inputs, yi corresponding input labels

Require: zi= normalized deep feature of xi

Require: w(t)= weight function

Require: fθ(x)= CNNs with parameter θ

1: for t in [1, num epochs] do

2: for each minibatch B do

3: f̃i ← f(xi ∈ B)
4: for (xi, xj) in a minibatch pairs from B do

5: compute Sij based on Eq. 3.

6: loss← LC

7: + w(t)[λ 1

|B|

∑

i,j∈B LA(zi, zj , Sij)

8: update θ using optimizers (Adam)

9: return θ

loss and LA. We additionally conduct experiments to illus-

trate how the balancing parameter λ and angular margin mg

influence performance in section 4.3. As the weight func-

tion w(t), we use the Gaussian ramp-up and ramp-down

curve to put weights on LA during training. We describe

this weight function in more detail next.

3.2. Training Details

We implemented our code in Python 3.7 with Tensorflow

1.12.0. All models including baseline have been trained

for 300 epochs using Adam optimizer with mini-batch of

size n = 128 and maximum learning rate 0.003. We use

the default Adam momentum parameters β1 = 0.9 and

β2 = 0.999. Following [7], we ramp up the weight param-

eter w(t) and learning rate during the first 80 epoch with

weight w(t) = exp[−5(1− t
80
)2] and ramp down the learn-

ing rate and Adam β1 to 0.5 during the last 50 epochs. The

ramp-down function is exp[−12.5(1 − 300−t
50

)2]. The bal-

ancing coefficient of λ is set to 0.1 in all experiments. To

compare with the Euclidean contrastive loss, we keep the

same architecture and other hyper-parameters settings with

λ = 0.1 and me = 1.0. The Euclidean margin me = 1.0
and angular margin mg = 0.5 were chosen from different

variations, leading to the best performance.

4. Experiments

In this section, we show the effectiveness of the AMC-

Loss by visualizing deep features in Section 4.1 and pre-

senting the classification accuracy on several public datasets

in Section 4.2 with a supportive visualization result. Then

we investigate the sensitiveness of the balancing parameter

λ and the angular margin mg in Section 4.3.

4.1. Improved Clustering

As our proposed framework encourages the deep fea-

tures to be discriminative on the hyperspherical manifold,

we trained the model with the proposed loss function by re-

stricting the feature dimension to three for more intuitive

visualization on a sphere. The learnt features are shown in

Figure 4. We measure the clustering performance based on

the following metrics [11]:

Homogeneity: A clustering result satisfies homogeneity

if all of its clusters contain only data points that are mem-

bers of a single class.

Completeness: A clustering result satisfies completeness

if all the data points that are members of a given class are

elements of the same cluster.

Further, we visualize the deep features learned by AMC-

Loss and compare them with learnt features by base-

line models on SVHN test data by projecting them to 2-

dimensions using tSNE [10] in Figure 5. As we can see in

this plot, the features learned by + AMC-Loss are more sep-

arable for inter-class samples and more compact for intra-

class samples as also seen in homogeneity and complete-

ness.

4.2. Image Classification

Besides feature representations, we tabulate classifica-

tion performance on the benchmark dataset in Table 1. The

reported results are averaged over 5 runs. In order to check

the significance of the proposed method, we calculate the p-

value with respect to only + Eucd so that we directly com-

pare the Euclidean constraint with the proposed geomet-

ric constraint. The p-value is the area of the two-sided t-
distribution that falls outside ±t. Although + AMC-Loss

does not yield as good results as the + Eucd on MNIST

dataset, it outperforms + Eucd on other datasets with p-

value of less than 0.05.

Model
MNIST CIFAR10

Mean±SD p-Value Mean±SD p-Value

Cross-entropy 99.63±0.01 - 82.35±0.17 -

+ Eucd 99.65±0.01 - 82.60±0.21 -

+ AMC-Loss 99.66±0.01 0.1525 82.97±0.20 0.0214

Model
SVHN CIFAR100

Mean±SD p-Value Mean±SD p-Value

Cross-entropy 94.03±0.11 - 65.16±0.12 -

+ Eucd 95.29±0.06 - 65.57±0.20 -

+ AMC-Loss 95.52±0.05 0.0002 66.19±0.22 0.0016

Table 1. Classification results on benchmark datasets, averaged

over 5 runs. p-values are calculated with respect to the + Eucd

baseline model. .

MNIST. It consists of the 60, 000 gray-scale training im-

ages and 10, 000 test images from handwritten digits 0 to 9.

CIFAR10. The CIFAR10 dataset consists of 32 × 32
natural RGB images from 10 classes such as airplanes, cats,



Figure 4. Visualization of features learned with different loss functions on 10K MNIST test dataset. We set the output dimension of

the penultimate layer as 3-dimension and then the test samples are directly mapped as points on the unit sphere. Each color denotes a

different class. One can see that (a) the cross-entropy loss results in less compactness and separability of learned features whereas (b) the

Euclidean contrastive loss (Eucd) enhances the quality of clustering. (c) Our AMC-Loss can further increase the intra-class compactness

and inter-class separability.

Figure 5. tSNE plot under each model trained with different loss

functions on SVHN dataset, (a) cross-entropy loss, (b) + Eucd loss

and (c) + AMC-Loss. All points represent deep features projected

to 2-dimension and each color denotes a different class. The AMC-

Loss becomes more distinct feature representations.

cars and horses and so on. We have 50, 000 training exam-

ples and 10, 000 test examples.

CIFAR100. The CIFAR100 dataset consists of 32 × 32
natural RGB images, but they have 20 super-class (coarse

label) and 100 classes (fine label). Note, we evaluate the

performance with 20 super-class.

SVHN. Each example in SVHN is 32× 32 color house-

number images and we use the official 73, 257 training im-

ages and 26, 032 test images.

We provide the activation maps of test images per class

in Figure 6. In this figure, the AMC-Loss shows qualita-

tively better performance, in the sense that foreground ob-

jects become more distinct and salient with high weights

while focusing less on the background. On the other hand,

the + Eucd loss, including the cross-entropy loss, appears

more spread out and less ‘on target’. By emphasizing im-

portant regions, the AMC-Loss may bring out stronger ex-

plainable performance.

4.3. Robustness to Parameter Tuning

We evaluate our model to see sensitivity to the balancing

parameter λ and the angular margin mg on the CIFAR10

dataset. The hyper-parameter λ controls the balance be-

tween the cross-entropy loss and AMC-Loss and mg deter-

mines the minimum angular distance of how far points of

non-neighbors are pushed apart. Both of them are essen-

tial to our model. We first fix mg to 0.5 and vary λ from

1 to 0.001 to learn different models. Likewise, we evaluate

the performance by varying angular margin from 0.5 to 1.5
with fixed λ = 0.1. The trend accuracy of these models is

shown in Figure 7 along with the p-value.



Figure 6. The 3×3 image block set of activation maps generated by the Grad-CAM of test images per class on CIFAR10. The first column

of each matrix represents the cross-entropy loss, the + Eucd in the second column, and the AMC-Loss in the third one. We can clearly

see the AMC-Loss highlights the target regions while reducing the background in given images. Particularly, the AMC-Loss pays more

attention to the wheels in the truck image, whereas the cross-entropy and the + Eucd seem to mostly react the ground part which shows

similar color to the object. Similar observations are seen in the other examples as well.

λ p-Value

1.0 0.1829

0.1 0.0095

0.05 0.2348

0.001 0.2355

mg p-Value

0.5 0.0742

1.0 0.0385

1.2 0.0751

1.5 0.0526

Figure 7. The average test accuracy on CIFAR10 dataset over 3

runs, achieved by AMC-Loss with different λ and fixed mg = 0.5
on the top panel, and with different mg and fixed λ = 0.1 on

the bottom one. The red dashed line indicates the baseline model

(λ = 0) learned by the cross-entropy loss.

5. Conclusion

In this work, we have studied a simple analytic geometric

constraint imposed on the penultimate feature layer, moti-

vated by empirical observations of the shape of feature dis-

tributions. The proposed AMC-loss is a more natural way

to introduce the contrastive term in combination with the

traditional cross-entropy loss function. By representing im-

age features as points on hypersphere manifold, we have

shown that deep features learned by the angular metric can

enhance discriminative power modestly. More importantly,

we find that the use of the AMC-loss results in models that

are seemingly more explainable. This is a rather unexpected

finding. As seen in our experiments, the proposed method

can enable deep features to be more distinct by improving

localization of important regions. Our work is complemen-

tary to similar efforts that impose spherical-type losses; the

AMC-Loss extends these ideas into contrastive losses, while

showing that the resultant deep-net is more explainable.

A. Network architectures

As suggested in [7, 9], we use the same CNN architec-

tures for our experiments, but we use standard batch nor-

malization. The architecture in the top panel of Table 2 is

used to produce results for Figures 5, 2, and 7, and Table

1. The bottom architecture is used for Figure 1 and 4. For

the angular distribution in Figure 1 and the spherical repre-

sentation in Figure 4, we trained the model for 150 epochs



Input: 32× 32× 3 image for CIFAR10, SVHN, CIFAR100

Add Gaussian noise σ=0.15
3× 3 conv. 128 lReLU (α = 0.1) same padding

3× 3 conv. 128 lReLU (α = 0.1) same padding

3× 3 conv. 128 lReLU (α = 0.1) same padding

2× 2 max-pool, dropout 0.5
3× 3 conv. 256 lReLU (α = 0.1) same padding

3× 3 conv. 256 lReLU (α = 0.1) same padding

3× 3 conv. 256 lReLU (α = 0.1) same padding

2× 2 max-pool, dropout 0.5
3× 3 conv. 512 lReLU (α = 0.1) valid padding

1× 1 conv. 256 lReLU (α = 0.1)

1× 1 conv. 128 lReLU (α = 0.1)

Global average pool 6× 6→ 1× 1
Fully connected 128→ 10 softmax

Input: 28× 28× 1 image for Figure 1 and Figure 4

Add Gaussian noise σ=0.15
3× 3 conv. 64 lReLU (α = 0.1) same padding

2× 2 max-pool, dropout 0.5
3× 3 conv. 64 lReLU (α = 0.1) same padding

2× 2 max-pool, dropout 0.5
3× 3 conv. 128 lReLU (α = 0.1) valid padding

1× 1 conv. 64 lReLU (α = 0.1) same padding

Global average pool 5× 5→ 1× 1
Fully connected 3→ 10 softmax

Table 2. The network architectures used in all experiments. The

output of the global average pooling layer is 128 for all experi-

ments(exceptions are Figure 1 with 2-dimension and Figure 4 with

3-dimension).

using Adam Optimizer with batch size of 128 and maxi-

mum learning rate 0.003. We apply ramp up during the first

40 epochs and ramp down for the last 30 epochs.
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