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Abstract

We introduce a theoretical framework for performing sta-

tistical tasks—including, but not limited to, averaging and

principal component analysis—on the space of (possibly

asymmetric) matrices with arbitrary entries and sizes. This

is carried out under the lens of the Gromov-Wasserstein

(GW) distance, and our methods translate the Riemannian

framework of GW distances developed by Sturm into prac-

tical, implementable tools for network data analysis. Our

methods are illustrated on datasets of letter graphs, asym-

metric stochastic blockmodel networks, and planar shapes

viewed as metric spaces. On the theoretical front, we supple-

ment the work of Sturm by producing additional results on

the tangent structure of this “space of spaces”, as well as on

the gradient flow of the Fréchet functional on this space.

1. Introduction

In a variety of data analysis contexts, one often obtains

matrices which are square and asymmetric. Often these

matrices arise when studying networks [20] where the rela-

tionships between nodes cannot be measured directly, but

have to be inferred from the activity of the nodes themselves.

This is the case for biological networks such as the brain,

gene regulation pathways, and protein interaction networks.

Inspired by this connectivity paradigm, we refer to arbi-

trary square matrices as networks. The row/column labels

are referred to as nodes, and the matrix entries are referred

to as edge weights. Such matrix datasets commonly arise in

many other use cases. For example, a practitioner is typically

confronted with an n× p data matrix X where each row is

an observation and each column is a variable, from which

the covariance matrix is formed. If the dataset is Euclidean,

then there is a well-understood duality between the covari-

ance of the variables and the pairwise distances between the

observations. More generally, the dataset could be sampled

from a Riemannian manifold (or from a distribution whose

high density regions live near such a manifold), and the dis-

tances between the points could be given by the geodesic

distances on the manifold. Even more generally, it may be

the case that the data is sampled from a Finsler manifold, and

one has access to the quasimetric defined by the asymmetric

length structure of the manifold. This may occur when one

is sampling data from a dynamical system driven by some

potential function: the asymmetry arises because traveling

up the potential function is costlier than traveling down [3].

In the interest of performing statistics on such data, it

is natural to ask how one obtains a mean of such matrices.

Simply taking a coordinatewise mean does not work in many

cases, e.g. when the matrices are of different sizes or are

unlabeled. In such situations, one needs to first perform an

alignment/registration task that optimally matches the nodes

of one network to the nodes of the other. If the matrices are

the same size, then the most obvious approach would be to

search for an optimal permutation to match nodes between

the networks. However, this idea is too restrictive as real-

world datasets are frequently of unequal size. Moreover, for

large matrices, searching over permutations is prohibitively

computationally expensive. For these reasons, one intro-

duces the idea of “probabilistic matchings”. Here, each node

is assigned a weight, so that the total weight of the network is

one (i.e., a probability measure is assigned to the nodes of the

network). Instead of searching over permutations to match

nodes between a pair of networks, we can then instead search

over the convex set of couplings of their probability mea-

sures (that is, joint probability distributions whose marginals

agree with the original distributions on the input networks).

This is the essential idea of Gromov-Wasserstein distance,

which is defined below.

The goal of this paper is to introduce a theoretical frame-

work for statistical computations on the space of networks.

This is achieved by fusing theoretical results on Gromov-

Wasserstein distance [26], algorithms for statistics on Rie-

mannian manifolds [22], and recent algorithmic advances for

the computation of Gromov-Wasserstein distance [23]. Us-

ing this framework, we are able to perform not just averaging,

but a plethora of statistical tasks such as principal component

analysis and support vector machine classification.
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1.1. Previous Work

A metric measure (mm) space is a compact metric

space endowed with a Borel probability measure. Gromov-

Wasserstein (GW) distance was first introduced as a metric

on the space of all (isomorphism classes of) mm spaces.

Theoretical aspects of the GW distance were explored in

[17, 18, 26]. The work in [17, 18] was already focused

on applications to object matching, while [26] explored the

Riemannian-like structures induced by GW distance.

In recent years, GW distance has garnered interest in data

science communities as a way to compare unlabeled datasets,

or datasets containing samples from different ambient spaces.

For example, GW distance has been used to explore a variety

of network datasets [14], as a metric alignment layer in deep

learning algorithms for object classification [11], to align

word embedding spaces for translation applications [1], for

several tasks in analysis of large graphs and networks [30,

29], and has been incorporated into generative models across

incomparable spaces [4]. Several specialized variants of GW

distance have also been recently introduced [19, 27, 28].

The problem of computing GW distance was studied from

the algorithmic viewpoint in [23], where a projected gradient

descent algorithm was introduced. The main focus was on

using GW distance to compute a Fréchet mean with pre-

scribed size of distance (or kernel) matrices. The main idea

of the present paper is to recast the work in [23] using the

theoretical Riemannian framework of [26] together with sta-

tistical algorithms on Riemannian manifolds [22]. By using

this viewpoint, we are able to generalize the work of [23]

to a gradient flow that theoretically prescribes the required

size for a Fréchet mean, while providing a flexible general

framework for machine learning tasks on network-valued

datasets. This includes the case of asymmetric networks.

An approach similar to that of the present paper to study-

ing statistics on the space of graphs via Riemannian geom-

etry was initiated in [15, 16]. Recently, these ideas were

applied to formulate a theory of statistical shape analysis

of embedded graphs in [13]. These works perform analysis

on graph space by aligning graph nodes over permutations

or “hard matchings”, whereas our approach aligns networks

via measure couplings or “soft matchings”. The differences

between these theories are interesting, and we expect that the

correct formalism to use is highly dependent on the particular

application.

1.2. Contributions

Our specific contributions are as follows. We first provide

the gradient of the GW functional on asymmetric networks.

This complements a similar result for symmetric matrices

in [23]. On the metric geometry side, we provide a concrete

exposition of the tangent space structure on this space of

asymmetric networks and of the construction of geodesics in

the space of networks. This includes the, to our knowledge,
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Figure 1. Networks from Example 2. Top row: One-node network

X and two-node network Y . Bottom left: Blown-up form X̂ of

X . Dotted line shows networks to align. Inset: “average” of X

and Y .

first computationally feasible algorithm to produce Sturm

geodesics. We explicitly formulate the iterative Fréchet

mean algorithm of Pennec as gradient descent of the Fréchet

functional on the space of networks. The tangent structure

provides a framework for vectorizing collections of networks

in order to apply standard ML algorithms. We exemplify this

by performing averaging and principal component analysis

on a database of planar shapes. Our methods can also be

used for network compression, and we illustrate this on a toy

example of an asymmetric stochastic blockmodel network.

2. Preliminaries on the GW distance and

Fréchet means

2.1. Networks and the GW distance

A measure network is a triple (X,ωX , µX) where X is

a Polish space (i.e. separable, completely metrizable), µX

is a fully supported Borel probability measure, and ωX :
X ×X → R is a square integrable function. The collection

of all networks is denoted N . When no confusion will arise,

we abuse notation and denote the triple (X,ωX , µX) by X .

The notion of a measure network is quite general and

includes several types of spaces which arise in applications.

A graph can be represented as a measure network: X is set of

n nodes, while ωX provides relational information and could

be represented by a weighted adjacency matrix, a graph

Laplacian, or a matrix of graph distances (for connected

graphs or strongly connected digraphs)—see Example 2.

The probability measure µX can be taken to be uniform, or

could more generally give higher weight to nodes deemed

more important by a particular application. The notion of a

measure network is also a strict generalization of that of a

metric measure space, as defined in the previous section. For

a finite metric measure space, ωX can be represented as by its

distance matrix. Our definition also includes infinite spaces—

this is necessary for certain theoretical completeness results



to hold, but the reader more interested in applications can

safely restrict their attention to finite spaces.

A coupling between two probability measures µX and

µY supported on Polish spaces X and Y is a probability

measure on X × Y with marginals µX and µY . Stated

differently, µ(A× Y ) = µX(A) for all A ∈ Borel(X) and

µ(X ×B) = µY (B) for all B ∈ Borel(Y ). The collection

of all such couplings is denoted C (µX , µY ).
Intuitively, for finite measure networks X and Y and

a coupling µ, the value of the coupling µ(xi, yj) can be

understood as an assignment of a certain proportion of the

mass µX(xi) to the point yj . In the graph setting, this is a

“soft matching” of the nodes of X and Y . One then wishes

to find a soft matching which reflects similarity of X and

Y as well as possible. This is formalized by the notion of

distortion, defined below.

Given two networks (X,ωX , µX) and (Y, ωY , µY ) inN ,

one defines the distortion functional to be the map

dis : C (µX , µY )→ R

µ 7→ ‖ωX − ωY ‖L2(µ⊗µ).

More explicitly, dis(µ) is the quantity
∫

|ωX(x, x′)− ωY (y, y
′)|

2
dµ(x′, y′) dµ(x, y),

where the integral is taken over the space X × Y × X ×
Y . The Gromov-Wasserstein distance between networks

(X,ωX , µX) and (Y, ωY , µY ) is then defined by

dN (X,Y ) :=
1

2
inf

µ∈C (µX ,µY )
dis(µ).

One may similarly define the p-GW distance by taking the

Lp norm, but the constructions in this paper rely on the

special structure of the L2 case.

The following lemma shows that the infimum in the def-

inition above is always achieved. Minimizers of dis are

referred to as optimal couplings. The proof follows directly

from [26, Lemma 1.2].

Lemma 1 (Optimality of couplings, [26]). Let

(X,ωX , µX), (Y, ωY , µY ) ∈ N . Then there always

exists a minimizer of dis in C (µX , µY ).

In the finite setting, the notation of [23] admits some

useful insights into this minimization problem. We present

this notation now. Let L : R×R→ R be a loss function. In

our case, this will always be defined as L(a, b) := |a− b|2.

Next we switch to matrix notation: given a finite space

X = {x1, x2, . . . , xn}, we write Xik to denote ωX(xi, xk)
for 1 ≤ i, k ≤ n. Suppose Y is another finite space of size

m. The collection of couplings C (µX , µY ) then consists of

n×m matrices C = (Cij)ij such that

∑

i

Cij = µY (yj) and
∑

j

Cij = µX(xi).

Then one defines the 4-way tensor L(X,Y ) :=
(L(Xik, Yjl))ijkl. Given a 4-way tensor L and a matrix

(Cij)ij , one defines the tensor-matrix multiplication

L ⊗ C :=

(

∑

kl

LijklCkl

)

ij

.

Next, given two real-valued matrices A and B of the same

dimensions, one writes 〈A,B〉 to denote the Frobenius inner

product
∑

ij AijBij . As observed in [23], the GW distance

between two finite networks X and Y can be written as:

dN (X,Y ) =
1

2
min

C∈C (µX ,µY )
〈L(X,Y )⊗ C,C〉1/2.

For the reader’s convenience, we verify that the dimensions

are consistent. If X is an n-point space and Y is an m-point

space. Then C is an n×m coupling matrix, L(X,Y ) is an

n2 ×m2 tensor, and the product L(X,Y )⊗ C is an n×m
matrix. An alternative matrix formulation [25] of the term

inside the min is the following:

(

〈µX , X.∧2µX〉+ 〈µY , Y.
∧2µY 〉 − 2 tr(CTXTCY )

)
1
2 .
(1)

Here .∧2 denotes the elementwise square. While this formu-

lation is well-known, we provide details in the appendix for

the reader’s convenience.

2.2. Weak isomorphism: From transport plans to
transport maps via blow­ups

The space (N , dN ) is a pseudometric space. Net-

works (X,ωX , µX) and (Y, ωY , µY ) satisfy dN (X,Y ) =
0 if and only if there exists a Borel probability space

(Z, µZ) with maps πX : Z → X and πY : Z → Y
such that the pushforward measures satisfy (πX)#µZ =
µX , (πY )#µZ = µY , and the pullbacks (πX)∗ωX ,

(πY )
∗ωY satisfy ‖(πX)∗ωX − (πY )

∗ωY ‖∞ = 0, where

(πX)∗ωX(z, z′) := ωX(πX(z), πX(z′)). In this case, X
and Y are said to be weakly isomorphic and write X ∼=w Y .

The space Z is referred to as a common expansion of X and

Y . We write [X] = [X,ωX , µX ] to denote the weak isomor-

phism class of X = (X,ωX , µX) in N . The collection of

equivalence of classes of networks will be denoted [N ]. See

also [8] for more details on weak isomorphism.

In the case of finite networks, weak isomorphism is es-

pecially useful as it allows one to convert transport plans

(i.e., couplings between the networks’ measures) to transport

maps (i.e., measure-preserving maps between networks).

This observation plays a key role in both our theory and

algorithms. We present this construction next.

Definition 1 (Blowups). Let X,Y be finite networks, and

let µ ∈ C (µX , µY ). Let u := (ux)x∈X be a vector where



ux := |{y ∈ Y : µ(x, y) > 0}|. Also define v := (vy)y∈Y

by setting vy := |{x ∈ X : µ(x, y) > 0}|. Next define

X[u] to be the node set
⋃

x∈X{(x, i) : 1 ≤ i ≤ ux}.
Fix x ∈ X and let y1, y2, . . . , yux

denote the y ∈ Y such

that µ(x, y) > 0. Define µX[u]((x, i)) := µ(x, yi). Fi-

nally, for x, x′ ∈ X and 1 ≤ i ≤ ux, 1 ≤ j ≤ ux′ , de-

fine ωX[u]((x, i), (x
′, j)) = ωX(x, x′). Similarly define

(Y [v], ωY [v], µY [v]). The crux of this construction is that

while X[u], Y [v] are weakly isomorphic to X and Y , re-

spectively, the initial transport plan µ naturally expands to a

transport map from X[u] to Y [v]. We refer to the process

of constructing X[u] from X as a blow-up.

Definition 2 (Alignment). Let X,Y be finite networks on n
and m nodes, respectively, and let µ be an optimal coupling.

We refer to the n×m binary matrix 1µ>0 as the binarization

of µ: this matrix has the same dimensions as µ, has a 1

where µ > 0, and 0 elsewhere. By taking appropriate blow-

ups, we obtain (possibly enlarged) networks X̂ , Ŷ and an

optimal coupling µ̂ such that the binarization 1µ̂>0 of µ̂ is a

permutation matrix. Then we may align Ŷ to X̂ by defining

Ŷ ← 1µ̂>0Ŷ 1
T
µ̂>0. The corresponding realignment of the

optimal coupling is given by µ̂← 1µ̂>0µ̂. Note that we then

have µ̂ = diag(µX̂). We refer to this process of blowing up

and realigning as aligning Y to X . After aligning, dN (X,Y )
is given by

n
∑

i,j=1

|ωX̂(xi, xj)− ωŶ (yi, yj)|
2µX̂(xi)µX̂(xj).

Example 2 (Blowing up and aligning simple networks).

Consider the weighted networks X and Y shown in the

top row of Figure 1. We represent these as measure net-

works by taking ωX and ωY to be weighted adjacency

matrices. Concretely, let X = {x}, ωX = (1), and

µX(x) = 1. Also let Y = {y1, y2}, ωY = ( 0 1
1 0 ), and

µY (y1) = µY (y2) = 1/2. Since X is a one-node net-

work, the unique coupling µ ∈ C (µX , µY ) is given by

µ(x, y1) = µ(x, y2) = 0.5. To convert µ to a transport

map, X is blown-up to X̂ = {x1, x2}, with ωX̂ = ( 1 1
1 1 )

and µX̂(x1) = µX̂(x2) = 1/2, whence µ̂ = ( 0.5 0
0 0.5 ). In-

tuitively, the average of X̂ and Y should be the network

Z = {z1, z2}, ωZ = ( 0.5 1
1 0.5 ), and µZ(z1) = µZ(z2) =

0.5. This intuition will be formalized below.

2.3. Computing GW distance

It was implicitly observed in Section 2.1 that for finite

measure networks X of size n an Y of size m, the squared

distortion of a coupling matrix C ∈ C (µX , µY ) ⊂ R
n×m

is given by

dis(C)2 = 〈L(X,Y )⊗ C,C〉 .

For fixed X and Y , let AXY denote the linear map from

R
n×m to itself given by AXY C := L(X,Y )⊗ C. The GW

optimization problem seeks a minimizer of the map

C 7→ 〈AXY C,C〉

over the convex polytope C (µX , µY ) and is therefore an

instance of a quadratic programming problem.

Following [23], we approximate GW distance by finding

local minimizers for the GW optimization problem via pro-

jected gradient descent. Since we are allowing asymmetric

weight functions, the linear map AXY may be asymmetric.

This distinguishing feature from the setting of [23] must be

accounted for when computing the gradient.

Proposition 3. The gradient of C 7→ 〈AXY C,C〉 is given

by

(AXY +A∗
XY )C,

with A∗
XY denoting the adjoint of AXY .

2.4. Fréchet means

Given a collection of networks S = {X1, X2, . . . , Xn},
a Fréchet mean of S is a minimizer of the functional

FS(Z) :=
1

n

n
∑

i=1

dN (Xi, Z)2.

In [23], the approach for calculating a Fréchet mean was

as follows: (1) fix a cardinality N for the target space Z,

(2) minimize over choices of ωZ , and (3) optimize over

couplings Ci ∈ C (µXi
, µZ). The last two steps are repeated

until convergence.

In contrast, the scheme we present in this paper follows

ideas of Pennec on averaging in (finite-dimensional) Rie-

mannian manifolds [22] coupled with the work of Sturm on

developing the Riemannian structure of generalizations of

metric measure spaces. Informally, the idea is as follows:

start with a “seed” network X , use log maps to lift geodesics

X → Xi to vectors in the tangent space at X , average the

vectors, use an exponential map to map down to N , and

iterate this procedure until convergence. Theoretically, we

justify this procedure by showing that it agrees with the

downward gradient flow of the Fréchet functional.

3. Metric geometry of [N ]

Given a network (X,ωX , µX), the only requirement on

ωX is that it needs to be square integrable; i.e., we need

ωX ∈ L2(X2, µ⊗2
X ). We will show that this flexibility al-

lows us to define structures on [N ] analogous to those of

a Riemannian manifold, such as geodesics, tangent spaces

and exponential maps. These structures are defined using

language from the theory of analysis on metric spaces. In

our setting, they can be defined in a surprisingly concrete

way, allowing us to sidestep the need to invoke any deep

concepts or results—see [5, 2] for general introductions to

the theory.



3.1. Geodesics

In the metric geometry sense, a geodesic from [X] to [Y ]
in [N ] is a continuous map γ from a closed interval [S, T ]
into [N ] satisfying the property

dN (γ(s), γ(t)) =
|t− s|

T − S
· dN ([X], [Y ]) (2)

for all s, t ∈ [S, T ]. The geodesic is unit speed if T − S =
dN ([X], [Y ]). We can of course assume without loss of

generality that our domain interval is always of the form

[0, T ]. We say that a geodesic γ : [0, T ] → [N ] emanates

from [X] if γ(0) = [X].
It follows from work in [26] that geodesics can always be

constructed in [N ] (although they need not be unique). Let

X,Y ∈ N , and let µ be an optimal coupling (cf. Lemma 1).

For each t ∈ [0, 1], define

γ(t) := [X × Y,Ωt, µ], (3)

where

Ωt((x, y), (x
′, y′)) := (1− t)ωX(x, x′) + t ωY (y, y

′).

It is easy to see that γ(0) = [X] and γ(1) = [Y ]. A relatively

straightforward computation then shows that γ satisfies (2)

(cf. [26, Theorem 3.1]). Note that the underlying set of this

geodesic is always X × Y . In particular, γ(0) is the triple

[X × Y, ωX , µ] where ωX is defined (by abuse of notation)

on X × Y ×X × Y as ωX ((x, y), (x′, y′)) := ωX(x, x′).
Here the ωX on the right hand side is the original function

defined on X ×X .

For networks X and Y of sizes m and n, respectively,

a naive implementation of the geodesic described above

is represented by a measure network of size m · n. We

later consider iterative algorithms where this size blowup

would quickly become intractable. Instead, we offer the

following minimal size representation of a geodesic. We

compute an optimal coupling of X and Y , then blow up and

align the networks as in Definitions 1 and 2; an example for

networks coming from simple graphs is shown in Figure 2.

The geodesic described above is then represented (up to weak

isomorphism) by interpolating the blown up and aligned

weight matrices for X and Y ; such a geodesic for graph

networks is shown in Figure 3. We have observed empirically

that such a minimal size geodesic is typically represented as a

path of matrices of size proportional to m+n, rather than the

size m·n naive representation. Experimental evidence of this

size reduction is provided in the supplementary materials,

Section C.

3.2. Tangent space

For a point [X] ∈ [N ], we define the tangent space to be:

T[X] :=
⋃

Z∈[X]

L2
(

Z2, µ⊗2
Z

)

/ ∼,

Figure 2. Left column: Two graphs to be matched. Each graph is

a measure network with all edge weights equal to one and uniform

node weights. The lighter arrows depict an optimal coupling be-

tween the graphs; the mass from each node from the first graph is

distributed evenly to two nodes in the second graph as indicated.

Middle column: Graphs are represented as measure networks by

their adjacency matrices of size 3×3 and 6×6, respectively. Right

column: Matrix representations of the measure networks after they

have been blown up and aligned according to the optimal coupling.

Resulting matrices are both size 6 × 6. The matrix for the first

graph is doubled in size; at a graph level, copies of each node are

created. The matrix for the second graph has remained the same

size but has been permuted; this is just a relabelling of the nodes

based on how they are matched with nodes of the first graph.

where ∼ is defined as follows. For (Y, ωY , µY ) and

(Z, ωZ , µZ) in [X] and functions f ∈ L2
(

Y 2, µ⊗2
Y

)

and

g ∈ L2
(

Z2, µ⊗Z
Z

)

, we declare f ∼ g if and only if there

exists a coupling µ of µY and µZ such that

ωY (y, y
′) = ωZ(z, z

′) and f(y, y′) = g(z, z′)

for µ⊗2-a.e. ((y, z), (y′, z′)) ∈ (Y ×Z)2. Elements of T[X]

are called tangent vectors to [X] and are denoted [f ], where

f is an L2 function defined on some representative of [X].
We define an inner product 〈·, ·〉[X] on each tangent

space T[X] as follows: for f ∈ L2(Y 2, µ⊗2
Y ) and g ∈

L2((Y ′)2, µ⊗2
Y ) with Y, Y ′ ∈ [X],

〈[f ], [g]〉[X] := 〈(πY )
∗f, (πY ′)∗g〉L2(Z2,µ⊗2

Z
) ,

where Z is any measure network realizing the ‘tripod’ in the

definition of weak isomorphism between Y and Y ′. One can

check that this value does not depend on any of the choices

made and therefore gives a well-defined inner product. The

norm induced by this inner product is denoted ‖ · ‖[X]. One

can check that it reduces to the formula

‖[f ]‖[X] := ‖f‖L2(Y 2,µ⊗2

Y
),

where f ∈ L2(Y 2, µ⊗2
Y ) and Y ∈ [X].

Remark 4. The tangent space T[X] is not a bona fide vector

space, but is a vector space quotiented out by a “symme-

try group” consisting of optimal self-couplings of a certain
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Figure 3. Geodesic between the graphs of Figure 2. The adjacency matrices are blown up and realigned. The blown up graph second from the

left is drawn with split nodes superimposed. The geodesic interpolates matched edge weights. At the graph level, the geodesic is illustrated

with node sizes corresponding to node weights and edge thickness corresponding to edge weights.

minimal representative of X [26, Section 6]. When [X]
has a representative with only the trivial symmetry, i.e. the

diagonal coupling, the tangent space is a Hilbert space. In

particular, this phenomenon endows [N ] with the structure

of a Riemannian orbifold.

3.3. Exponential map

We define the exponential map at [X],

exp[X] : T[X] → [N ],

as follows. For f ∈ L2
(

Z, µ⊗2
Z

)

, with Z ∈ [X], let

exp[X]([f ]) := [Z, ωZ + f, µZ ].

After unwrapping the various notions of equivalence in-

volved, one is able to show that this map is well-defined.

This map is analogous to the exponential map in a Rieman-

nian manifold. We demonstrate this concretely in the finite

setting with the next proposition.

Proposition 5. Let X be an finite measure network. There

exists ǫ[X] > 0 such that for any tangent vector represented

by f ∈ L2(Z2, µ⊗2
Z ) with Z ∈ [X] satisfying |f(z, z′)| <

ǫ[X] for all (z, z′) ∈ Z × Z, exp[X]([f ]) is the endpoint of

a geodesic emanating from [X].

3.4. Log map

We wish to show that exp[X] has a local inverse, called

the log map at [X]. Let Y be a finite measure network and

let µ be an optimal coupling of X and Y . Define the log

map with respect to µ as follows. Use µ to expand and align

the measure networks to

X̂ =
(

X̂, ωX̂ , µX̂

)

and Ŷ =
(

X̂, ωŶ , µX̂

)

(4)

so that the identity map on the set X̂ induces an optimal

coupling of X̂ with Ŷ . We then define

logµ[X]([Y ]) := [ωŶ − ωX̂ ]. (5)

It immediately follows that

exp[X]

(

logµ[X]([Y ])
)

= [Y ].

This provides a surjectivity result for the exponential map.

On the other hand, the following lemma provides an injec-

tivity result. Its proof is similar to that of Proposition 5.

Lemma 6. Let X be a finite measure network. The ex-

ponential map exp[X] is injective on the set of [f ] with

f ∈ L2(Z2, µ⊗2
Z ) such that Z is finite and f satisfies

|f(z, z′)| < ǫ[X]/2 for all z, z′ ∈ Z.

We now define the log map at [X], log[X], to be the

local inverse of exp[X] on finite measure networks near [X].
For a finite measure network Y , we define log[X]([Y ]) =

logµ[X]([Y ]) as in (5), where µ is any optimal coupling of

X with Y . The lemma then provides a certificate to check

that the image of the log map did not depend on a choice of

optimal coupling.

3.5. Gradients

Let F : [N ]→ R be a functional, let [X] ∈ [N ] and let

[f ] ∈ T[X]. Define the directional derivative of F at [X] in

the direction [f ] to be the limit

D[f ]F ([X]) := lim
t→0+

1

t

(

F
(

exp[X]([t · f ])
)

− F ([X])
)

,

provided it exists. We say that F is differentiable at [X] if

all directional derivatives exist.

For a differentiable functional F , a gradient of F at [X]
is a tangent vector ∇F ([X]) satisfying

D[f ]F ([X]) = 〈[f ],∇F ([X])〉[X]

for all [f ] ∈ T[X].

The next lemma follows from [26, Lemma 6.24].

Lemma 7. Let F be a differentiable functional. If the gradi-

ent of F at [X] exists, then it is unique and satisfies

‖∇F ([X])‖[X] = sup
{

D[f ]F ([X]) | ‖[f ]‖[X] = 1
}

.



Figure 4. Examples of geodesics between simple graphs. See

Section 4.1 for explanations.

We are now able to derive an explicit expression for the

gradient of the Fréchet functional for finite networks.

Proposition 8. Let S = {Y1, Y2, . . . , Yn} be a collection

of finite networks, and let X be another finite network.

Suppose each Yi has been aligned to X , so that each of

{X,Y1, . . . , Yn} has m nodes. Then the gradient of the

Fréchet functional FS at [X] is represented by the m ×m
matrix ∇FS(X) defined by

(∇FS(X))ij = 2

(

ωX(xi, xj)−
1

n

n
∑

k=1

ωYk
(yi, yj)

)

.

Remark 9. The preceding proposition gives us a mean-

ingful description of a Fréchet mean. Specifically, let

S = {Y1, . . . , Yn} be a collection of finite networks, and

let X be such that ∇FS(X) = 0. Suppose also that

X is aligned to each Yi. Then X has the property that

ωX(xi, xj) =
1
n

∑n
k=1 ωYk

(yi, yj) for each xi, xj ∈ X . In

other words, ωX comprises arithmetic means of entries in

the ωYk
.

4. Experiments

We now provide details of our computational experiments.

Algorithms and numerous empirical remarks are provided

in the supplementary materials. Python implementations are

available on GitHub [9]. Our code makes heavy use of the

Python Optimal Transport Library [12].

4.1. Geodesic Examples

Figure 4 shows several examples of geodesics between

simple graphs. Each graph X is a measure network with ωX

the graph adjacency matrix. Except for the example in the

first row, each µX is a uniform node measure.

Figure 5. Samples from five shape classes in the classification

experiment.

The first row in the figure shows a geodesic between

graphs with the same edge weight structure as the graphs in

Figure 3, but with different node weights indicated by node

sizes. Observe that the difference in node weights changes

the geodesic path drastically. The second row in the figure

shows a geodesic between a graph with two disconnected

nodes, each with a self-loop (not shown) and a connected

graph with large clusters. The geodesics in the third and

fourth rows of the figure are each between graphs from the

“Letter Graphs” graph classification benchmark dataset [24];

the first between letters in the same class and the second

between letters in different classes. Each geodesic is dis-

played with lower opacity on some nodes and edges—these

nodes with weight less than a user-defined threshold (50%

(respectively, 40%) of maximum node weight in the first

(respectively, second) example) and edges with at least one

endpoint meeting this criteria. This technique allows us to

understand common graph features at multiple resolutions.

4.2. Shape Classification

As a proof-of-concept for incorporating this framework

into machine learning pipelines, we present a simple shape

classification experiment. The data consists of 20 object

classes with 20 samples from each class from the well known

MPEG-7 computer vision database (see Figure 5). Each

shape consists of 100 planar points. The input data for the

experiment consists of pairwise distance matrices for each

shape, yielding 400 matrices of size 100×100. The ordering

of the points was randomized when constructing the distance

matrices. Weights on the nodes are uniform.

We consider three methodologies for classifying the

shapes. In each experiment the same 80% of the shapes

were used as a training set. In a completely naive approach,

a support vector machine was trained on the permuted dis-

tance matrices. With this method, the classification rate on

the testing set was 19%. In the second approach, one of

the permuted distance training matrices X was fixed and

all other training matrices were aligned to X . The matri-

ces were then “centered” on X , which can be understood

as pulling them back to tangent vectors in T[X] via the log

map (or, rather, the coupling-dependent log map logµ[X]([Y ])
here). An SVM was then trained on these tangent vectors.

Classification was tested by aligning and centering the test

matrices with X , yielding a classification rate of 84%. In

the final method, the Fréchet mean X of all samples in the



Figure 6. Apple dataset. Each shape is a measure network X con-

taining 100 points, with µX uniform measure and ωX the pairwise

(Eulcidean) distance matrix between the points.

Figure 7. First three principal directions of variance for tangent

PCA on the apple dataset.

training set was computed. Then all training matrices were

aligned to X and pulled back to tangent vectors, where an

SVM was trained. Classification was once again performed

by aligning and centering test matrices with X , where the

classification rate was improved to 94%. This approach

illustrates a template for vectorization of network data.

4.3. Tangent PCA on planar shapes

The Riemannian framework allows us to do other ma-

chine learning computations by pulling networks back to a

tangent space; for example, we now present results of a tan-

gent PCA experiment. Figure 6 illustrates the apple dataset

that we used. Each shape is represented as a measure net-

work as in the previous subsection. To perform tangent PCA,

we first computed a Fréchet mean for these 20 shapes. Next

we used log maps based at the chosen Fréchet mean to pull

back the 20 shapes to vectors in the tangent space. Here we

performed PCA as usual.

The first three principal directions explained 85% of the

variance in the data, and they are visualized in Figure 7 via

MDS embeddings. The first direction captures variance in

the size of the apple; the second captures surface irregu-

larities and the size and shape of the leaves, and the third

captures the presence of a “bite” on the apple.

4.4. Compressing an Asymmetric SBM Network

To illustrate our constructions on asymmetric networks,

we generated a 100×100 asymmetric stochastic block model

(SBM) network Y following the model provided in [8]. Here

Y consisted of five blocks B1, . . . , B5 of 20 nodes each. For

y ∈ Bi and y′ ∈ Bj , we sampled ωY (y, y
′) ∼ N(µij , 5),

where µij ∈ {0, 25, 50, 75, 100}. Negative values were

allowed. See Figure 8 for an illustration of Y . Note that Y
is intuitively represented by a 5× 5 “ground-truth” matrix.

Figure 8. Left: 100 × 100 SBM Y with entries drawn from

N(µ, σ2), where σ2 := 5. The five colors correspond to µ =
0(blue), 25, 50, 75, 100(yellow). Middle: 5× 5 compressed av-

erage of Y and the 5× 5 all-zeros matrix X . Both µX , µY were

taken to be uniform. Colors range in {0, 12.5, 25, 37.5, 50} ± 0.1.

Right: Permuted form of middle figure.

We averaged Y with a 5× 5 all-zeros matrix X using the

network compression approach given in the supplementary

materials to see if our method would recover the ground truth

matrix. The output of our method is shown in the middle

panel of Figure 8—up to a permutation (shown in the right

panel), this accurately recovered the matrix of µij values.

5. Discussion

In this paper, we followed the seminal work of Sturm

[26] on Riemannian structures induced by GW distances

and produced a Riemannian framework for performing data

analysis on collections of arbitrary matrices. There are many

applications in data science which can be reframed using

this formalism, such as network clustering and sketching and

future work will focus on making these formulations precise.

There are several open challenges left to be explored

from both theoretical and practical perspectives. On the

theoretical side, one would like to obtain estimates on in-

jectivity radii for measure networks with special properties

(this amounts to replacing the L∞ bounds in Proposition 5

with L2 bounds). It would also be interesting to determine

conditions where the Fréchet gradient flow is guaranteed to

converge—in our applications, this either happened naturally

or was enforced by a compression step. On the practical side,

one would like to improve the scalability of our algorithms

by incorporating entropic regularization [10] and the more

sophisticated GW algorithm of [29]. Several steps in our

framework relied on the empirical observation of sparsity in

optimal couplings, so incorporating entropic regularization

will bring its own collection of theoretical challenges.
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