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Abstract

Topological data analysis (TDA) is a rising field in the

intersection of mathematics, statistics, and computer sci-

ence/data science. Persistent homology is one of the most

commonly used tools in TDA, in part because it can be eas-

ily visualized in the form of a persistence diagram. How-

ever, performing machine learning algorithms directly on

persistence diagrams is a challenging task, and so a num-

ber of summaries have been proposed which transform per-

sistence diagrams into vectors or functions. Many of these

summaries fall into the persistence curve framework devel-

oped by Chung and Lawson. We extend this framework and

introduce new class of smooth persistence curves which we

call Gaussian persistence curves. We investigate the statis-

tical properties of Gaussian persistence curves and apply

them to texture datasets: UIUCTex and KTH. Our classi-

fication results on these texture datasets perform competi-

tively with the current state-of-arts methods in TDA.

1. Introduction

Topological Data Analysis (TDA) is a field of research

lying at the intersection of mathematics, statistics, and com-

puter science that is concerned with understanding data

through its shape (see survey articles and references therein

[8; 9; 21; 42; 13]). Driven by Algebraic Topology, this

rapidly expanding subject has permeated several scientific

disciplines, such as gene expression [39], aviation [30], and

deep learning [25].

Persistent Homology, a tool in TDA, captures topolog-

ical information by tracking changes in homological fea-

tures over a filtration. It stores this information in a multi-

set called a persistence diagram. Notably, there is a natural

notion of distance called a p-Wasserstein distance between

persistence diagrams with respect to which these diagrams

are stable [17]; moreover, with the p-Wasserstein distance,

the space of persistence diagrams is a metric space [31].

On the other hand, due to the multi-set structure, persis-

tence diagrams are not easily compatible with many ma-

chine learning algorithms. Indeed, these algorithms are

built on Hilbert spaces. Recent results have shown evi-

dence that even when viewed as a metric space under the

Wasserstein distances, the space of persistence diagrams

fails to embed into a Hilbert space [7; 4]. Thus there is a

need in the community to find useful summaries of persis-

tence diagrams that are compatible with machine learning

and also retain the topological information stored within

them. The persistence landscape [6] is considered as one

of the first attempts to transform persistence diagrams into

scalar functions. Since then, there have been several other

advancements in this direction, including persistent entropy

[2; 3], persistence images [1], persistence indicator func-

tions [37], template functions on persistence diagrams [41],

persistence terrace [32], persistence B-spline grid vectors

[19], persistence path [14], persistence codebooks [43], and

several kernel based methods [35; 36; 27; 10; 29; 22]. Of

particular interest to this paper is the persistence curve (PC)

framework [16]. This is a general framework for creating

functional summaries of persistence diagrams that encap-

sulates many of the examples mentioned above. In partic-

ular, persistence landscapes appear in the PC framework.

The statistical properties of persistence landscapes are well

studied [6; 12; 11]. This leads to the natural question: what

conditions must one place on persistence curves in order to

recover summaries with these useful statistical properties?

Our main contribution in this paper is to partially an-

swer this question by proposing a new class of smooth sum-

maries of persistence diagrams generated by the PC frame-

work. The summary maps persistence diagrams to the space

of smooth, integrable, real-valued functions by replacing

points in a given diagram with Gaussian functions. This

construction is similar to the construction of persistence sur-

faces in [1]; however, while they use this surface to define

a collection of pixels that they call a persistence image, we

instead integrate the surface over the quadrant whose lower

right corner intersects the diagonal at (t, t) to produce a

summary which is a smooth function of t. We refer to the
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summaries constructed in this way as Gaussian persistence

curves. These summaries naturally live in a Hilbert space

of absolutely integrable functions and hence can be used

as inputs for a variety of machine learning techniques. To

the best of authors’ knowledge, the proposed summaries are

some of the first smooth functional summaries.

These smooth summaries have a number of both theo-

retical and practical advantages, and exploring all of these

is part of a larger work in progress. Here, we focus on sta-

tistical properties of smooth persistence curves. Our main

theoretical result is a form of the central limit theorem for

Gaussian persistence curves (Theorem 1). Similar statisti-

cal results for persistence landscapes and other functional

summaries appear in [12; 5]. We then use synthetic data

to illustrate the fact that our curves can distinguish dif-

ferent spaces using only points sampled with heavy noise

from those spaces. Finally, we test our Gaussian persistence

curves on the problem of classifying grey-scale images ac-

cording to texture. We use two popular texture databases,

UIUCTex [33] and KTH-TIPS2b [23]. We find that the

Gaussian persistence curves are competitive with the per-

sistence curves studied in [16] and outperform other TDA

methods studied on this classification problem.

We structure the paper as follows. In Section 2, we give

a light introduction to homology, persistent homology, and

persistence diagrams before ending with the Fundamental

Lemma of Persistent Homology, which serves as the inspi-

ration for the PC framework. In Section 3, we review PC

framework and introduce a slightly generalized version of

it to allow for the inclusion of smooth functions. In Section

4, our main construction, Gaussian persistence curves, will

be introduced. In Section 5, we provide stochastic conver-

gence property of those smooth PCs and demonstrate sta-

tistical convergence on synthetic datasets. In Section 6, we

apply our proposed curves to texture data sets. Summary

and conclusion can be found in Section 7.

2. Background

2.1. Persistent Homology

We will give a light introduction to homology by way

of cubical sets and persistent homology while referring the

reader to [24] and [20] for more information on these two

subjects respectively. Note that this is purely for instructive

reasons. As we will see, the PC framework is defined on the

space of persistence diagrams and makes no assumptions

about the underlying homology theory.

A cubical set is a set X that can be written as a finite

union of cubes whose vertices lie on an integer lattice. For

example, an image is a type of cubical set that can be de-

scribed entirely by its two dimensional cells. Given a ring

R (often taken to be Z2), the k-th chain space Ck(X;R)
is a free abelian group generated by the k-cubes of X with

coefficients in R. For each k there is a natural map called

a boundary map ∂k that sends elements in Ck(X;R) to

Ck−1(X;R) is such a way that ∂k−1∂k ≡ 0. This property

of the boundary map allows us to define the k-th homology

group, which is the quotientHk(X;R) = ker ∂k/ im ∂k+1.

The k-th Betti number βk(X) is defined to be the rank of the

k-th homology group. We remind the reader that cubical

homology is one of many homology theories one can use

to compute homology, and proceeding from here we only

assume that the homology of a given space is defined.

A filtration of a topological space X is a sequence of

subspaces of X , ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = X .

Applying homology to this sequence leads to a sequence

of groups Hk(Xi) with homomorphisms induce by inclu-

sion f i,i+1
k : Hk(Xi) → Hk(Xi+1). We define the map

f i,jk : Hk(Xi) → Hk(Xj) by composition of subsequent

maps when j > i. The ranks of the groups rank im f b,dk

with d ≥ b form the persistent Betti numbers βb,d
k . We

say a homology class α is born at b if α ∈ Hk(Xb) and

α /∈ im f b−1,b
k . We say alpha dies at d if α /∈ im f b,dk

and α ∈ im f b,d−1
k . we can count the multiplicity of a

birth death pair by using the inclusion-exclusion principle:

ξb,dk = βb,d−1
k − βb−1,d−1

k + βb−1,d
k − βb,d

k . We can store

this birth-death information along with multiplicities ξb,dk

in a multi-set called the k-th dimensional persistence dia-

gram in which we also include infinitely many copies of the

diagonal {(x, x) ∈ R
2}. Finally, the Fundamental Lemma

of Persistent Homology (FLPH) [20] states that for a per-

sistence diagram D arising from a filtration, the k-th Betti

number of the t-th member can be obtained by counting

the number of diagram points (birth-death pairs) that lie

within the upper left quadrant whose lower right corner lies

at (t, t), or more precisely, βk(Xt) is given by the sum

βk(Xt) =
∑

b≤t<d,(b,d)∈D

ξb,dk .

2.2. Images

Our main application to this paper is texture classifica-

tion in images. Let [n] = {0, 1, . . . , n − 1}. Formally, an

m× n binary image is a function

I : [m]× [n] → {0, 1}.

A pair (i, j) in the domain of I is called a pixel and I(i, j)
is called a pixel value. In this paper, we associate the color

white for a binary pixel value of 1 and black for a value

of 0. We can treat a binary image as a cubical set by con-

sidering the collection of its white pixels. In this way, we

can compute components (H0) by counting the number of

clusters of white pixels (using the notion of 4-connectivity

in images) and we can compute holes (H1) by counting the

clusters of black pixels that are surrounded completely by



(a) (b)

Figure 1. A binary image and its inverse

white pixels. Figure 1 displays two binary images that illus-

trate this. In (a) We can see four components (β0 = 4), and

one hole (β1 = 1). However, by visual inspection is seems

as if there may be another hole. This phenomenon is called

the boundary effect. To account for this, we also consider

the inverse of the binary image, that is the image with the

pixel values flipped, as shown in Figure 1(b). This image

has three components (including the background) and three

holes. Taking the information from an image and its inverse

gives us a clearer picture of the true homological nature of

the depicted object.

We are interested in classifying textures from grayscale

images. An m× n grayscale image is a function

I : [m]× [n] → [256]

The inverse of a grayscale image I is the image IC =
255−I . We cannot easily compute homology on a grayscale

image as this will require assigning it a cubical set. This can

be done by thresholding the image at some value t ∈ [256]
to produce the binary image It(i, j) that is 1 is I(i, j) ≤ t
and 0 otherwise. However, this requires a choice of t. In-

stead, we will assign the sequence of all possible binary

images obtained by thresholding: I0 ≤ I1 ≤ . . . ≤ I255.

This generates a filtration of the corresponding cubical sets,

which then allows us to compute persistent homology and

obtain a persistence diagram. Because images are two di-

mensional, we are only interested in 0 and 1-dimensional

persistence diagrams. We end this section with a small ex-

ample of the persistent homology process.

Example 1. Consider the following grayscale image:

I =
1 3 2

1 10 2

1 3 2

It is easy to see the threshold values of interest here are

1,2,3, and 10. We consider these threshold values in se-

quence and track the changes in homology. Recall that

thresholding creates a binary where white represents a pixel

of I with a value below the threshold and black represents

otherwise.

• t = 1: I1= =⇒ β0 = 1, β1 = 0. A β0 gen-

erator is born at 1.

• t = 2: I2 = =⇒ β0 = 2, β1 = 0. A β0 gen-

erator is born at 2.

• t = 3: I3 = =⇒
β0 = 1, β1 = 1. A β0
generator dies at 3 and a β1
generator is born at 3.

• t = 10: I10= =⇒
β0 = 1, β1 = 0. The β1
generator dies at 10 and the

β0 generator persists.

The elder rule tells us that the β0 generator that died at

t = 3 in this case is the younger one, i.e. the one born

at 2. Collecting this information, we extract the 0 and 1-

dimensional persistence diagrams, identified by the non-

diagonal points,D0 = {(1,∞), (2, 3)} andD1 = {(3, 10)}

3. The Persistence Curve Framework

The FLPH indirectly states that the Betti number of the t-
th member of the filtration is found by counting the number

of off diagonal points in a diagram with multiplicity that lie

inside the fundamental box at t, Ft = {(x, y) | x ≤ t <
y}. The persistence curve framework uses the fundamen-

tal box described in the FLPH to generate functions from

persistence diagrams. Let D be the set of all persistence di-

agrams, Ψ be the set of all functions ψ : D ×R
3 → R with

ψ(D;x, x, t) = 0 for all (x, x) ∈ R
2 and D ∈ D. Let R

represent the set of functions on R. To ease the notation, we

will often refer to ψ(D;x, y, t) as ψ(x, y, t) when D is un-

derstood. Moreover, when ψ does not depend on t, we de-

note it by ψ(x, y). Let T be a set of operators T (S, f) that

read in a multi-set S and real-valued function f and returns

a scalar. For example, T (S, f) = maxk{f(s) | s ∈ S} is

the k-max operator, i.e. the operator that returns the k-th

largest element of a set.

Definition 1. We define a map P : D×Ψ×T → R where

P (D,ψ, T )(t) := T (Ft, ψ(D;x, y, t)), t ∈ R.

The function P (D,ψ, T ) is called a persistence curve on

D with respect to ψ and T .

Definition 1 is a more general version than the one pro-

posed in [16], which, for some function Q ∈ T that maps

multi-sets to real numbers, defined T (S, f) = Q◦f(D∩S).
The definition proposed here drops the requirement to ap-

ply a function on only the diagram points lying in S thus

allowing for general integration. For example, let η be



a measure on R
2. If ψ(D;x, y, t) = ψ(D;x, y) is inte-

grable with respect to η for each diagram D. We can define

T (Ft, ψ) =
∫

Ft
ψdη. With this form, the sum statistic that

appears in [16],
∑

(ψ(D;Ft)) can be rewritten as
∫

Ft
ψd#

where # is the counting measure. We provide a couple ex-

amples below.

Example 2. Given a diagramD, The Betti curve βD is the

curve generated by FLPH. In the framework of persistence

curves it uses the sum statistic T (S, f) =
∫

S
fd# :=

∫

d#
and the function ψ(x, y) = χD(x, y) the indicator function

on the points of the diagram

βD(t) = P

(

D,χD,

∫

d#

)

.

Example 3. Given a diagram D, we can define the life

curve ℓD by taking ψ(D;x, y) = ℓ(D;x, y) := (y − x) ·
χD(x, y) We use the sum statistic T (S, f) =

∫

S
fd# :=

∫

d# and define

ℓD(t) = P

(

D, ℓ,

∫

d#

)

.

Example 4. Given a persistence diagram D, define for

(b, d) ∈ D,

l(b, d, t) =











0 if t /∈ (b, d)

t− b if t ∈ (b, b+d
2 ]

d− t if t ∈ ( b+d
2 , d)

.

If (b, d) /∈ D we define l(b, d, t) = 0. Then the k-th Persis-

tence Landscape [6] is defined by λk(t) = maxk{l(b,d)(t) |
(b, d) ∈ D}. By taking T (S, f) = maxk{f(s) | s ∈
S}, recover the k-th landscape as the persistence curve

P (D, l, T ) ≡ λk.

4. Smooth Persistence Curves

Definition 2. Fix ψ and T . If the derivative

of P (D,ψ, T )(t) exists and is continuous, i.e.

P (D,ψ, T )(t) ∈ C1(R), for every diagram D ∈ D,

then we call P (·, ψ, T ) a smooth persistence curve.

Next, we describe a general procedure for generating

smooth persistence curves by centering a Gaussian function

at every point. This will allow us to create smooth versions

of the curves found in [16].

LetD be a diagram and Σ be a symmetric, positive semi-

definite 2 × 2 matrix. For a point µ ∈ R
2, Let gµ,Σ be

the probability density function (PDF) of a bivariate normal

distribution with mean µ and covariance matrix Σ. That is,

gµ,Σ(x) =
exp

(

− 1
2 (x− µ)TΣ−1(x− µ)

)

2π|Σ|1/2 .

Finally, let m be the Lebesgue measure on R
2.

Definition 3. Let κ(D; b, d) be a real valued function with

κ(D; b, b, t) = 0. A Gaussian persistence curve is a per-

sistence curve of the form

P



D,
∑

(b,d)∈D

κ(D; b, d)g(b,d),Σ,

∫

dm



 .

As it turns out, this definition not only leads to a smooth

persistence curve, but a well-controlled summary with re-

spect to to input t ∈ R.

Proposition 1. Suppose κ(D; b, d) is a real-valued func-

tion so that κ(D; b, b) = 0. Moreover, suppose P =

P
(

D,
∑

(b,d)∈D κ(D; b, d)g(b,d),Σ,
∫

dm
)

is a Gaussian

persistence curve. Then P is k-Lipschitz with k ≤
∑

(b,d)∈D |κ(b, d)|.
Proof. Let g(x, y) be the PDF of a bivariate normal dis-

tribution. We will prove the derivative of P is uniformly

bounded. By applying Leibniz’s integral rule and Funda-

mental Theorem of Calculus, we achieve

d

dt

∫ ∞

t

∫ t

−∞

g(x, y)dxdy

=

∫ ∞

t

g(t, y)dy +

∫ t

−∞

dx
∂

∂t

∫ ∞

t

g(x, y)dy

=

∫ ∞

t

g(t, y)dy +

∫ t

−∞

dx

[

− g(x, t) +

∫ ∞

t

∂

∂t
g(x, y)dy

]

=

∫ ∞

t

g(t, y)dy −
∫ t

−∞

g(x, t)dx.

Then we see

∣

∣

∣

∣

d

dt
P (t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

d

dt

∫ ∞

t

∫ t

−∞

∑

µ∈D

κ(b, d)g(b,d),Σ(x, y)dxdy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(b,d)∈D

κ(b, d)
d

dt

∫ ∞

t

∫ t

−∞

g(b,d),Σ(x, y)dxdy

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

(b,d)∈D

κ(b, d)

(∫ ∞

t

g(t, y)dy −
∫ t

−∞

g(x, t)dx

)

∣

∣

∣

∣

∣

∣

≤
∑

(b,d)∈D

|κ(b, d)|.

We will give a few examples of Gaussian PCs below.

Example 5. Let κ(D; b, d) = 1. Let I2 be the 2×2 identity

matrix and let σ2 > 0 ∈ R. Then with Σ = σ2 · I2. The

resulting Gaussian persistence curve P (t) is given by

P (t) =

∫ ∞

t

∫ t

−∞

∑

(b,d)∈D

g(b,d),Σ(x, y)dxdy.



Because Σ is diagonal, we can split g(b,d),Σ =
gb,σ2(x)gd,σ2(y). This means we can rewrite P as

P (t) =
∑

(b,d)∈D

Gb,σ2(t)(1−Gd,σ2(t)).

Example 5 can be viewed as a smooth version of the Betti

curve. The Euler Characteristic of a complex is defined to

be the alternating sum of its Betti numbers. The Euler Char-

acteristic Curve (ECC) of a filtration is the sequence of Eu-

ler Characteristics of the complexes in the filtration. In the

PC framework, the ECC is defined as the alternating sum

of the Betti curves. Thus we may define a smooth ECC

as an alternating sum of smooth Betti curves. A smooth

Euler Characteristic Curve is defined in [18] by calculating

the mean of the original ECC, subtracting that value from

the original ECC and then integrating the resulting func-

tion with respect to time (the filtration sequence). Though

we can define the smooth ECC, it is typically better to its

summands separately. Using the ECC itself can lead to a

decrease in performance.

We can obtain smooth versions of other curves appearing

in [16].

Example 6. Let ℓ be defined as in Example 3 and let

ℓsum =
∑

(b,d)∈D ℓ(b, d). Let n be given and let Σ = σ2 ·I .

Define κ(D,x, y, t) = ℓ(b,d)
ℓsum

Then we can define a smooth

version of the life curve by P (D,ψ,
∫

dm). Because the

points in the diagram are independent of t, we can see this

function has a bounded derivative and hence is Lipschitz.

We can use the idea of Example 6 to generate simi-

lar curves for other functions such as the midlife function

( b+d
2 ), entropy function (- d−b∑

(b,d)∈D
d−b log

d−b∑
(b,d)∈D

d−b ),

and multiplicative life function (db ) among others. We also

note that we take Σ as a scalar multiple of the identity often

in practice. For applications in this paper, we will use two

curves which we call the Gaussian life curve (glσ) and the

Gaussian midlife curve (gmlσ) for σ > 0:

glσ = P



D,
∑

(b,d)∈D

ℓ(b, d)

ℓsum
g(b,d),σ2·I2 ,

∫

dm



 (1)

gmlσ = P



D,
∑

(b,d)∈D

(b+ d)

msum
g(b,d),σ2·I2 ,

∫

dm



 (2)

where msum =
∑

(b,d)∈D(b+ d).

5. Stochastic convergence of persistence curves

While persistence curves can defined on the space D of

all possible persistence diagrams, in this section we need

to restrict to the space DN of persistence diagrams D with

at most N points and with the property that |x| ≤ N and

|y| ≤ N for all (x, y) ∈ D. We consider ψ and T to be

fixed and the corresponding persistence curve P to be a map

from DN to R. We will assume that ψ and T are such that

sup
D∈DN ,t∈I

(P (D,ψ, T )(t)) <∞

where I = [−N,N ]. For all of the ψ and T we consider

this condition will be satisfied.

Let P be a probability distribution on DN . The expecta-

tion µ of the random variable P with respect to P is called

the average persistence curve. Now let D1, ..., Dn be a

sample with respect to the distribution P. define Pi =
P (Di, ψ, T ). The empirical average persistence curve is

Pn(t) :=
1

n

n
∑

i=1

Pi(t).

For a fixed t ∈ I, it follows from the law of large num-

bers that Pn(t) converges to µ(t) almost surely and from

the central limit theorem that
√
n(Pn(t)− µ(t)) converges

in distribution to a mean zero normal random variable with

the same variance as Pn. We will show that this conver-

gence is in fact uniform with respect to the variable t.
Let ft : DN → R be defined by ft(D) = P (D,ψ, T )(t),

and let F = {ft | t ∈ I}. We will show that
√
n(Pn(t) −

µ(t)) converges weakly to a Gaussian process on F . Here

a Gaussian process is a stochastic process indexed by t ∈ I
such that for any finite set of indices t1, ..., tn, (ft1 , ..., ftn)
is a multivariate Gaussian random variable on DN . Xn con-

verges weakly to X means that for every bounded continu-

ous f , E∗(f(Xn)) → E(f(X)), where E∗ denotes outer

expectation, which is similar to expectation but allows for

the possibility that f(Xn) may not be measurable.

F is called a envelope for F if |ft(D)| ≤ F (D) for all

ft ∈ F and all D ∈ DN . If Q is a probability measure

on DN , then N(ε,F , Lr(Q)) is the minimum number of ε-
balls needed to cover F with respect to the norm ||f ||Q,r :=
(∫

frdQ

)
1
r

. Define

J(δ,F , Lr) :=

∫ δ

0

√

log sup
Q
N(ε||F ||Q,r,F , Lr(Q))dε,

where the supremum is taken over all finitely discrete prob-

ability measures Q on DN and F is an envelope for F .

Our proof of convergence is similar to the proof for per-

sistence landscapes which appears in [12]. In particular, the

proof is based on [26, Theorem 2.5]. A similar result also

appears in a more general context in [5].

Theorem 1. Let ψ and T be fixed, and suppose that there

exists k such that P (D,ψ, T ) is k-Lipschitz for all D ∈
DN . Then √

n(Pn(t)− µ(t))



Figure 2. Examples of points sampled with noise from (left to

right) a circle, figure 8 space, and Swiss Roll.

weakly converges to a mean zero Gaussian process on F
with covariance

∫

fgdP−
∫

fdP
∫

gdP.

Proof. Define F (D) = supt∈I ft(D), which is an enve-

lope for F . By assumption supD∈DN
F (D) < ∞, and

hence
∫

F 2dP < ∞. In order to apply [26, Theorem 2.5],

it only remains to show that J(1,F , L2) <∞.

Fix 0 < ε < 1 and a finitely discrete probability

measure Q on DN . Choose −N = t0 < t1 < ... <
tm < tm+1 = N such that |ti − ti−1| ≤ ε

k ||F ||Q,2 for

all 1 ≤ i ≤ m + 1 and m = 2kN
ε||F ||Q,2

. We claim that the

set of ε||F ||Q,2-balls centered at ft1 , ft2 , ..., ftm covers

F . Let ft ∈ F , and suppose ti−1 ≤ t ≤ ti. Since each

persistence curve P is k-Lipschitz, ||fti−1
− ft||Q,2 ≤

k|ti−1 − t| ≤ ε||F ||Q,2 and similarly for ||fti − ft||Q,2.

It follows that supQN(ε||F ||Q,2,F , L2(Q)) ≤
2kN

ε||F ||Q,2
, and hence J(1,F , L2) =

∫ 1

0

√

log supQN(ε||F ||Q,2,F , L2(Q))dε ≤
∫ 1

0

√

log( 2kN
ε||F ||Q,2

)dε < ∞. The theorem now follows

from [26, Theorem 2.5].

To conclude this section, we explored the convergence

properties of the Gaussian life curve defined in Example 6

via synthetic data. We also examined its capability to distin-

guish spaces with both synthetic and real data. With regards

to synthetic data we consider the three spaces shown in Fig-

ure 2. We used scikit-tda’s TaDAsets [38] pack-

age to draw the synthetic samples presented here. Each

sample of a circle contains 50 points drawn from a unit

circle with Uniform[-0.15,0.15] noise. Similarly, the fig-

ure 8 space is sampled with the same noise. Finally, the

Swiss Roll space is sampled with 0.8 noise and then co-

ordinates are divided by 10 to match the scale of the cir-

cle and figure 8 spaces. Figure 3 demonstrates the conver-

gence of the Gaussian life persistence curve with covari-

ance matrix I2. Each plot shows twenty averages taken

on n samples where n ∈ {10, 50, 100, 200}. The sam-

ples were drawn via TaDAsets’s dsphere function and di-

agrams calculated with Ripser [40]. The curves were cal-

culated on the 1-dimensional diagram for each sample via

the PersistenceCurves [28] package. Figure 4 shows

Figure 3. The Gaussian life curve computed on a noisy unit circle.

Each plot shows 20 different averages of n curves.

Figure 4. The differences of average Gaussian life curves with

Σ = 0.1 · I2 for the unit circle, figure 8 space, and Swiss Roll

space.

a plot of the average of Gaussian life persistence curves 20

each for the unit circle space, figure 8 space, and Swiss Roll

space. For each space, we used a covariance of 0.1 · I2.

6. Application to Texture Classification

We tested the performance of Gaussian persistence

curves on two popular texture databases, UIUCTex [33],

which contains 1000 480 by 640 grayscale images in 25

different classes, and KTH Textures under varying Illumi-

nation, Pose and Scale (KTH-TIPS2b) containing 810 200

by 200 grayscale images in 10 different classes [23]. For

each of the databases we mimicked the score calculation

found in [35] which produced a 100 random 80/20 strat-

ified train-test splits and averaged the classification accu-

racies. Our models consisted of the concatenation of four

vectors generated by Gaussian life persistence curve (gl1)

computed on the 0 and 1-dimensional diagrams of an im-

age and its inverse over the values t ∈ {0, 1, . . . 255}. This

results in four 256-dimensional vectors, and the concatena-



UIUCTex KTH-TIPS2b

gl+RF 93.2± 1.8% 92.5± 2.0%
gl+PS+RF 94.1± 1.6% 94.7± 1.9%
gml+RF 91.7± 1.8% 91.4± 2.3%
gml+PS+RF 92.8± 1.8% 94.1± 1.7%
gl+gml+RF 93.1± 1.7% 92.3± 2.1%
gl+gml+PS+RF 93.8± 1.6% 94.2± 1.8%
gECC + RF 82.0± 2.2% 90.3± 2.2%
gECC + PS + RF 90.3± 2.0% 95.7± 1.6%

sl + RF [16] 93.1± 1.8% 94.2± 1.7%
sl + PS + RF [16] 94.1± 1.6% 96.1± 1.8%
sml + RF [16] 91.2± 1.8% 91.3± 2.4%
sml + PS + RF [16] 92.4± 2.0% 94.4± 1.9%
ECC + RF [16] 81.4± 2.3% 89.4± 2.7%
ECC + PS + RF [16] 91.0± 1.9% 90.1± 2.7%
EKFC-LMNN [35] 91.23± 1.1% 94.77± 1.3%
PI[1] + RF 91.5± 2.0% 86.3± 2.5%

Table 1. Performances of various Gaussian persistence curves.

tion results in a 1024-dimensional vector. This appears in

the models as gl. Analogously, gml corresponds to the con-

catenation of curves based on the midlife function (gml1)

computed similarly. In addition, we also considered per-

sistence statistics (PS) [15] on these four diagrams arising

from a single image. PS is a set of statistical measurements

of a given diagramD. LetMm(D) := { b+d
2 |(b, d) ∈ D} be

the multi-set of midlifes of the off-diagonal points of D and

let Ml(D) := {d − b|(b, d) ∈ D} be the multi-set of lifes-

pans. The set of statistics is mean, standard deviation, co-

efficient of variation, skewness, kurtosis, 25-th, 50-th, 75-th

percentiles, interquartile range of Mm and Ml. Moreover,

we also consider the entropy of Ml, which is known as per-

sistent entropy [2].

Finally, we fed each of the models to scikit-learn’s

[34] random forest (RF) algorithm for training and classifi-

cation. Table 1 displays the results of these tests along with

the results of the EKFC+LMNN a klein bottle-based model

that utilized large margin nearest neighbors [35]. We also

calculated the scores of the normalized life (sl) and normal-

ized midlife (sml) curves that appear in [16]. For the per-

sistence image (PI) calculations, the PIs were calculated on

the same four diagrams previously mentioned. The result-

ing PIs were flattened into vectors, concatenated, then fed

into the random forest algorithm. In this table, we see com-

petitive scores among the curves, particularly between the

gl+PS+RF, sl+PS+RF, and EKFC+LMNN models.

7. Conclusion

This paper proposed a new class of summary functions

for persistence diagrams by utilizing the persistence curve

framework. In essence, this class replaces the points of a di-

agram with weighted Gaussian functions centered at them.

For any input t, we integrate these Gaussians over the fun-

damental box at t. This process maps persistence diagrams

to smooth, absolutely integrable, Lipschitz functions. We

proved that the sample mean distribution of Lipschitz con-

tinuous persistence curves (hence the Gaussian PCs) weakly

converges to a Gaussian process. These curves proved suc-

cessful and competitive with other TDA methods in the task

of texture classification. The Gaussian PCs are one example

of many summaries one can derive from the PC framework.

The richness of PCs opens a door to several future directions

of expansion for the theory around the framework such as

bootstrapping, hypothesis testing, and stability analysis.
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