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Abstract

Topological data analysis (TDA) is a rising field in the
intersection of mathematics, statistics, and computer sci-
ence/data science. Persistent homology is one of the most
commonly used tools in TDA, in part because it can be eas-
ily visualized in the form of a persistence diagram. How-
ever, performing machine learning algorithms directly on
persistence diagrams is a challenging task, and so a num-
ber of summaries have been proposed which transform per-
sistence diagrams into vectors or functions. Many of these
summaries fall into the persistence curve framework devel-
oped by Chung and Lawson. We extend this framework and
introduce new class of smooth persistence curves which we
call Gaussian persistence curves. We investigate the statis-
tical properties of Gaussian persistence curves and apply
them to texture datasets: UIUCTex and KTH. Our classi-
fication results on these texture datasets perform competi-
tively with the current state-of-arts methods in TDA.

1. Introduction

Topological Data Analysis (TDA) is a field of research
lying at the intersection of mathematics, statistics, and com-
puter science that is concerned with understanding data
through its shape (see survey articles and references therein
[8; 9; 21; 42; 13]). Driven by Algebraic Topology, this
rapidly expanding subject has permeated several scientific
disciplines, such as gene expression [39], aviation [30], and
deep learning [25].

Persistent Homology, a tool in TDA, captures topolog-
ical information by tracking changes in homological fea-
tures over a filtration. It stores this information in a multi-
set called a persistence diagram. Notably, there is a natural
notion of distance called a p-Wasserstein distance between
persistence diagrams with respect to which these diagrams
are stable [17]; moreover, with the p-Wasserstein distance,
the space of persistence diagrams is a metric space [31].

On the other hand, due to the multi-set structure, persis-
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tence diagrams are not easily compatible with many ma-
chine learning algorithms. Indeed, these algorithms are
built on Hilbert spaces. Recent results have shown evi-
dence that even when viewed as a metric space under the
Wasserstein distances, the space of persistence diagrams
fails to embed into a Hilbert space [7; 4]. Thus there is a
need in the community to find useful summaries of persis-
tence diagrams that are compatible with machine learning
and also retain the topological information stored within
them. The persistence landscape [6] is considered as one
of the first attempts to transform persistence diagrams into
scalar functions. Since then, there have been several other
advancements in this direction, including persistent entropy
[2; 3], persistence images [1], persistence indicator func-
tions [37], template functions on persistence diagrams [4 1],
persistence terrace [32], persistence B-spline grid vectors
[19], persistence path [14], persistence codebooks [43], and
several kernel based methods [35; 36; 27; 10; 29; 22]. Of
particular interest to this paper is the persistence curve (PC)
framework [16]. This is a general framework for creating
functional summaries of persistence diagrams that encap-
sulates many of the examples mentioned above. In partic-
ular, persistence landscapes appear in the PC framework.
The statistical properties of persistence landscapes are well
studied [6; 12; 11]. This leads to the natural question: what
conditions must one place on persistence curves in order to
recover summaries with these useful statistical properties?

Our main contribution in this paper is to partially an-
swer this question by proposing a new class of smooth sum-
maries of persistence diagrams generated by the PC frame-
work. The summary maps persistence diagrams to the space
of smooth, integrable, real-valued functions by replacing
points in a given diagram with Gaussian functions. This
construction is similar to the construction of persistence sur-
faces in [1]; however, while they use this surface to define
a collection of pixels that they call a persistence image, we
instead integrate the surface over the quadrant whose lower
right corner intersects the diagonal at (¢,¢) to produce a
summary which is a smooth function of t. We refer to the



summaries constructed in this way as Gaussian persistence
curves. These summaries naturally live in a Hilbert space
of absolutely integrable functions and hence can be used
as inputs for a variety of machine learning techniques. To
the best of authors’ knowledge, the proposed summaries are
some of the first smooth functional summaries.

These smooth summaries have a number of both theo-
retical and practical advantages, and exploring all of these
is part of a larger work in progress. Here, we focus on sta-
tistical properties of smooth persistence curves. Our main
theoretical result is a form of the central limit theorem for
Gaussian persistence curves (Theorem 1). Similar statisti-
cal results for persistence landscapes and other functional
summaries appear in [12; 5]. We then use synthetic data
to illustrate the fact that our curves can distinguish dif-
ferent spaces using only points sampled with heavy noise
from those spaces. Finally, we test our Gaussian persistence
curves on the problem of classifying grey-scale images ac-
cording to texture. We use two popular texture databases,
UIUCTex [33] and KTH-TIPS2b [23]. We find that the
Gaussian persistence curves are competitive with the per-
sistence curves studied in [16] and outperform other TDA
methods studied on this classification problem.

We structure the paper as follows. In Section 2, we give
a light introduction to homology, persistent homology, and
persistence diagrams before ending with the Fundamental
Lemma of Persistent Homology, which serves as the inspi-
ration for the PC framework. In Section 3, we review PC
framework and introduce a slightly generalized version of
it to allow for the inclusion of smooth functions. In Section
4, our main construction, Gaussian persistence curves, will
be introduced. In Section 5, we provide stochastic conver-
gence property of those smooth PCs and demonstrate sta-
tistical convergence on synthetic datasets. In Section 6, we
apply our proposed curves to texture data sets. Summary
and conclusion can be found in Section 7.

2. Background
2.1. Persistent Homology

We will give a light introduction to homology by way
of cubical sets and persistent homology while referring the
reader to [24] and [20] for more information on these two
subjects respectively. Note that this is purely for instructive
reasons. As we will see, the PC framework is defined on the
space of persistence diagrams and makes no assumptions
about the underlying homology theory.

A cubical set is a set X that can be written as a finite
union of cubes whose vertices lie on an integer lattice. For
example, an image is a type of cubical set that can be de-
scribed entirely by its two dimensional cells. Given a ring
R (often taken to be Zs), the k-th chain space Cy(X; R)
is a free abelian group generated by the k-cubes of X with

coefficients in R. For each k there is a natural map called
a boundary map 0y, that sends elements in Cy(X; R) to
Ci—1(X; R) is such a way that 9x_1 9, = 0. This property
of the boundary map allows us to define the k-th homology
group, which is the quotient Hy (X; R) = ker 0/ im O 41.
The k-th Betti number S (X ) is defined to be the rank of the
k-th homology group. We remind the reader that cubical
homology is one of many homology theories one can use
to compute homology, and proceeding from here we only
assume that the homology of a given space is defined.

A filtration of a topological space X is a sequence of
subspaces of X, ) = Xg € X; C --- C X, = X.
Applying homology to this sequence leads to a sequence
of groups Hy(X;) with homomorphisms induce by inclu-
sion ”H : Hy(X;) — Hp(X;11). We define the map
f;j : Hk (Xi) = Hp(X;) by composition of subsequent
maps when 7 > 7. The ranks of the groups rank im f,g’d
with d > b form the persistent Betti numbers Bz’d. We
say a homology class « is born at b if « € Hy(X}) and
a ¢ im f,l;*l ® We say alpha dies at d if & ¢ im f,i”d
and @ € im fb =1 we can count the multiplicity of a
birth death pair by us1 C% the inclusion-exclusion principle:
fgd = ,zd ! —&—62 1d—ﬁ,’;’d. We can store
this birth-death 1nf0rmat10n along with multiplicities §Z’d
in a multi-set called the k-th dimensional persistence dia-
gram in which we also include infinitely many copies of the
diagonal {(z,z) € R?}. Finally, the Fundamental Lemma
of Persistent Homology (FLPH) [20] states that for a per-
sistence diagram D arising from a filtration, the k-th Betti
number of the ¢-th member can be obtained by counting
the number of diagram points (birth-death pairs) that lie
within the upper left quadrant whose lower right corner lies
at (¢, t), or more precisely, 85 (X:) is given by the sum

BuXy= Y g

b<t<d,(b,d)eD

2.2. Images

Our main application to this paper is texture classifica-
tion in images. Let [n] = {0,1,...,n — 1}. Formally, an
m X n binary image is a function

[n] — {0,1}.

A pair (4, 7) in the domain of I is called a pixel and I(3, j)
is called a pixel value. In this paper, we associate the color
white for a binary pixel value of 1 and black for a value
of 0. We can treat a binary image as a cubical set by con-
sidering the collection of its white pixels. In this way, we
can compute components () by counting the number of
clusters of white pixels (using the notion of 4-connectivity
in images) and we can compute holes (H1) by counting the
clusters of black pixels that are surrounded completely by

I:[m]x
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Figure 1. A binary image and its inverse
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white pixels. Figure | displays two binary images that illus-
trate this. In (a) We can see four components (5y = 4), and
one hole (81 = 1). However, by visual inspection is seems
as if there may be another hole. This phenomenon is called
the boundary effect. To account for this, we also consider
the inverse of the binary image, that is the image with the
pixel values flipped, as shown in Figure 1(b). This image
has three components (including the background) and three
holes. Taking the information from an image and its inverse
gives us a clearer picture of the true homological nature of
the depicted object.

We are interested in classifying textures from grayscale
images. An m x n grayscale image is a function

I:[m] x [n] — [256]

The inverse of a grayscale image I is the image I =
255—1. We cannot easily compute homology on a grayscale
image as this will require assigning it a cubical set. This can
be done by thresholding the image at some value ¢ € [256]
to produce the binary image (¢, j) thatis 1is I(¢,j) < ¢
and 0 otherwise. However, this requires a choice of . In-
stead, we will assign the sequence of all possible binary
images obtained by thresholding: Iy < I} < ... < Ioss.
This generates a filtration of the corresponding cubical sets,
which then allows us to compute persistent homology and
obtain a persistence diagram. Because images are two di-
mensional, we are only interested in 0 and 1-dimensional
persistence diagrams. We end this section with a small ex-
ample of the persistent homology process.

Example 1. Consider the following grayscale image:

1] 312
I=/1|10]2
1] 312

It is easy to see the threshold values of interest here are
1,2,3, and 10. We consider these threshold values in se-
quence and track the changes in homology. Recall that
thresholding creates a binary where white represents a pixel
of I with a value below the threshold and black represents
otherwise.

_, Bo=1,51=0.Afo gen-
erator is born at 1.

tzl:h:g
o t=2:1,= I
Bo = 1,60 = 1. A B

e t=3:I3= H — generator dies at 3 and a 3

generator is born at 3.

Bo =2,81 = 0. A S gen-
erator is born at 2.

Bo = 1,41 = 0. The 3,
= generator dies at 10 and the
Bo generator persists.

o ¢t =10: 1102

The elder rule tells us that the Sy generator that died at
t = 3 in this case is the younger one, i.e. the one born
at 2. Collecting this information, we extract the 0 and 1-
dimensional persistence diagrams, identified by the non-
diagonal points, Dy = {(1, 00), (2,3)} and D; = {(3,10)}

3. The Persistence Curve Framework

The FLPH indirectly states that the Betti number of the ¢-
th member of the filtration is found by counting the number
of off diagonal points in a diagram with multiplicity that lie
inside the fundamental box at ¢, F; = {(x,y) | © <t <
y}. The persistence curve framework uses the fundamen-
tal box described in the FLPH to generate functions from
persistence diagrams. Let D be the set of all persistence di-
agrams, ¥ be the set of all functions ¢ : D x R3 — R with
Y(D;x,x,t) = 0 for all (z,x) € R®?and D € D. Let R
represent the set of functions on R. To ease the notation, we
will often refer to ¢(D; x,y,t) as ¢(z,y,t) when D is un-
derstood. Moreover, when 1) does not depend on ¢, we de-
note it by ¢(z,y). Let 7 be a set of operators T'(.S, f) that
read in a multi-set S and real-valued function f and returns
a scalar. For example, T'(S, f) = maxi{f(s) | s € S} is
the k-max operator, i.e. the operator that returns the k-th
largest element of a set.

Definition 1. We defineamap P : D x ¥ x T — R where
P(D,,T)(t) == T(Fy, ¥(D;2,y,1), t €R.

The function P(D,),T) is called a persistence curve on
D with respect to ) and T'.

Definition 1 is a more general version than the one pro-
posed in [16], which, for some function Q € T that maps
multi-sets to real numbers, defined 7'(S, f) = Qo f(DNS).
The definition proposed here drops the requirement to ap-
ply a function on only the diagram points lying in .S thus
allowing for general integration. For example, let n be



a measure on R2, If (D;z,y,t) = (D;x,y) is inte-
grable with respect to n for each diagram D). We can define
T(F,v) = [ F, 1dn. With this form, the sum statistic that
appears in [16], > (¥(D; Fy)) can be rewritten as th Yd#
where # is the counting measure. We provide a couple ex-
amples below.

Example 2. Given a diagram D, The Betti curve 3, is the
curve generated by FLPH. In the framework of persistence
curves it uses the sum statistic T'(S, f) = [ fd# = [ d#
and the function ¢¥(x,y) = xp (a: y) the indicator function
on the points of the diagram

Bp(t) =P (D,xD, /d#) .

Example 3. Given a diagram D, we can define the life

curve £p by taking ¢¥(D;z,y) = ¢(D;z,y) = (y — x) -
xp(x,y) We use the sum statistic (S, f) = [ fd# =
J d# and define

en(t) =P <D,€,/d#) .

Example 4. Given a persistence diagram D, define for
(b,d) € D,

0 if t ¢ (b,d)
I(b,d,t)y =t —b ifte (b 9] .
d—t 1ft€(i d)

If (b,d) ¢ D we define I(b,d,t) = 0. Then the k-th Persis-
tence Landscape [0] is defined by Ax(t) = maxy{l,q)(t) |
(b,d) € D}. By taking T(S, f) = maxp{f(s) | s €
S}, recover the k-th landscape as the persistence curve
P(D,1,T) = Ag.

4. Smooth Persistence Curves

Definition 2. Fix ¢ and T. If the derivative
of P(D,¢,T)(t) exists and is continuous, i.e.
P(D,y,T)(t) € CYR), for every diagram D € D,
then we call P(-,v,T) a smooth persistence curve.

Next, we describe a general procedure for generating
smooth persistence curves by centering a Gaussian function
at every point. This will allow us to create smooth versions
of the curves found in [16].

Let D be a diagram and 3 be a symmetric, positive semi-
definite 2 x 2 matrix. For a point . € R?, Let Ju,= be
the probability density function (PDF) of a bivariate normal
distribution with mean g and covariance matrix 3. That is,

exp (~3(x — )5 (x — )
2| |1/

Ju,s(X) =

Finally, let m be the Lebesgue measure on R2.

Definition 3. Let x(D;b, d) be a real valued function with
k(D;b,b,t) = 0. A Gaussian persistence curve is a per-
sistence curve of the form

D, > Dbdg(bd)g,/dm

(b,d)eD

As it turns out, this definition not only leads to a smooth
persistence curve, but a well-controlled summary with re-
spect to to input ¢ € R.

Proposition 1. Suppose k(D;b,d) is a real-valued func-
tion so that k(D;b,b) = 0. Moreover, suppose P =
P (DvZ(b,d)eD k(D; b, d)g(hd),z,fd’ﬂl) is a Gaussian
persistence curve. Then P is k-Lipschitz with k <

Z(b,d)eD |K(b, d)|-

Proof. Let g(x,y) be the PDF of a bivariate normal dis-
tribution. We will prove the derivative of P is uniformly
bounded. By applying Leibniz’s integral rule and Funda-
mental Theorem of Calculus, we achieve

jt/too /_;g(x,y)dxdy

:/toog(t,y)dw/t ar /Oog(:v,y)dy
:/toog(t,y)dy—i—/_; dx[—g(m,t)—k/too gtg(:my)dy}
- /too olt, y)dy — /_; o(z, t)da.

Then we see
dP(t) d/oo/t > k(b d) (z,y)dzd
— = | — K X X
dt dt ] e y @)9(b,d), s\, Y Y
nebD
- bddt/ / 90,1y 2, y)dady
(bd)eD
[e'e] t
= D b </ g(t,y)dy—/ g(fmt)dx)
(b,d)eD t —oo
< Y k().
(b,d)eD

We will give a few examples of Gaussian PCs below.

Example 5. Let k(D; b, d) = 1. Let I, be the 2 x 2 identity
matrix and let 02 > 0 € R. Then with ¥ = o2 - I5. The
resulting Gaussian persistence curve P(t) is given by

/ / Z 9(v,0),=(z, y)dzdy.

 (p,d)eD



Because X is diagonal, we can split Jd),s =
9b,02(%)ga,02(y). This means we can rewrite P as

= > Gt

(b,d)eD

l_Gda())

Example 5 can be viewed as a smooth version of the Betti
curve. The Euler Characteristic of a complex is defined to
be the alternating sum of its Betti numbers. The Euler Char-
acteristic Curve (ECC) of a filtration is the sequence of Eu-
ler Characteristics of the complexes in the filtration. In the
PC framework, the ECC is defined as the alternating sum
of the Betti curves. Thus we may define a smooth ECC
as an alternating sum of smooth Betti curves. A smooth
Euler Characteristic Curve is defined in [18] by calculating
the mean of the original ECC, subtracting that value from
the original ECC and then integrating the resulting func-
tion with respect to time (the filtration sequence). Though
we can define the smooth ECC, it is typically better to its
summands separately. Using the ECC itself can lead to a
decrease in performance.

We can obtain smooth versions of other curves appearing

in [16].

Example 6. Let ¢ be defined as in Example 3 and let
Csum = 2 4.ayep LD, d). Letnbe givenand let = = o°- 1.

Define x(D, z,y,t) = /(b ) Then we can define a smooth
version of the life curve by P(D,, f dm). Because the
points in the diagram are 1ndependent of ¢, we can see this
function has a bounded derivative and hence is Lipschitz.

We can use the idea of Example 6 to generate simi-
lar curves for other functions such as the midlife function
(b%4), entropy function (_Z<b,i:; — log Z<b o L),
and multiplicative life function (%) among others. We also
note that we take X as a scalar multiple of the identity often
in practice. For applications in this paper, we will use two
curves which we call the Gaussian life curve (gl,) and the
Gaussian midlife curve (gml,) for o > 0:

d
go=P (D, S LDy, [am] @
(b,d)ep U™ -
(b+ d)
gmi, =P (D, Y LD, / dm | @)
(b,d)eD Msum
where Mum = 32, ayep (b + d).-

5. Stochastic convergence of persistence curves

While persistence curves can defined on the space D of
all possible persistence diagrams, in this section we need
to restrict to the space Dy of persistence diagrams D with

at most N points and with the property that || < N and
ly| < N for all (z,y) € D. We consider ¢ and T to be
fixed and the corresponding persistence curve P to be a map
from Dy to R. We will assume that ¢ and 7" are such that

sup  (P(D,,T)(t)) < oo
DeDn el
where Z = [—N, N]. For all of the ¢ and T we consider
this condition will be satisfied.

Let IP be a probability distribution on Dy . The expecta-
tion y of the random variable P with respect to P is called
the average persistence curve. Now let Dq,...,D, be a
sample with respect to the distribution PP. define P; =

( i, 0, ) The empirical average persistence curve is

Z P(t

For a ﬁxed t € Z, it follows from the law of large num-
bers that P,,(t) converges to y(t) almost surely and from
the central limit theorem that /n(P,, (t) — u(t)) converges
in distribution to a mean zero normal random variable with
the same variance as P,. We will show that this conver-
gence is in fact uniform with respect to the variable t.

Let f;: Dy — Rbedefined by fi(D) = P(D,,T)(t),
and let F = {f; | t € Z}. We will show that \/n(P,,(t) —
u(t)) converges weakly to a Gaussian process on F. Here
a Gaussian process is a stochastic process indexed by t € 7
such that for any finite set of indices t1, ..., tn, (ft;, -, f2,)
is a multivariate Gaussian random variable on Dy . X, con-
verges weakly to X means that for every bounded continu-
ous f, E*(f(X,)) — E(f(X)), where E* denotes outer
expectation, which is similar to expectation but allows for
the possibility that f(X,,) may not be measurable.

F is called a envelope for F if | f;(D)| < F(D) for all
ft € Fandall D € Dy. If @ is a probability measure
on Dy, then N (e, F, L,(Q)) is the minimum number of e-

balls needed to cover F with respect to the norm || f||g, :=
1

(/ f’“dQ) ;. Define

)
J(6,F,Ly) == / \/log sup N(e||Fl|g.r, F, L (Q))de,
0 Q

where the supremum is taken over all finitely discrete prob-
ability measures () on Dy and F' is an envelope for F.

Our proof of convergence is similar to the proof for per-
sistence landscapes which appears in [12]. In particular, the
proof is based on [26, Theorem 2.5]. A similar result also
appears in a more general context in [5].

Theorem 1. Let i) and T be fixed, and suppose that there
exists k such that P(D,y,T) is k-Lipschitz for all D €

Dn. Then o
Vn(Pn(t) — p(t))



Circle Figure 8 Space Swiss Roll
.

Figure 2. Examples of points sampled with noise from (left to
right) a circle, figure 8 space, and Swiss Roll.

weakly converges to a mean zero Gaussian process on F
with covariance [ fgdP — [ fdP [ gdP.

Proof. Define F(D) = sup,c7 f¢(D), which is an enve-
lope for . By assumption suppcp, F(D) < oo, and
hence | F 2dP < oc. In order to apply [26, Theorem 2.5],
it only remains to show that J(1, F, La) < oco.

Fix 0 < ¢ < 1 and a finitely discrete probability
measure (Q on Dy. Choose —N = t5 < t; < ... <
tm < tmy1 = N such that |ti — ti,1| < %HFHQQ for

all <i<m+1landm = %. We claim that the

set of ¢||F||g,2-balls centered at f,, fi,,..., fi,, covers
F. Let fy € F, and suppose t,_1 < t < t;. Since each
persistence curve P is k-Lipschitz, ||fi, , — fillg2 <
Elti—1 — t| < €||F||g,2 and similarly for ||f;, — fillg,2-
It follows that supg N(c||F]|q,2,F,L2(Q)) <

%, and hence J(1,F, L)

1
Jy /logsupg N (el Fllq., F, La(Q))de
fol log(alﬁfﬁ)ds < o0. The theorem now follows
from [26, Theorem 2.5].

IN

O

To conclude this section, we explored the convergence
properties of the Gaussian life curve defined in Example 6
via synthetic data. We also examined its capability to distin-
guish spaces with both synthetic and real data. With regards
to synthetic data we consider the three spaces shown in Fig-
ure 2. We used scikit-tda’s TaDAsets [38] pack-
age to draw the synthetic samples presented here. Each
sample of a circle contains 50 points drawn from a unit
circle with Uniform[-0.15,0.15] noise. Similarly, the fig-
ure 8 space is sampled with the same noise. Finally, the
Swiss Roll space is sampled with 0.8 noise and then co-
ordinates are divided by 10 to match the scale of the cir-
cle and figure 8 spaces. Figure 3 demonstrates the conver-
gence of the Gaussian life persistence curve with covari-
ance matrix I,. Each plot shows twenty averages taken
on n samples where n € {10,50,100,200}. The sam-
ples were drawn via TaDAset s’s dsphere function and di-
agrams calculated with Ripser [40]. The curves were cal-
culated on the 1-dimensional diagram for each sample via
the PersistenceCurves [28] package. Figure 4 shows

20 Averages with n = 10 20 Averages with n = 50

15

12

08

05

20 Averages with n = 100 20 Averages with n = 200

10

08

Figure 3. The Gaussian life curve computed on a noisy unit circle.
Each plot shows 20 different averages of n curves.

20 averages with n=200 for different spaces

25

20

Figure 4. The differences of average Gaussian life curves with
3 = 0.1 - I, for the unit circle, figure 8 space, and Swiss Roll
space.

a plot of the average of Gaussian life persistence curves 20
each for the unit circle space, figure 8 space, and Swiss Roll
space. For each space, we used a covariance of 0.1 - 5.

6. Application to Texture Classification

We tested the performance of Gaussian persistence
curves on two popular texture databases, UIUCTex [33],
which contains 1000 480 by 640 grayscale images in 25
different classes, and KTH Textures under varying Illumi-
nation, Pose and Scale (KTH-TIPS2b) containing 8§10 200
by 200 grayscale images in 10 different classes [23]. For
each of the databases we mimicked the score calculation
found in [35] which produced a 100 random 80/20 strat-
ified train-test splits and averaged the classification accu-
racies. Our models consisted of the concatenation of four
vectors generated by Gaussian life persistence curve (gly)
computed on the 0 and 1-dimensional diagrams of an im-
age and its inverse over the values t € {0,1,...255}. This
results in four 256-dimensional vectors, and the concatena-



UIUCTex KTH-TIPS2b
gl+RF 93.2+1.8% | 92.5+2.0%
gl+PS+RF 94.1+1.6% | 94.7+1.9%
gml+RF 91.7+1.8% | 91.4+2.3%
gml+PS+RF 928+1.8% | 94.1+1.7%
gl+gml+RF 931+ 1.7% | 92.3+2.1%
gl+gml+PS+RF 93.8+1.6% | 94.2+1.8%
gECC + RF 82.0+2.2% | 90.3+2.2%
gECC +PS + RF 90.3+2.0% | 95.7+1.6%
sl+RF [16] 93.1+1.8% | 94.2+1.7%
sl+PS +RF[10] 94.1+1.6% | 96.1+1.8%
sml + RF [106] 91.2+1.8% | 91.3+2.4%
sml+PS+RF[16] | 924+2.0% | 94.4+1.9%
ECC + RF [16] 81.4+23% | 89.4+2.7%
ECC+PS+RF[16] | 91.0£1.9% | 90.1 £2.7%
EKFC-LMNN [35] | 91.23 £1.1% | 94.77 £ 1.3%
PI[1]+RF 91.5+2.0% | 86.3+2.5%

Table 1. Performances of various Gaussian persistence curves.

tion results in a 1024-dimensional vector. This appears in
the models as gl. Analogously, gml corresponds to the con-
catenation of curves based on the midlife function (gml;)
computed similarly. In addition, we also considered per-
sistence statistics (PS) [15] on these four diagrams arising
from a single image. PS is a set of statistical measurements
of a given diagram D. Let M,,,(D) := {¥£4|(b,d) € D} be
the multi-set of midlifes of the off-diagonal points of D and
let M;(D) := {d — b|(b,d) € D} be the multi-set of lifes-
pans. The set of statistics is mean, standard deviation, co-
efficient of variation, skewness, kurtosis, 25-th, 50-th, 75-th
percentiles, interquartile range of M,,, and M;. Moreover,
we also consider the entropy of M;, which is known as per-
sistent entropy [2].

Finally, we fed each of the modelsto scikit—-learn’s
[34] random forest (RF) algorithm for training and classifi-
cation. Table 1 displays the results of these tests along with
the results of the EKFC+LMNN a klein bottle-based model
that utilized large margin nearest neighbors [35]. We also
calculated the scores of the normalized life (sl) and normal-
ized midlife (sml) curves that appear in [16]. For the per-
sistence image (PI) calculations, the PIs were calculated on
the same four diagrams previously mentioned. The result-
ing PIs were flattened into vectors, concatenated, then fed
into the random forest algorithm. In this table, we see com-
petitive scores among the curves, particularly between the
gl+PS+REF, sl+PS+RF, and EKFC+LMNN models.

7. Conclusion

This paper proposed a new class of summary functions
for persistence diagrams by utilizing the persistence curve
framework. In essence, this class replaces the points of a di-
agram with weighted Gaussian functions centered at them.

For any input ¢, we integrate these Gaussians over the fun-
damental box at ¢. This process maps persistence diagrams
to smooth, absolutely integrable, Lipschitz functions. We
proved that the sample mean distribution of Lipschitz con-
tinuous persistence curves (hence the Gaussian PCs) weakly
converges to a Gaussian process. These curves proved suc-
cessful and competitive with other TDA methods in the task
of texture classification. The Gaussian PCs are one example
of many summaries one can derive from the PC framework.
The richness of PCs opens a door to several future directions
of expansion for the theory around the framework such as
bootstrapping, hypothesis testing, and stability analysis.
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