
Hierarchical Image Classification using Entailment Cone Embeddings

Ankit Dhall1, Anastasia Makarova1, Octavian Ganea2, Dario Pavllo1, Michael Greeff1, Andreas Krause1

1ETH Zurich 2MIT

adhall@ethz.ch, anastasiia.makarova@inf.ethz.ch, oct@mit.edu

dario.pavllo@inf.ethz.ch, michael.greeff@usys.ethz.ch, krausea@ethz.ch

Abstract

Image classification has been studied extensively, but

there has been limited work in using unconventional, exter-

nal guidance other than traditional image-label pairs for

training. We present a set of methods for leveraging in-

formation about the semantic hierarchy embedded in class

labels. We first inject label-hierarchy knowledge into an

arbitrary CNN-based classifier and empirically show that

availability of such external semantic information in con-

junction with the visual semantics from images boosts over-

all performance. Taking a step further in this direction, we

model more explicitly the label-label and label-image in-

teractions using order-preserving embeddings governed by

both Euclidean and hyperbolic geometries, prevalent in nat-

ural language, and tailor them to hierarchical image clas-

sification and representation learning. We empirically vali-

date all the models on the hierarchical ETHEC dataset.

1. Introduction

In deep learning, classification is typically performed

by independently predicting class-probabilities (e.g., using

a linear-softmax layer) and predicting the highest scoring

label. Such an approach by default assumes mutually ex-

clusive, unstructured labels. Contrary to this assumption,

in many common datasets, labels have an underlying la-

tent organization, potentially allowing hierarchical cluster-

ing into progressively more abstract concepts. Relatively

few previous works use hierarchical information in the con-

text of computer vision. Among them, in [2] the label-

hierarchy from WordNet [3] is used to consolidate data

across datasets. [4] show how to optimize the trade-off be-

tween accuracy and fine-grained-ness of the predicted label,

but their proposed method only considers the semantic simi-

larity and disregards visual similarity. [5] use relation graph

information to improve performance over a strong baseline

in a zero-shot learning setting.

Incorporating the hierarchy in the model would improve

generalization on classes for which training data is scarce,

Figure 1: Hierarchy of labels from the ETHEC dataset [1]

across 4 levels: family (blue), sub-family (aqua), genus

(brown) and species. For clarity, this visualisation depicts

only the first 3 levels. The name of the family is displayed

next to its sub-tree. Edges represent direct relations.

by leveraging shared features among hierarchically-related

classes, e.g. “truck” and “car” both have wheels in their

shared superclass “vehicle”. As is the case with few-shot

learning approaches, sharing information and parameters

among the long tail of leaf labels helps overcome this data

scarcity problem.

Uncovering the black-box model. If a human is tasked

with classifying an image, the natural way to proceed is to

identify the membership of the image to abstract labels and

then move to more fine-grained labels. Even if an untrained

eye cannot tell apart an Alaskan Malamute from a Siberian

Husky, it is more likely to at least get the concept of “ani-

mal” and its sub-concept “dog” correct.

Using the label hierarchy to guide the classification mod-

els we are able to bridge one gap in the way machines

and humans deal with visual understanding. Incorporating

such auxiliary information improves explainability and in-

terpretability of image understanding models.

Leveraging label-label interactions. Usually, image

classifiers perform flat N-way classification solely by learn-

ing to discriminate between visual signals. These models

capture the label-image interactions but do not use addi-

tional information available about the inter-label interaction

that could boost performance and interpretability.

Long-tailed data distributions. Real-world data is

commonly characterized by imbalance. Class labels form

a hierarchy and can be viewed as directed acyclic graph

(DAG), where abstract labels have finer-grained descen-

dants. Abstract levels have fewer labels and more images

per label compared to their fine-grained descendants. The

converse is true for fine-grained labels resulting in a long-

tailed data distribution. Shallow classifiers benefit from bal-

anced datasets, and generalize worse when classes are im-

balanced. We show that image classifiers can exploit in-

formation naturally shared across data from different levels

and labels.

Figure 2: Long-tailedness is evident from the image dis-

tribution across labels from the 4 levels of our hierarchy:

6 family, 21 sub-family, 135 genus and 550 species. x-

axis: number of images for a particular label; y-axis: label.

Genus and species labels have been omitted for clarity.

Visual similarity does not imply semantic similarity.

Visual models rely on image-based features to distinguish

between different objects. But, often, semantically related

classes might exhibit marked visual dissimilarity. Some-

times it might even be the case that the intra-class vari-

ance of visual features for a single label is larger than the

inter-class variance (we show an example in the Appendix,

Fig. 14). In such scenarios learned representations for two

instances with different visual appearance would be coerced

away from each other, indirectly affecting the image under-

standing capability of the model.

Labels with varying levels of abstraction may also be

beneficial for further downstream tasks involving both nat-

ural language and computer vision such as image caption-

ing, scene graph generation and visual-question answering

(VQA). This work exploits semantic information available

in the form of hierarchical labels. We show that visual

models trained with such guidance outperform a hierarchy-

agnostic model. We also show how these models can be

more interpretable when using more explicit representations

Figure 3: Sample images and their 4-level labels from the

ETHEC dataset [1]. The dataset consists of 47,978 butterfly

specimens with 723 labels spread across 4 levels.

via embeddings for the task of image classification.

Our work. We propose and compare multiple ap-

proaches for incorporating hierarchical information in state-

of-the-art CNN classifiers. To this end, we first compare

baselines where the hierarchy is exploited in the loss func-

tion (hierarchical softmax, marginalization classifier), and

then propose a set of embedding-based approaches where

images and labels are embedded in a common space. These

are more flexible as they allow for entailment prediction

tasks and hierarchy-based retrieval. Our embeddings are

based on entailment cones, which can be embedded both in

Euclidean geometry and in hyperbolic geometry. We com-

pare these and show that the hyperbolic case has empirical

advantages over the Euclidean case, while being backed up

by theoretical advantages.

We summarize our contributions: (1) applying order-

preserving embeddings to image classification, where both

images and labels are embedded in a common space that en-

forces transitivity, (2) providing a set of methods to incorpo-

rate entailment cones in CNN-based classifers, including ef-

fective optimization techniques. (3) comparing entailment

cones in different geometries (Euclidean and hyperbolic),

highlighting their strengths and weaknesses, (4) comparing

embedding-based approaches to non-embedding-based ap-

proaches, under uniform settings.

2. Related Work

Embedding-based models for text. One way to model

semantic hierarchies is to use order-preserving embed-

dings, which enforce transitivity among hierarchically-

related concepts by imposing a structure on the latent space.

For instance, order-embeddings [6] learn hierarchical word

embeddings on WordNet [3]. As an alternative to com-

mon symmetric distances (e.g. Euclidean, Manhattan, or

cosine), the work proposes an asymmetric distance result-

ing in the formation of a transitive embedding space as

shown in Fig. 4. As opposed to the distance-preserving na-

ture, the order-preserving nature of order-embeddings en-

sures that anti-symmetric and transitive relations can be

captured well without having to rely on physical closeness

between points. However, the distance function in [6] is

limited as each concept occupies a large volume in the em-

bedding space irrespective of its volume needs and suffers

from heavy orthant intersections. This ill-effect is amplified

especially in extremely low dimensions such as R2. To this

end, [7] proposes Euclidean entailment cones which gener-

alizes order-embeddings by substituting translated orthants

with more flexible convex cones. Furthermore, [8] gener-

alizes order-embeddings [6] and entailment cones [7] for

embedding DAGs with an exponentially-increasing number

of nodes.

More general and flexible methods where the embed-

ding space is not necessarily Euclidean have also been ex-

plored. [7] leverage non-Euclidean geometry by learning

embeddings defined by hyperbolic cones for hypernymy

prediction in the WordNet hierarchy [3]. In hyperbolic

space, the volume of a ball grows exponentially with the

radius as compared to polynomially in Euclidean space, al-

lowing to embed exponentially-growing hierarchies in low-

dimensional space. Lately, [9] combined the idea of Hearst

patterns to create a graph and hyperbolic embeddings to in-

fer and embed hypernyms from text. Hyperbolic neural net-

works [10] are feed-forward neural networks parameterized

in hyperbolic space that allow using hyperbolic embeddings

for NLP tasks more naturally and boost the performance.

Other non-Euclidean embeddings include embeddings

on surfaces, generalized multidimensional scaling on the

sphere and probability embeddings [11, 12] which gener-

alize point embeddings.

Embedding-based models for images. Visual-semantic

embeddings, proposed in [13], define a similarity measure

instead of an explicit classification and return the closest

concept in the embedding space for a given query. They use

an LSTM and a CNN and map to a joint embeddings space

through a linear mapping and measure similarity for cross-

modal image-caption retrieval. [14] maps images onto class

embeddings and use dot product to measure similarity. A

drawback of such an approach is that the label embeddings

are fixed when training on the image embeddings. The la-

bels might be embedded properly however they might not

be arranged in a way that puts visually similar labels to-

gether. Furthermore, these approaches are based on Eu-

clidean geometry.

In contrast to general CNNs for image classification,

the work done in [15] exploits unannotated text in addi-

tion to the images labels. They use embeddings and trans-

fer knowledge from the text-domain to a model for visual

recognition and perform zero-shot classification on an ex-

tended ImageNet dataset [16].

Non-embedding-based approaches. While this work

focuses on embedding-based approaches, there has also

been work on incorporating label hierarchies in the model

architecture or in loss function. [17, 18, 19] discuss hi-

erarchical approaches not based on the concept of order-

(a) In OE, if v is u, it lies

within an orthant at u.

(b) In EC, if v is u, it lies

within a cone at u.

Figure 4: Comparing embedding space for OE and EC.

preserving embeddings. While these approaches can ef-

fectively exploit label hierarchies to improve performance,

their hierarchies are typically fixed, integrated in the archi-

tecture of the model, and tailored to one specific down-

stream task (e.g. classification). On the other hand,

embedding-based approaches allow for flexible hierarchies

and retrieval tasks using parent-child queries.

3. Background

Order-embeddings (OE). Order-embeddings [6] preserves

the order between objects rather than distance. From a set

of ordered-pairs P and unordered-pairs N the goal is to de-

termine if an arbitrary pair is ordered. They use a reversed

product order on R
N : y � x if and only if

�N

i=1 yi ≥ xi

and approximate order-violation minimization.

Figure 5: Visualization of the label-hierarchy embedded us-

ing OE in R
2. Node colors - cyan: family, magenta: sub-

family, yellow: genus. Last level omitted for clarity.

L=
�

(u,v)∈P

E
�

f(u), f(v)
�

+
�

(u�,v�)∈N

r
�

α−E(f(u�), f(v�))
�

(1)

where r(·)=max(0, ·), P and N represent positive and neg-

ative edges respectively, α ∈ R+ is a margin, f is a function

that maps a concept to its embedding. E(f(u), f(v)) is the

energy that defines the severity of the order-violation for a

given pair (u, v) and is given by E(x, y) = ||max(0, x −
y)||. According to the energy E(x, y) = 0 ⇐⇒ y � x.

For positive pairs where y is-a x, one would like embed-

dings such that E(x, y) = 0. a is-a b implies that a is a

sub-concept of b.

Euclidean Cones (EC). Euclidean cones [7] are a gen-

eralization of order-embeddings [6]. For each vector x
in R

N , the aperture of the cone is based solely on the

Euclidean norm of the vector, ||x||, [7] and is given by

ψ(x) = arcsin(K/||x||) where K is a hyper-parameter. The

cones can have a maximum aperture of π/2 [7]. To ensure

continuity and transitivity, the aperture should be a smooth,

non-increasing function. To satisfy properties mentioned in

[7], the domain of the aperture function has to be restricted

to (ε, 1] for some ε. ε = f(K). Eq. (2) computes the mini-

mum angle between the axis of the cone at x and the vector

y. E(x, y) = max(0, Ξ(x, y) − ψ(x)) measures the cone-

violation which is the minimum angle required to rotate the

axis of the cone at x to bring y into the cone.

Ξ(x, y) = arccos

�

||y||2 − ||x||2 − ||x− y||2

2 ||x|| ||x− y||

�

(2)

Figure 6: Visualization of the label-hierarchy using Eu-

clidean cones in 2 dimensions. Color coding follows Fig. 5.

genus+species nodes are omitted to visualize better.

Hyperbolic Cones (HC). The Poincaré ball is defined by

the manifold D
N = {x ∈ R

N : ||x|| < 1}. The distance

between two points x, y ∈ D
N and the norm are

dD(x, y) = arccosh(1+2(||x−y||2)/((1−||x||2)(1−||y||2)))

and ||x||D=dD(0, x)=2 arctanh(||x||) where we use ||.|| for

Euclidean norm, �., .� for dot-product and x̂=x/||x|| for a

unit vector. The angle between two tangent vectors u, v ∈
TxD

n is given by cos(∠(u, v)) = �u, v�/(||u|| ||v||). The

aperture of the cone is ψ(x)=arcsin(K(1 − ||x||2)/||x||).
Ξ(x, y) computes the minimum angle between the axis of

the cone at x and the vector y.

Ξ(x, y)=arccos

�

�x, y�(1+||x||2)− ||x||2(1+||y||2)

ω
�

1+||x||2||y||2−2�x, y�

�

(3)

E(x, y) = max(0, Ξ(x, y) − ψ(x)) measures the cone-

violation which is the minimum angle required to rotate the

axis of the cone at x to bring y into the cone. ω=||x|| ||x−y||
Optimization in hyperbolic space. For parameters liv-

ing in hyperbolic space, Riemannian stochastic gradient de-

scent (RSGD) [7] is used. An update u ← expu(η ∇R
u L)

involves Rimannian gradient (RG) ∇R
u L for parameter u.

RG is computed by rescaling the Euclidean gradient by

∇R
u L = (1/λu)

2∇uL where λu = 2/(1 − ||u||2) [7].

Exponential-map at a point x, expx(v) : TxD
n → D

n, maps

a point v in the tangent space to the hyperbolic space:

expx(v) = (x(cλx + s�x, v̂�))/q + (v̂s)/q (4)

where λ�

x = (λx − 1) and q = 1 + λ�

xc + λxs�x, v̂�, s =
sinh(λx||v||), c = cosh(λx||v||).

4. Approach

4.1. CNN classifiers

We do not focus on specifically designed CNN compo-

nents but on different ways to formulate probability distri-

butions to pass hierarchical information.

Hierarchy-agnostic baseline classifier (HAB). As a base-

line, we use SOTA residual network for image classifica-

tion [20]. The baseline is agnostic to any label hierarchy in

the dataset. The model performs Nt-way classification (see

Fig. 9). Nt =
�L

i=1 Ni represents labels across all L levels

and Ni are the number of distinct labels on the i-th level. It

uses the one-versus-rest strategy for each of the Nt labels.

We minimize multi-label soft-margin loss,

L (x, y) =
1

Nt

Nt
�

j=1

(aj + bj) (5)

x ∈ R
Nt , y ∈ {0, 1}Nt . aj = yj log((1 + exp(−xj))

−1)
and bj = (1−yj) log(exp(−xj)/(1+exp(−xj))). F(I) =
x, where x are the logits (normalized as a probability distri-

bution) from the last layer of a model F which takes as input

image I . From empirical analysis we found that choosing

a single threshold for all labels is better as it is less prone

to over-fitting than choosing a per-class decision boundary.

Refer to Appendix 7.4.

Per-level classifier (PLC). Instead of a single Nt-way

classifier we replace it with L Ni-way classifiers where

each of the L classifiers handles all the Ni labels present

in level Li (Fig. 10). We use the multi-label soft-margin

loss: L (x, τ) =
�L

i=1 Li(xi, τi).

Li(xi, τi) = −xi[τi] + log(

Ni
�

j=1

exp(xi[j])) (6)

where, τi is the true label for the i-th level. xi ∈ R
Ni ,

τ ∈ I
L
+. F(I) = x where, x are the logits from the last layer

of F . xi is a continuous sub-sequence of the predicted logits

x, i.e. xi = (xi[Ni−1+1], xi[Ni−1+2], ..., xi[Ni−1+Ni]).
Marginalization classifier (MC). The notion of L lev-

els is built into the per-level classifier but it is still unaware

of the relationship between nodes across levels. Here, a

single classifier outputs a probability distribution over the

final level in the hierarchy. Instead of having classifiers for

the remaining (L − 1) levels, we compute the probability

distribution over each one of these by summing the proba-

bility of the children nodes. Although, the network does not

explicitly predict these scores, the models is still penalized

for incorrect predictions across the L levels. We minimize

L (x, τ) =
�L

i=1 Li(xi, τi) = −
�L

i=1 log(pi[τi]) where,

τi is the true label for the i-th level. xi ∈ R
Ni , τ ∈ I

L
+.

F(I) = x where, x are the logits from the last layer of F .

pi[j] = P (vji |I) =
�

c∈childrenOf(vj

i
)

P (c|I) (7)

∀i ∈ {1, 2, ..., (L − 1)} where, vji is the j-th vertex in the

i-th level. All but the last level use this to compute the

probabilities for their labels. For the final level, we com-

pute the probabilities over the leaf nodes by directly using

the logits from the model F , using pL[j] = P (vjL|I) =

exp(xj)/(
�NL

k=1 exp(xk)). Once pL is determined, pL−1

can be calculated in a bottom up fashion as seen in Fig. 11.

Masked Per-level classifier (M-PLC). On the upper

levels of the hierarchy one has more data per label and fewer

labels to choose from. Naturally, this makes classifying rel-

atively accurate closer to the root of the hierarchy. This

model exploits knowledge about the parent-child relation-

ship between nodes in a top down manner.

Here, we have L-classifiers, one for each level. For level

li, the models belief about upper level is leveraged i.e. it’s

prediction for level li−1. Instead of naively predicting the

label with the highest score for level li (comparing among

all possible logits), all nodes except the children of the pre-

dicted label for the previous level li−1 are masked (see

Fig. 12). The label for li is the highest scoring unmasked

node. The loss is computed over a subset of the original

nodes for any level li which is possible due to the availabil-

ity of the parent-child relationship. This assumes that the

parent label is correct. Due to less labels and more data,

classification in upper levels is more accurate and since we

perform this in a top down fashion, this is a reasonable as-

sumption. Another work has shown this to be the case [21].

While training, even if the model predicts the parent in-

correctly, we still use the ground truth to penalize its predic-

tion for the children. For data with unknown ground truth

i.e. during evaluation, the model uses the predictions from

level li−1 to infer about level li by masking nodes that cor-

respond to labels that are not possible as per the hierarchy.

We minimize L (x, τ) =
�L

i=1 Li(xi, τi), where

L(xi, τi) = −xi[τi] + log(
�

j∈C

exp(xi[j])) (8)

τi is the true label for the i-th level. xi ∈ R
Ni , τ ∈ I

L
+,

C = childrenOf(v
τi−1

i−1). vji is the j-th vertex (node) in the

i-th level and consequently, v
τi−1

i−1 is the node corresponding

to the ground-truth on level (i− 1). F(I) = x where, x are

the logits from the last layer model F . xi is a continuous

sub-sequence of the predicted logits x, i.e. xi = (xi[Ni−1+
1], xi[Ni−1 + 2], ..., xi[Ni−1 +Ni]).

Hierarchical Softmax (HS). HS model predicts logits

for every node in the hierarchy. There are dedicated lin-

ear layers for each group of sibling nodes leading to a

separate (conditional) probability distribution over them.

This is probability conditioned on the parent node i.e.

p(vjii |v
ji−1

i−1), ∀v
ji
i ∈ C, such that C = childrenOf(v

ji−1

i−1).

To reduce computation over large vocabularies, [22, 23]

propose similar ideas for NLP. In the context of computer

vision it is relatively unexplored and we propose to predict

conditional distributions for each set of direct descendants

to exploit the label-hierarchy.

p(vjii |v
ji−1

i−1)=exp(x
v
ji−1
i−1

[ji])/(
�

k∈C

exp(x
v
ji−1
i−1

[k])) (9)

∀vjii ∈ C, x
v
ji−1
i−1

∈ R
|C|. The vector x

v
ji−1
i−1

represents

the logits that exclusively correspond to all the children

of node v
ji−1

i−1 . With this in place, for each set of chil-

dren of a given node, a conditional probability distribu-

tion is output by F . F(I) = p(·) where, p(·) is the con-

ditional probability for every child node given the parent,

p(vjii |v
ji−1

i−1). In order to calculate the joint distribution over

the leaves, probabilities along the path from the root to

each leaf are multiplied as p(vj11 , vj22 , ..., v
j(L−1)

(L−1) , vjLL) =

p(vj11)p(vj22 |vj11)...p(vjLL |v
j(L−1)

(L−1)) where, vjii is the parent

node of v
j(i+1)

i+1 . The nodes belonging to the i-th level and

the (i+1)-st level respectively.

The cross-entropy loss is computed only over the

leaves but since the distribution is calculated us-

ing internal nodes, all levels are optimized implic-

itly. L (x, τ) = − log(p(vj11 , vj22 , ..., v
j(L−1)

(L−1) , vτLL)) =

− log(p(vτ11 , vτ22 , ..., v
τL−1

(L−1), v
τL

L)), where, τi is the true la-

bel for the i-th level. xi ∈ R
Ni , τ ∈ I

L
+.

4.2. Embedding Classifiers

We treat our label hierarchy as a directed-acyclic graph,

more specifically as a directed tree graph. The dataset X
consists of entailment relations (u, v) connected via a di-

rected edge from u to v. (following the definition in [7]).

These directed edges or hypernym links convey that v is a

sub-concept of u.

4.2.1 Label and Image Representations

Label embeddings. For our implementation of the HC, the

label-embeddings live in the hyperbolic space D
N and are

optimized using the RSGD as per Section 3. RSGD is im-

plemented by modifying the SGD gradients in PyTorch[24]

as it is not a part of the standard library.

Image embeddings. For images, features from the final

layer of the backbone of the best performing CNN-based

model are used (∈ R
2048). In order to map them to D

N

we use a linear transform W ∈ R
2048×N and then apply a

projection into D
N via the exponential-map at zero which

is equivalent to exp0(x). This bring the image embeddings

to the hyperbolic space with Euclidean parameters. This

allows for optimizing the parameters with well know opti-

mization schemes such as Adam [25].

4.2.2 Embedding Label-Hierarchy

We begin by learning to represent the taxonomical hierar-

chy alone. Considering only the label-hierarchy and mo-

mentarily excluding the images we model this problem as

hypernym prediction where a hypernym pair represents two

labels (x, y) such that y is-a x. Embeddedings for the

label-hierarchy with OE and EC are shown in Fig. 5 and

Fig. 6.

Data splitting. We use the tree to form the “basic” edges

for which the transitive closure can be fully recovered. If

these edges are not present in the train set, the information

about them is unrecoverable and therefore they are always

included in the train set. Now, we randomly pick edges

from the transitive closure [26] minus the “basic” edges to

form a set of “non-basic” edges. We use the “non-basic”

edges to create val (5%) and test (5%) splits and a propor-

tion of the rest are reserved for training.

Training details. We follow the training details in [7].

We augment both the validation and test set by 5 negative

pairs each for (x, y): of the type (x�, y) and (x, y�) with a

randomly chosen edge that is not present in the full transi-

tive closure of the graph. Generating 10 negatives for each

positive. We report performance on different training set

sizes. We vary the training set to include 0%, 10%, 25%,

50% of the “non-basic” edges selected randomly. We train

for 500 epochs with a batch size of 10. We run two sets of

experiments: one, we fix α = 1.0 as mentioned in [6] and

two, tune α based on the F1-score on the val set [7].

Pick-per-level strategy. During the experiments, instead

of sampling a negative edge (x�, y) uniformly from candi-

date x�, we pick each x� from a different level in the hier-

archy. This serves a dual purpose. 78.24% of the nodes

belong to the final level in the hierarchy and uniform neg-

ative sampling would result in edges where x� is from the

last level majority of the times, making convergence slow.

Secondly, this strategy samples hard negatives edges from

the same level as the non-corrupted node y, helping embed-

dings to disentangle and spread out in space.

Optimization details. We use Adam optimizer [25]

for order-embeddings and Euclidean cones. For hyperbolic

cones we use RSGD [7]. lr = 0.01. We also embed syn-

thetic trees of varying height and branching factor using OE

and EC. The final embeddings are visualized in Fig. 13.

4.2.3 Jointly Embedding Images with Label-Hierarchy

In order-embeddings [6], the images are put on the lower-

level and the captions on the upper level as images are

more detailed while captions represent concepts more ab-

stract than the image itself. For jointly embedding the im-

ages together with the labels we use the hypernym loss from

Eq. (1). We modify it such that now in addition to the la-

bels, G (the graph representing the hierarchy) also contains

images as nodes as leaves at the lowest level. G consti-

tutes of two types of edges: an edge (u, v) can be such that

u, v ∈ labels or u ∈ labels, v ∈ images. The embeddings

are computed differnently for images and labels but in the

end, both fi and fl map respective inputs to the same space.

Multi-label Classification with Embeddings Since our

problem does not concern hypernym prediction but rather

assigning multiple labels to an image; instead of perform-

ing edge prediction (as the case would be in a hypernym

prediction task) we use the embeddings for the task of clas-

sification. To classify an image we compute the order-

violation energy E between the given image and each label

and pick the label corresponding to the minimum violation,

arg min
l

E(fl(l), fi(i)), ∀l ∈ labels.

Generating Label and Image Embeddings To generate

image embeddings we use the best performing CNN model

trained on the ETHEC dataset and extract fc7-features from

the penultimate layer. We use a learnable linear transforma-

tion, a matrix W , on top of the fc7-features to be able to

adjust the fc7-features and map them into the joint embed-

ding space: fi(i) = W ∗ CNN(i) ∈ R
N . CNN(i) represent

the fc7-features from our best performing CNN model and

W is a matrix. The weights of the CNN are frozen to calcu-

late the fc7-features with only W that can be learned. For

the labels, fl(l) is just a lookup table that stores vectors in

R
N . The embedding are in R

N for Euclidean models and

D
N for hyperbolic models (Poincaré disk).

Data splitting. We split the data the same way as for the

CNN models: train (80%), val (10%) and test (10%) based

solely on the images. The graph G contains directed edges

from each label to the image that it “describes” as well as

edges between related labels.

Training details. Let G represent the graph to be embed-

ded. All edges in Gtc, the transitive closure of G, are con-

sidered as positive edges. To obtain negative edges, Gneg

is constructed by removing the edges in Gtc from a fully-

connected di-graph with the same nodes as G.

While training, we generate negative pairs as mentioned

in Section 4.2.2 with the pick-per-level strategy. We make

sure that we do not sample a negative edge (u�, v�) such that

both u and v are images. This ensures that no two images

are forced apart unless their labels require them to do so.

For validation and testing, we measure the model’s classifi-

cation the val and test set images respectively.

Graph reconstruction task. In addition to the classi-

fication task, we also check the quality of reconstruction

of the label-hierarchy itself. Here, all the edges in G that

correspond to edges between labels are treated as positive

edges, while the the edges in Gneg that correspond to edges

between labels are treated as negative edges. We compute

E(u, v) ∀e ∈ P ∪ N where e = (u, v) and choose a

threshold to classify edges as positive and negative using

that yields the best F1-score on this label-hierarchy recon-

struction task. This task does not use any edges that have an

image on any side to check the quality of reconstruction.

For W we use a linear transformation, a matrix

R
2048×N . Non-linearity is not applied to the output that

maps to the embedding space.

Optimization details. For jointly embedding labels and

images, we empirically found using Adam [25] optimizer

instead of the RSGD. The label embeddings are parameter-

ized in the Euclidean space and we use the exp0(v) to map

them to the hyperbolic space. This is observed to be more

stable and helps better converge the joint embeddings. Also,

with this implementation of the hyperbolic cones, for both

labels and joint embeddings, it was not necessary to initial-

ize the embeddings with the Poincaré embeddings [27] as

suggested in [7]. However, a performance boost is obtained

when initialized with values from embedding only the label-

hierarchy. EC: 200 epochs, lrlabels =10−2, lrim =10−3.

HC: 100 epochs, lrlabels=10−4, lrim=10−3, Initialization

from label-embeddings only model. Adam and α=1.

5. Experiments

Data. We empirically evaluate our work on the real-

world ETH Entomological Collection (ETHEC) dataset [1]

comprising images of Lepidoptera specimens with their tax-

onomy tree. The real-world dataset has variations not only

in terms of the images per category but also a significant im-

balance in the structure of the taxonomical tree. In Fig. 2 we

illustrate the data distribution for each label in the ETHEC

hierarchy.

5.1. Hierarchical Classification Performance

To perform image classification using embeddings, the

least violating energy E(fl(l), fi(i)) for a given image

across all possible labels in a given level in the hierarchy

is considered as the predicted label. The CNN models use

Adam [25] for 100 epochs with 224 x 224 RGB images and

Figure 7: Label-only embeddings with HC D
1000 projected

to 2D. The embeddings organize themselves such that more

generic concepts are closer to the origin while the most spe-

cific concepts form the periphery. Color coding as Fig. 5.

classify test set images graph reconstruction

Model m-F1 hit@3 hit@5 TPR TNR full-F1

Euclidean Cones

d = 10 0.780 0.889 0.920 0.805 0.998 0.704

d = 102 0.835 0.902 0.943 0.963 0.999 0.821

d = 103 0.801 0.897 0.928 0.815 0.998 0.707

Hyperbolic Cones

d = 102 0.840 0.920 0.939 0.642 0.998 0.576

d = 103 0.805 0.902 0.928 0.523 0.997 0.483

Table 1: The table summarizes the embedding model per-

formance when used to classify images for the ETHEC

dataset [1]. The joint image and label embeddings live in

R
d or Dd. m-F1 is the critical metric for image classifica-

tion performance. We also report the quality of the recon-

struction for the label-hierarchy after the joint embedding.

batch size=64. For HAB, PLC: lr = 10−2; MC, M-PLC,

HS: lr=10−5. We empirically found ResNet-50 for HAB,

PLC, MC, M-PLC and ResNet-152 for HS among ResNet

50, 101, 152 variants.

Table 2 shows that the hierarchy-agnostic baseline is out-

performed by all models that use any kind of hierarchical

information. Embeddings: a completely different class of

models, used widely in context of natural language but are

relatively unexplored for image classification, also outper-

form HAB.

W’s model capacity. We use a matrix W that transforms

fc7 image features to the embedding space. A more elabo-

rate 4-layer feed-forward neural network was also used but

performed worse and was hard to optimize. Jointly training

the complete CNN was also over-fitting.

Negative edge frequency. For joint-embedding the

ETHEC dataset [1], since the images (around 50,000) out-

Model m-F1 L1 L2 L3 L4

CNN-based methods

HAB 0.8147 0.9417 0.9446 0.8311 0.4578

PLC 0.9084 0.9766 0.9661 0.9204 0.7704

MC 0.9223 0.9887 0.9758 0.9273 0.7972

M-PLC 0.9173 0.9828 0.9701 0.9233 0.7930

HS 0.9180 0.9879 0.9731 0.9253 0.7855

Order-preserving (joint) embedding models

EC d=100 0.8350 0.9728 0.9370 0.8336 0.5967

HC d=100∗ 0.7627 0.9695 0.9205 0.7523 0.4246

HC d=100 0.8404 0.9800 0.9439 0.8477 0.5977

Table 2: Both EC and HC exploit hierarchical information

and outperform the hierarchy-agnostic classifier baseline.

We include the overall m-F1 in addition to the separate m-

F1 across the 4 levels in the ETHEC dataset [1]. All joint-

embeddings models are initialized using labels-only em-

beddings. ∗=random initalization, best overall model, best

model in category.

Figure 8: Jointly embedding labels and images using EC in

R
2. Color coding follow Fig. 5, grey: images. The images

are accumulated around the periphery, away from the origin.

number the labels (723) we thought it might be useful

to randomly sample negative edges such that the ratio of

negative nodes have a proportion to be 50%:50% for im-

ages:label ratio however, the original strategy works better.

Choice of Optimizer. Initial experiments for the hyper-

bolic cones (HC) used the RSGD optimizer as it seemed to

work for labels-only embeddings hyperbolic cones. When

using the same to optimize over the labels for the joint-

embedding model, we noticed that the label hierarchy

moves towards the image labels and ends up collapsing

from a very good initialization (taken from the labels-only

embeddings). The collapse leads to entanglement between

nodes from different labels and images, which leads it to

a point of no return and the performance worsens due to

the label-hierarchy becoming disarranged and its inability

to recover. We believe that the reason for its inability to re-

arrange is due to there being a two different types of objects

being embedded (and also being computed differently) and

it compounded by using different optimizers.

In our experiments we obtain best results when using the

Adam optimizer even if it means the update step for pa-

rameters living in hyperbolic space has to be performed in

an approximate manner. Adam optimizer with an approxi-

mate update step works better in practice than RSGD with

its mathematically more precise update step.

Label initialization for joint-embeddings Using

RSGD we observed that if the labels are not initialized with

the labels-only embedding then the joint model finds it diffi-

cult to disentangle the label embeddings and eventually this

effect is cascaded to the images causing the image classifi-

cation performance to not improve.

With the RSGD replaced by the Adam optimizer, in

experiments where we randomly initialized the label-

embeddings, we observed them to disentangle and form

entailment cones even with the images being involved

and making the optimization more complex. The joint-

model still works well with random label initialization and

achieves an image classification m-F1 score of 0.7611 and

even outperforms the hierarchy-agnostic CNN in the m-F1

L1. [7] recommends to use Poincaré embeddings [27] to

initialize the hyperbolic cones model. The fact that the joint

model as well as the labels-only hyperbolic cones have great

performance without any special initialization scheme is in-

teresting. We conjecture that this could be because of using

an approximate yet better optimizer.

6. Conclusion

We propose an embedding-based approach for image

classification using entailment cones, a recently proposed

type of order-preserving embeddings. In particular, we

compare these both in the Euclidean geometry setting and in

the hyperbolic setting, and show that hyperbolic geometry

provides an empirical advantage over Euclidean geometry.

We also propose and compare a set of simple hierarchical

classifier baselines where the hierarchy is incorporated in

the loss function. Although these tend to perform slightly

better than embedding-based approaches, they are less flex-

ible as they assume that the hierarchy is fixed, and are more

limited in terms of downstream tasks (e.g. they do not al-

low for hierarchy-based retrieval). Finally, we evaluate our

methods on the real-world ETHEC dataset [1], and show

that exploiting hierarchical information always leads to an

improvement over a shallow CNN classifier.

References

[1] A. Dhall, “Eth entomological collec-

tion (ethec) dataset [palearctic macrolepi-

doptera, spring 2019] https://www.research-

collection.ethz.ch/handle/20.500.11850/365379,”

2019.

[2] J. Redmon and A. Farhadi, “Yolo9000: Better, faster,

stronger,” in The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), July 2017.

[3] G. A. Miller, “Wordnet: a lexical database for en-

glish,” Communications of the ACM, vol. 38, no. 11,

pp. 39–41, 1995.

[4] J. Deng, J. Krause, A. C. Berg, and L. Fei-Fei, “Hedg-

ing your bets: Optimizing accuracy-specificity trade-

offs in large scale visual recognition,” in 2012 IEEE

Conference on Computer Vision and Pattern Recogni-

tion, pp. 3450–3457, IEEE, 2012.

[5] C. Samplawski, J. Wolff, T. Klein, and M. Nabi,

“Learning graph-based priors for generalized zero-

shot learning,” Workshop on Deep Learning on

Graphs: Methodologies and Applications.

[6] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun,

“Order-embeddings of images and language,” arXiv

preprint arXiv:1511.06361, 2015.

[7] O.-E. Ganea, G. Bécigneul, and T. Hofmann, “Hyper-

bolic entailment cones for learning hierarchical em-

beddings,” arXiv preprint arXiv:1804.01882, 2018.

[8] R. Suzuki, R. Takahama, and S. Onoda, “Hyperbolic

disk embeddings for directed acyclic graphs,” arXiv

preprint arXiv:1902.04335, 2019.

[9] M. Le, S. Roller, L. Papaxanthos, D. Kiela, and

M. Nickel, “Inferring concept hierarchies from text

corpora via hyperbolic embeddings,” arXiv preprint

arXiv:1902.00913, 2019.

[10] O. Ganea, G. Bécigneul, and T. Hofmann, “Hyper-

bolic neural networks,” in Advances in neural infor-

mation processing systems, pp. 5345–5355, 2018.

[11] X. Li, L. Vilnis, D. Zhang, M. Boratko, and A. Mc-

Callum, “Smoothing the geometry of probabilistic box

embeddings,” in International Conference on Learn-

ing Representations, 2019.

[12] B. Muzellec and M. Cuturi, “Generalizing point em-

beddings using the wasserstein space of elliptical dis-

tributions,” 2018.

[13] F. Faghri, D. J. Fleet, J. R. Kiros, and S. Fidler,

“Vse++: Improving visual-semantic embeddings with

hard negatives,” arXiv preprint arXiv:1707.05612,

2017.

[14] B. Barz and J. Denzler, “Hierarchy-based image em-

beddings for semantic image retrieval,” arXiv preprint

arXiv:1809.bib09924, 2018.

[15] A. Frome, G. S. Corrado, J. Shlens, S. Bengio,

J. Dean, T. Mikolov, et al., “Devise: A deep visual-

semantic embedding model,” in Advances in neural

information processing systems, pp. 2121–2129, 2013.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and

L. Fei-Fei, “Imagenet: A large-scale hierarchical im-

age database,” in 2009 IEEE conference on computer

vision and pattern recognition, pp. 248–255, Ieee,

2009.

[17] S. Kumar and R. Zheng, “Hierarchical category de-

tector for clothing recognition from visual data,” in

Proceedings of the IEEE International Conference on

Computer Vision, pp. 2306–2312, 2017.

[18] T. Chen, W. Wu, Y. Gao, L. Dong, X. Luo, and L. Lin,

“Fine-grained representation learning and recogni-

tion by exploiting hierarchical semantic embedding,”

arXiv preprint arXiv:1808.04505, 2018.

[19] J. Deng, N. Ding, Y. Jia, A. Frome, K. Murphy,

S. Bengio, Y. Li, H. Neven, and H. Adam, “Large-

scale object classification using label relation graphs,”

in European conference on computer vision, pp. 48–

64, Springer, 2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-

ual learning for image recognition,” in Proceedings of

the IEEE conference on computer vision and pattern

recognition, pp. 770–778, 2016.

[21] T. Kjosev, “Deep learning for generating template pic-

torial and textual representations,” Thesis, 2018.

[22] F. Morin and Y. Bengio, “Hierarchical probabilistic

neural network language model.,” in Aistats, vol. 5,

pp. 246–252, Citeseer, 2005.

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,

and J. Dean, “Distributed representations of words

and phrases and their compositionality,” in Advances

in neural information processing systems, pp. 3111–

3119, 2013.

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,

Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and

A. Lerer, “Automatic differentiation in pytorch,” Soft-

ware Library, 2017.

[25] D. P. Kingma and J. Ba, “Adam: A method

for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[26] Wikipedia contributors, “Transitive closure —

Wikipedia, the free encyclopedia.” https://

en.wikipedia.org/w/index.php?title=

Transitive_closure&oldid=926668384,

2019. [Online; accessed 16-February-2020].

[27] M. Nickel and D. Kiela, “Poincaré embeddings for

learning hierarchical representations,” in Advances

in neural information processing systems, pp. 6338–

6347, 2017.

[28] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and

A. Napolitano, “Resampling or reweighting: A com-

parison of boosting implementations,” in 2008 20th

IEEE International Conference on Tools with Artifi-

cial Intelligence, vol. 1, pp. 445–451, IEEE, 2008.

