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Abstract

Past approaches for statistical shape analysis of objects

have focused mainly on objects within the same topologi-

cal classes, e.g., scalar functions, Euclidean curves, or sur-

faces, etc. For objects that differ in more complex ways,

the current literature offers only topological methods. This

paper introduces a far-reaching geometric approach for

analyzing shapes of graphical objects, such as road net-

works, blood vessels, brain fiber tracts, etc. It represents

such objects, exhibiting differences in both geometries and

topologies, as graphs made of curves with arbitrary shapes

(edges) and connected at arbitrary junctions (nodes).

To perform statistical analyses, one needs mathematical

representations, metrics and other geometrical tools, such

as geodesics, means, and covariances. This paper utilizes

a quotient structure to develop efficient algorithms for com-

puting these quantities, leading to useful statistical tools, in-

cluding principal component analysis and analytical statis-

tical testing and modeling of graphical shapes. The efficacy

of this framework is demonstrated using various simulated

as well as the real data from neurons and brain arterial net-

works.

1. Introduction

The problem of analyzing shapes of objects has steadily

gained in importance over the last few years [10, 21, 28, 38].

This rise is fueled by the availability of multimodal, high-

dimensional data that records objects of interest in a variety

of contexts and applications. Shapes of objects help charac-

terize their identity, classes, movements, and roles in larger

scenes. Consequently, many approaches have been devel-

oped for comparing, summarizing, modeling, testing, and

tracking shapes in static image or video data. While early

methods generally relied on discrete representations of ob-

jects (point clouds, landmarks) [22], more recent methods

have focused on continuous objects such as functions [39],

curves [23], and surfaces [27]. The main motivation for

this paradigm shift comes from the need to address registra-

tion, considered the most challenging issue in shape analy-

sis. Registration refers to establishing a correspondence be-

tween points or features across objects and is an important

ingredient in comparing shapes. Continuous representa-

tions of objects use convenient actions of the parameteriza-

tion groups to help solve dense registration problems [38].

Furthermore, they use elastic Riemannian metrics – which

are invariant to the actions of re-parameterization groups

– and some simplifying square-root representations, to de-

velop very efficient techniques for comparing and analyzing

shapes.

While elastic shape analysis is considered well devel-

oped for some simpler objects – Euclidean curves [37],

manifold-valued curves [45], 3D surfaces [20, 40], and

simple trees [11] — the problem of analyzing more com-

plex objects remains elusive. Stated differently, the past

developments have mainly focused on objects that exhibit

only the geometrical variabilities in shapes, while being of

same or similar topologies. Similar topologies help pose

the registration problem as that of optimal diffeomorphic

re-parameterization of the common domain (of parameter-

izations). In this paper we are concerned with comparing

objects with potentially very different topologies and ge-

ometries. Examples of such objects include road networks,

vein structures in leaves, network of blood vessels in

human brain or eyes, complex biomolecules with arbitrary

branchings and foldings and so on. Some illustrations of

such objects are shown in Fig. 1. A common characteristic

of these objects is that they are made of a number of

curves, with arbitrary shapes and sizes, that merge and

branch at arbitrary junctions, resulting in complex patterns

of pathways. In order to compare any two such objects

one needs to take into account the numbers, locations, and

shapes of individual curves. In particular, one has to solve

a difficult problem of registration of points and features

across curves and full objects.

Topological Data Analysis (TDA) and Its Limitations:

How have such shapes been studied in the past? A common

and relatively easy approach is to extract certain features of
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(a) Brain Artery [6] (b) Retinal Blood Vessel [16]

(c) Fruit Fly Wing [36] (d) Neuron [24]

Figure 1: Graphical shapes: complex networks formed by

branching, intersections or merging of curves (edges) at ar-

bitrary points (nodes).

interest from each shape, and compare these features across

objects using some appropriate metrics. One example of

this idea is topological data analysis, where one extracts

certain mathematical features (e.g., Betti curves) from

the objects and compares these features using chosen

metrics [5, 15, 35, 43]. However, the difficulty in such

approaches is that these feature-based representations

are typically not invertible. Feature extraction represents

many-to-one mapping (from the object space to a feature

space) and it is not clear as to which shapes share the

same topological representation. Because of the lack

of invertibility of representation, it is difficult to map

statistical quantities back to the object space.

Specific Goals: In this paper, our goals are to develop

tools for a comprehensive statistical analysis of complex

shapes with graphical/network structures. Specifically,

we seek: (1) a shape metric that is invariant to the

usual shape-preserving transformations, (2) registration of

points across objects, (3) computation of geodesic paths be-

tween given shapes and (4) computation of statistical sum-

maries – mean, covariance, PCA, etc.– in the shape space

of such objects. These tools, in turn, can be used for anal-

ysis, clustering, classification, and modeling of shapes in

conjunction with other machine learning methods. We re-

iterate that current TDA techniques can not provide several

of these solutions.

Our approach is to view the objects of interest as graphs

(we also call them elastic graphs) – with edges defined by

shapes of curves and nodes by the junctions of these curves.

These graphs are then represented by their adjacency matri-

ces, with elements given by the shapes of the corresponding

edges. Since the ordering of nodes in these graphs and in-

dices in the associated adjacency matrices, is arbitrary, we

model this variability using an action of the permutation

group, and represent each graph as an orbit under this group.

Then, we develop techniques for optimization under this

permutation group (also known as graph matching), com-

puting geodesics and summaries under the induced met-

ric on the Riemannian quotient space, termed as the graph

shape space. The main contributions of this paper as fol-

lows. There is no currently existing geometrical framework

for shape analysis of such graphical objects. While TDA

and other such methods can provide a measure of dissim-

ilarity in shapes, this paper provides statistical quantities

such as mean, covariance, principal modes, etc., for a more

comprehensive shape summarization and modeling.

The rest of the paper is organized as follows. Sec-

tion 2 introduces the mathematical framework for analyz-

ing graphical shapes. In Section 2.2 we discuss the graph

matching problem, followed by computations of shape sum-

maries in Section 3. Sections 4 and 5 present applications

on neurons and brain arteries. In the end, Section 6 con-

cludes the paper.

2. Proposed Mathematical Framework

We now present a mathematical framework for repre-

senting graph objects. The proposed framework can be

viewed as an extension of some previous works on graphs

[8, 13, 17, 18, 19]. However, those past works restricted to

only scalar-valued weighted graphs while we are now con-

sidering full shapes.

2.1. Elastic Graph Representation

We are interested in studying objects that are made of

a number of curves, with arbitrary shapes and placements,

that merge and branch at arbitrary junctions, resulting in

complex networks of pathways. We will represent them

as graphs with nodes corresponding to junctions and edges

corresponding to the shapes of curves connecting the nodes.

Here we assume that any two nodes are connected by at

most one curve. An edge attributed graph G is an ordered

pair (V, a), where V is a set of nodes and a is an edge

attribute function: a : V × V → S . (S is the shape

space of elastic Euclidean curves [37] and is briefly sum-

marized in the appendix.) The shape a(vi, vj) characterizes

the curve between nodes vi, vj ∈ V, i 6= j. Assuming that

the number of nodes, denoted by |V |, is n, G can be repre-

sented by its adjacency matrix A = {aij} ∈ Sn×n, where

the element aij = a(vi, vj). For an undirected graph G,

we have a(vi, vj) = a(vj , vi) and therefore A is a sym-



metric matrix. The set of all such matrices is given by

A = {A ∈ Sn×n|A = AT , diag(A) = 0}. (Here 0 de-

notes a null edge.) Let ds denote the shape (Riemannian)

distance on S . We will use this to impose a metric on the

representation space A. That is, for any two A1, A2 ∈ A,

with the corresponding entries a1ij and a2ij , respectively, the

metric:

da(A1, A2) ≡
√

∑

i,j

ds(a1ij , a
2
ij)

2 , (1)

quantifies the differences between graphs A1 and A2. Un-

der the chosen metric, the geodesic or the shortest path be-

tween two points in A can be written as a set of geodesics

in S between the corresponding components. That is, for

any A1, A2 ∈ A, the geodesic α : [0, 1] → A consists

of components α = {αij} given by αij : [0, 1] → S , a

uniform-speed geodesic path in S between a1ij and a2ij .

The ordering of nodes in graphs is arbitrary, and this vari-

ability complicates the ensuing analysis. As the result, we

need to remove the ordering variability, i.e., the nodes of

graphs should be registered via permutation. A permutation

matrix is a matrix that has exactly one 1 in each row and

column, with all the other entries being zero. Let P be the

group of all n × n permutation matrices with group opera-

tion being matrix multiplication and identity element being

the n × n identity matrix. We define the action of P on A
as:

P ×A → A, P ∗A = P ·A · PT . (2)

Here · implies a permutation of entries of A according to

the nonzero elements of P . The full action P ∗A results in

the swapping of rows and columns of A according to P . It

can be shown that this mapping is a proper group action of

P on A. The orbit of an A ∈ A under the action of P is

given by: [A] = {PAPT |P ∈ P}. Any two elements of an

orbit denote exactly the same graph shape, except that the

ordering of the nodes has been changed. The membership

of an orbit defines an equivalent relationship ∼ on A:

A1 ∼ A2 ⇔ ∃P ∈ P : P ·A1 · PT = A2 .

The set of all equivalence classes forms the quotient space

or the graph shape space: G ≡ A/P = {[A]|A ∈ A}.

Lemma 1 1. The action of P on the set A given in Eqn. 2

is by isometries. That is, for any P ∈ P and A1, A2 ∈
A, we have da(A1, A2) = da(P ∗A1, P ∗A2).

2. Since this action is isometric and the group P is finite,

we define a metric on the quotient space G:

dg([A1], [A2]) = min
P∈P

da(A1, P ∗A2)

= min
P∈P

da(A2, P ∗A1)
. (3)

Let P̂ = argminP∈P da(A1, P∗A2), then A1 and P̂∗A2

are considered to be registered. A geodesic between [A1]
and [A2] under the metric dg is given by [α(t)] where α :

[0, 1] → A is a geodesic between A1 and P̂ ∗A2.

2.2. Graph Matching

The problem of optimization over P , stated in Eqn. 3,

is known as the graph matching problem in the literature.

In the simpler special case where A is a Euclidean space

and edge similarity is measured by the Euclidean norm, the

problem can be formulated as P̂ = argminP∈P ‖A1 −
PA2P

T ‖ = argmaxP∈P Tr(A1PA2P
T ). This particu-

lar formulation is called Koopmans-Beckmann’s quadratic

assignment programming (QAP) problem [25]. One can

use several existing solutions for approximating the optimal

registration [7, 32, 41, 42].

When A represents a more general space, e.g., shape

space S in this paper, some of the previous solutions are not

applicable. Instead, the problem can be rephrased as P̂ =

argmaxP∈P vec (P )
T
K vec (P ), where K ∈ R

n2×n2

is

called an affinity matrix, whose entries kaibj measures the

affinity between edge ab of A1 and edge ij of A2. In this

paper we use the shape similarity between two edges, ob-

tained using the square-root velocity function (SRVF) rep-

resentations [37] while modding out the rotation and the re-

parametrization groups, as affinity:

kaibj =

{

0, if a1ab or a2ij is null

supO,γ〈q1, O(q2 ◦ γ)
√
γ̇〉, otherwise

.

Here q1, q2 denote the SRVFs of the edges ab of A1 and

ij of A2. O is a rotation matrix and γ is a diffeomorphic

reparameterization. (Please refer to appendix for details.)

This formulation is called the Lawler’s QAP probelm [29].

For this formulation, there are several algorithms available

for approximating the solution [9, 12, 30, 31, 44, 46, 47].

In this paper, we use the factorized graph matching (FGM)

algorithm [47] to match elastic graphs.

So far we have assumed that the graphs being matched

are all of the same size (in terms of the number of nodes).

For graphs G1 and G2, with different number of nodes n1

and n2, we can pad them using n2 and n1 null nodes, re-

spectively, to bring them to the same size n1+n2. By doing

so, the original (real) nodes of both G1 and G2 can poten-

tially be registered to null nodes in the other graph.

We present a couple of simple illustrative examples of

this framework in Fig. 2 and 3. In each case we show two

graphs G1 and G2 drawn as the first and the last graphs in

each picture. Then, we show a geodesic path between them

in two different spaces – A and G, i.e., without and with reg-

istration. The deformations between registered graphs, as-

sociated with geodesics in G, look much more natural than

those in A. The edge features are preserved better in the

intermediate graphs along the geodesics in G.



(a) Geodesic in A

(b) Geodesic in G

Figure 2: Example of geodesics in adjacency matrix space

A (top) and graph shape space G (bottom). Colors denote

registered edges across graphs.

(a) Geodesic in A

(b) Geodesic in G

Figure 3: Same as Fig. 2.

3. Shape Summaries of Elastic Graphs

Given a set of graph shapes, we are interested in deriving

some statistical inferences, such as classification, cluster-

ing, hypothesis testing, and modeling. The use of a metric

structure to compute summaries of shapes of graphs is of

great importance in these analyses. We will use the met-

ric structure introduced earlier to define and compute shape

statistics – such as mean, covariance, and PCA – of given

graph data.

3.1. Mean Graph Shapes

Given a set of graph shapes {[Ai] ∈ G, i = 1, 2, . . . ,m},

we define their mean graph shape (Karcher mean) to be:

[Aµ] = argmin
[A]∈G

(

m
∑

i=1

dg([A], [Ai])
2

)

.

The algorithm for computing this mean shape is given in

Algorithm 1.

Algorithm 1 Graph Mean in G
Given adjacency matrices Ai, i = 1, ..,m:

1: Initialize a mean template Aµ.

2: Match Ai to Aµ using FGM [47] and store the matched

graph shape as A∗
i , for i = 1, ..,m.

3: Update Aµ = 1
m

∑m
i=1 A

∗
i .

4: Repeat 2 and 3 until convergence.

Figure 4: Karcher mean of simulated elastic graphs. Left

are four sample graph shapes while right is the mean in G

We present an example of computing mean graphs in

Fig. 4. Here we use four simulated tree-like graphs. They

have the same main branch but different side edges and dif-

ferent node ordering. The simple average does not keep the

original structure. However, the mean in graph shape space

G is an appropriate representative of the samples.

3.2. Tangent Principal Component Analysis
(TPCA) in Graph Shape Space

Graphical shape data is often high dimensional and com-

plex, requiring tools for dimension reduction for analysis

and modeling. In past shape analysis, the tangent PCA has

been used for performing dimension reduction and for dis-

covering dominant modes of variability in the shape data.

Given the graph shape metric dg and the definition of shape

mean Aµ, we can extend TPCA to graphical shapes in a

straightforward manner. As mentioned earlier, due to the

non-registration of nodes in the raw data the application of

TPCA directly in A will not be appropriate. Instead, one

can apply TPCA in the quotient space G, as described in

Algorithm 2. After TPCA, graphs can be represented us-

ing low-dimensional Euclidean coefficients, which facili-

tates further statistical analysis.

An examples of TPCA for graphical shapes is shown

in Fig. 5. The data used here is the same as that in Fig.

4. As we can see from the figure, the first principal vari-

ation mainly comes from changes in shapes of side edges,

since the main edges are essentially the same across all the



Algorithm 2 Graph TPCA in G
Given adjacency matrices Ai, i = 1, ..,m:

1: Find the mean Aµ using Algorithm 1 and find the

matched graph A∗
i , i = 1, 2, ..,m.

2: Get the shooting vector vi of A∗
i on TAµ

(G) (the tangent

space at Aµ) and perform PCA. Obtain directions and

singular values for the principal components.

Figure 5: Variation of simulated elastic graphs along the

first principal direction. The middle one is the mean while

the right sides and left sides are perturbation from mean by

±1,±2 square-root of the first singular value.

Figure 6: Geodesic in G between two neurons.

matched graphs.

4. Real Data Analysis: Neurons

We first show an application of proposed methods from

neuron morphology. The neurons are from hippocampus of

mouse brains [1, 33], downloaded from neuromorpho.org.

Each edge of neurons are curves in R
3.

Under the proposed metric, Fig. 6 shows an example of

geodesic in G between two neurons with different branching

structures. The first one and the last graphs represented the

given two neurons, and the intermediate shapes show points

along the geodesic. One can see intermediate graphs largely

preserve anatomical features across shapes.

We also compute the mean shape of 10 neurons and dis-

play it in Fig. 7. To preserve salient biological structure,

we use the largest neuron in the set as a template and match

all the other neurons to it, when computing the mean. The

middle framed shapes in the picture is the mean neuron,

surrounded by four of the ten sample neurons. Green color

indicates a subset of matched edges. The mean neuron has

relatively smoother edges as compared to sample neurons.

Figure 7: Mean shape of 10 neurons, surrounded by four

sample neurons. Green color denotes the mostly matched

edges.

Figure 8: Same as Fig. 5 but for neuron example.

After the graph shapes are registered, we can obtain the

principal variations using Algorithm 2 and we plot the first

principal variation of neurons in Fig. 8. One can see the

first principal variation mainly comes from the root edges.

5. Real Data Analysis: Brain Arterial Net-

works

In this section, we apply the proposed framework for an-

alyzing the Brain Artery Tree data [6]. Here each observa-

tion is a 3D geometric object that represents the network of

arteries in a human brain. This object is reconstructed from

a 3D Magnetic Resonance Angiography (MRA) images us-

ing a tube-tracking vessel segmentation algorithm [2, 3].

Because of the complex nature of arterial networks, previ-

ous analyses have focused mainly on some low-dimensional

features extracted from the original data. For instance, the

use of Topological Data Analysis (TDA) on this data can be

found in [4].

We study the data from a geometric point of view and

analyze full shapes of these networks. From an anatomical

perspective, it is natural to divide the full network into four

natural components, as shown in Fig. 9. This division

helps us focus on comparisons of individual components

across subjects and also makes the computational tasks

more efficient. The original data has 98 subjects but we



Figure 9: An example of Brain Artery Tree data. The four

components: top, left, bottom, and right are shown in cyan,

black, green, and blue, respectively. Nodes are denoted by

red circles.

(a) Left Components (b) Right Components

Figure 10: Histogram of number of nodes and edge in left

and right components

remove six subjects that are difficult to separate into small

components. In the following analysis, we mainly focus

on the left and right components with sample size 92. In

Fig. 10, we provide some relevant statistics on the numbers

of nodes and edges in the left and the right components.

As these histograms show, the given networks differ

drastically in terms of the numbers of nodes and edges

across subjects. Additionally, there are large differences in

both the shapes and the patterns of arteries forming these

networks. Consequently, the problem of analyzing shapes

of these arterial networks is quite challenging, and has not

been done in a comprehensive way in the past.

Geodesic Deformations: As a first step, we use the

techniques developed in this paper to compute geodesic

paths between arbitrary arterial networks. We show an

example of geodesic between two left components in Fig.

11. In the top row, the first and the last graphs are the two

left components of brain arteries. The intermediate graphs

represent the optimal deformation from one to another

along a geodesic in G. To improve visual clarity we remove

some unmatched edges from the graphs and plot the same

geodesic again in the bottom row. One can use the color

to track the deformation of each edge. These geodesics

are useful in several ways. They provide registrations of

arteries across networks and they help follow deformations

Figure 11: Geodesic between two left components. Top row

is the original graph geodesic in G. For better visualization,

we throw away the unmatched edges and show the geodesic

again in the bottom.

of matched arteries from one network to another.

Mean Arterial Networks: Given 92 sample arterial

networks, it is interesting and useful to be able to compute

their mean shape. To accelerate computation, we approxi-

mated and simplified the process as follows. We basically

registered each graph shape to the largest size graph in

the dataset and used that fixed registration to compute the

mean. This is not quite the optimal registration prescribed

in the mean algorithm but provides a decent approximation.

Figs. 12 and 13 show the mean shapes for the left and

the right components, respectively. In both figures, the

middle framed shape is the mean graph, surrounded by

eight of 92 samples used in the computations. We use

red color to denote some subset of matches edges in the

individual networks and the mean. The mean shapes show

a smoother representation of individual graph shapes and

largely preserve network patterns present in the data.

Effects of Covariates on Shapes: An important use of

shape analysis of artery data is in studying the the effects

of covariates such as gender and age on the brain arter-

ies. Due to the high dimensionality and complex nature

of brain arterial network, we first perform Graph PCA us-

ing Algorithm 2 to project each brain arteries into a low-

dimensional vector space. An arterial network with 197

nodes and 50 discrete points in each edge has a dimension of

3× 50× 197× 197 = 5821350. However, by using Graph

PCA, We use approx. 60 principal components to obtain



Figure 12: Mean of left components of brain artery tree

data. Middle one is the mean of 92 subjects while the sur-

roundings are eight examples. Red edges denotes mostly

matched edges.

Figure 13: Mean of right components of brain artery tree

data. Middle one is the mean of 92 subjects while the sur-

roundings are eight examples. Red edges denotes mostly

matched edges.

over 80% variation in the original data. In order to avoid

the confounding effect of artery size, we rescale edges by

the total artery length. As the result, we can focus on gen-

der and age effects on the shapes of brain arterial networks.

To study the effect of gender on the arterial graph shapes,

we implement a two sample t-test on the first principal

scores and a Hotelling’s T-squared test on the first several

principal scores. The results can be found in Table 1. Al-

though two of the p-values are somewhat low (0.0161 and

0.0419), most of the p-values are high. (We also applied a

permutation test described in the following paragraphs and

obtained similar results.) Thus, we do not find any signifi-

cant difference between shapes of artery networks in female

and male brains. The result is consistent with conclusions

in [4] and [34] although our approach is very different from

those papers. (We note that these two papers reported mul-

tiple different p-values using different methods.) Whether

t test Hotelling’s T-squared test

2 3 4 5

Left 0.0161 0.3528 0.2718 0.3949 0.4553

Right 0.9866 0.2288 0.0419 0.0830 0.1206

Table 1: Hypothesis testing of gender effect on principal

scores of shapes of brain arterial networks.
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Figure 14: High correlation between ages and first principal

scores of shape of arterial networks.

there is an anatomical shape difference between brain arte-

rial networks of female and male subjects remains an open

question.

To study the effect of age on these shape, we studied

correlations between the age and the PCA scores of arte-

rial shapes, and the results are shown in Fig. 14. We found

a strong linear correlation between age and first principal

scores of brain arteries. The correlation coefficients be-

tween left, right components and ages are 0.32 and −0.45,

respectively. Both of them are significant with p-values al-

most 0. This result is similar to some published results in

the literature but obtained using different mathematical rep-

resentations than ours [4, 34]. As mentioned before, we also

use a permutation test to validate the age effects.

We also investigate the effects of covariates arterial

shapes using the shape metric directly. Fig. 15 shows pair-

wise distance matrices for left and right components, using

the shape distance defined in Eqn. 3. (As mentioned be-

fore, we have scaled the edges by the total artery length and

thus the distances quantify only shape differences.) We or-

der the distance matrices by the ages of subjects. The color

pattern of pixels in these matrices show that shape distances

increase with the age (darker red colors are towards bot-

tom right). This implies that the shape variability in brain

arterial networks grows with the age! Another way to vi-

sualize the age effect is by projecting the distance matrix

into a two-dimensional space using Multidimensional scal-

ing (MDS) [26]. Now it is clear to see the separation be-

tween shapes before and after the age 50.

To further validate the gender and age effects, we imple-

ment a permutation test [14] based on shape distances. The
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(a) Distance matrix of left components
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(b) Distance matrix of right components
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(d) MDS plot of right components

Figure 15: Distance matrices and MDS plot. The axes of

distance matrices are labeled by ages.

basic idea is, for each time, we randomly assign the brain

arteries into different groups (male and female, older than

50 and younger than 50) and compute the test statistics. We

repeat this process 30000 times and see what is the p-value

for the current test statistics. The result can be found in

Fig. 16. While the gender effect still remains unclear, one

can see a significant age effect on the brain arteries. Note

the pairwise distance is compromised because of computa-

tional issue. Here we first match each graph to the largest

graph in the dataset and compute pairwise shape distances

without any further matching.

6. Conclusion

This paper introduces a comprehensive geometrical

framework for analyzing shapes of complex networks and

graphs. These graphs are characterized by edges that are

shapes of Euclidean curves and shape analysis involves reg-

istration of nodes/edges across graphs. This framework

can handle graphs that exhibit both topological variabil-

ity (different number and connectivities of edges) and ge-

ometric variability (different shapes of edges). The devel-

oped framework provides tools for quantifying shape dif-

ferences, computing average shapes, discovering principle

modes, and testing covariates. These tools are illustrated

on complex objects such as neurons and brain arterial net-

works. Future research in this area involves improvement

of optimization tools for graph matching, and studying re-

gression models in data involving human brain networks.

(a) Gender effect on left components (b) Gender effect on left components

(c) Age effect on left components (d) Age effect on right components

Figure 16: Permutation test of gender and age effects. Right

dots represent the test statistics of current sample.

A. Elastic shape analysis of curves

The edges in elastic graphs are Euclidean curves and to

analyze their shapes we use elastic shape analysis frame-

work described in [38] and several other places. Let β(t) :
[0, 1] → R

n, n = 2, 3 represent a parametrized curve. In

this paper, β represents an edge connecting two nodes of

an elastic graphs. Define the square root velocity func-

tion (SRVF) of β as: q(t) = β̇(t)√
|β̇(t)|

, if |β̇(t)| 6= 0 and

zero otherwise. One can recover β from its SRVF using

β(t) = β(0) +
∫ t

0
q(s)|q(s)|ds. If β is absolutely continu-

ous, the SRVF is square-integrable, i.e., q ∈ L
2. It can be

shown the L2 norm on SRVF space is an elastic Riemannian

metric on the original curve space. Therefore, one can com-

pute the elastic distance between two curves β1, β2 using

d(β1, β2) = ‖q1 − q2‖L2 .

One of the most import challenges in shape analysis is

registration issue, i.e., finding the point correspondence be-

tween curves. Let γ : [0, 1] → [0, 1] represent a boundary-

preserving diffeomorphism. The action of diffeomorphism

group on an SRVF q is q ∗ γ = (q ◦ γ)
√
γ̇. Next, one

mods out the shape-preserving group actions: rotation and

re-parametrization as follows. Each shape can be repre-

sented by orbits formed by rotation and re-parametrization

group: [q] = {O(q ∗ γ)|O ∈ SO(n), γ ∈ Γ}. The space

of [q] is shape space S . The metric for shape space is:

ds([q1], [q2]) = infγ,O ‖q1 − O(q2 ∗ γ)‖. One can use this

metric to define and compute averages of shapes of curves

and their PCA analysis as described in [38].
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[2] Burcu Aydın, Gábor Pataki, Haonan Wang, Elizabeth Bullitt,

James Stephen Marron, et al. A principal component analysis

for trees. The Annals of Applied Statistics, 3(4):1597–1615,

2009. 5

[3] Stephen R Aylward and Elizabeth Bullitt. Initialization,

noise, singularities, and scale in height ridge traversal for

tubular object centerline extraction. IEEE transactions on

medical imaging, 21(2):61–75, 2002. 5

[4] Paul Bendich, James S Marron, Ezra Miller, Alex Pieloch,

and Sean Skwerer. Persistent homology analysis of brain

artery trees. The annals of applied statistics, 10(1):198,

2016. 5, 7

[5] Peter Bubenik. Statistical topological data analysis using

persistence landscapes. The Journal of Machine Learning

Research, 16(1):77–102, 2015. 2

[6] Elizabeth Bullitt, Donglin Zeng, Guido Gerig, Stephen Ayl-

ward, Sarang Joshi, J Keith Smith, Weili Lin, and Matthew G

Ewend. Vessel tortuosity and brain tumor malignancy: a

blinded study1. Academic radiology, 12(10):1232–1240,

2005. 2, 5

[7] Terry Caelli and Serhiy Kosinov. An eigenspace projec-

tion clustering method for inexact graph matching. IEEE

transactions on pattern analysis and machine intelligence,

26(4):515–519, 2004. 3

[8] Anna Calissano, Aasa Feragen, and Simone Vantini. Pop-

ulations of unlabeled networks: Graph space geometry and

geodesic principal components. 2020. 2

[9] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. Bal-

anced graph matching. In Advances in Neural Information

Processing Systems, pages 313–320, 2007. 3

[10] Ian L Dryden and Kanti V Mardia. Statistical shape analysis:

with applications in R, volume 995. John Wiley & Sons,

2016. 1

[11] Adam Duncan, Eric Klassen, Anuj Srivastava, et al. Statis-

tical shape analysis of simplified neuronal trees. The Annals

of Applied Statistics, 12(3):1385–1421, 2018. 1

[12] Steven Gold and Anand Rangarajan. A graduated assignment

algorithm for graph matching. IEEE Transactions on pattern

analysis and machine intelligence, 18(4):377–388, 1996. 3

[13] Xiaoyang Guo, Anuj Srivastava, and Sudeep Sarkar. A quo-

tient space formulation for statistical analysis of graphical

data. arXiv preprint arXiv:1909.12907, 2019. 2

[14] Charles Hagwood, Javier Bernal, Michael Halter, John El-

liott, and Tegan Brennan. Testing equality of cell populations

based on shape and geodesic distances. IEEE Transactions

on Medical Imaging, 32(12), 2013. 7

[15] Haibin Hang, Facundo Mémoli, and Washington Mio. A

topological study of functional data and fréchet functions of
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