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Abstract

In this work we propose a geometric deep convolutional
auto-encoder (DCAE) for the purpose of gait recognition
by analyzing time-varying 3D skeletal data. Sequences are
viewed as time-parameterized trajectories on the Kendall
shape space S, results of modding out shape-preserving
transformations (scaling, translations and rotations). The
accommodation of ConvNet architectures to properly ap-
proximate manifold-valued trajectories on the underlying
non-linear space S is a must. Thus, we make use of geomet-
ric steps prior to the encoding-decoding scheme. That is,
shape trajectories are first log-mapped to tangent spaces at-
tached to the shape space at a time-varying average trajec-
tory [, then, obtained vectors are transported to a common
tangent space T,,)(S) at the starting point of p. Without
applying any prior temporal alignment (e.g. Dynamic Time
Warping) or modeling (e.g. HMM, RNN), the transported
trajectories are then fed to a convolutional auto-encoder
to build subject-specific latent spaces. The proposed ap-
proach was tested on two publicly available datasets. Our
approach outperforms existing approaches on CMU gait
dataset, while performances on UPCV K2 are comparable
to existing approaches. We demonstrate that combining ge-
ometric invariance (i.e. Kendall’s representation) with our
data-driven ConvNet model is suitable to alleviate spatial
and temporal variability, respectively.

1. Introduction

During this decade, the automatic estimation of 3D hu-
man body skeletal data in video streams, either RGB or
RGB-D, have received a particular attention. As a result,
real-time and accurate algorithms have been developed and
released [25, 24, 32]. The analysis of such data (time-series
shape data) allows human behavior understanding as action
and activity recognition [7, 29, 30], gait recognition, gender
classification, ctc. The abundance of this kind of data rc-
cently have opened the gate to explore and study their static
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and dynamic properties and make use of them in applica-
tion fields as health-care and well-being, gaming, action
and activity recognition [30, 7, 29], gait analysis [22] and
recognition [5, 6, 13]. Estimated 3D skeletal data have the
advantage to handle the camera projection problem often
present in the silhouette-based approaches [21]. Extracted
Silhouettes are thus distorted by projection on the image
plan, which makes their analysis view-dependant. How-
ever, with respect to the camera scenes and views, esti-
mated 3D data yield many variations that lead to an un-
reasonable analysis if used in a raw state. Therefore, one
needs to filter out shape-preserving transformations in order
to acquire suitable invariance properties [7] required in an-
alyzing 3D skeletons. The elegant and rigorous Kendall’s
approach [18] ends up with a set of shape orbits invari-
ant to scaling, translation and rotations. However, apply-
ing machine learning approaches (such as Deep learning)
on such manifold-valued trajectories is not straightforward
due to the non-linearity of the underlying space over which
the use of euclidean geometric tools and the euclidean met-
ric remains irrelevant. Another challenging problem when
comparing shape trajectories in general and gait sequences
in particular is the temporal variability. That is, different
gait sequences of the same person could be performed at
different execution rates. They could also exhibit a tem-
poral shift with each other. This is a classical problem in
computer vision, often solved using a temporal warping
of the sequences in hand prior to the classification. Dy-
namic Time Warping and its variants are the most popular
solutions (see for example [30]). More elaborated metrics
have been proposed as in [7] based on T-SRVF represen-
tation and used in [13] for gait recognition. Another al-
ternative will be to use temporal models in the classifica-
tion schema as Hidden Markov Models (HMM) or Recur-
rent Neural Networks (RNN). In this work, we demonstrate
that a Deep Convolutional Autoencoder (DCAE) trained on
gait shape trajectories handles temporal variations. When
shape-preserving transformations (scaling, translation and
rotation) are filtered out from the static 3D shape repre-



sentation, the temporal variations, as well as other intra-
class variations, are accounted using our data-driven model,
termed DCAE. To illustrate it experimentally, we consider
here the specific problem of gait recognition from 3D skele-
tal data. Gait sequences are mapped to a shape space
S which builds up time-parameterized trajectories termed
a(t), where t € [0,1] is the time domain. Coming back to
the encoding-decoding problem of shape trajectories a(t),
one could view it as solving the following loss function [s,

ts(e) 2 mip [ dsta(0). f(o(a0) )
that is, one seeks to optimally approximate an arbitrary in-
put a(t) by &(t) = f(g(a(t))), grounding on a forward
process g(.) by which we aim to project the input trajec-
tory into the low-dimensional latent space and a backward
process f(.) by which the input is reconstructed based on
its latent representation. The main problem here lies in the
fact that the function f uses linear combinations of the in-
puts which will violate the non-linear structure of S and
obtained reconstructions could step outside the shape mani-
fold S. To overcome this problem, we propose in this work
an intrinsic approach grounding on geometric tools explic-
itly defined on the Kendall shape space of 3D skeletal data
[7]. We first compute a sample trajectory pu(t), similarly
to [13]. Second, all skeletal shapes are log-mapped to the
tangent bundle 7,4 (S) then transported to a common tan-
gent space attached to S at the initial point u(0). Once
done, transported trajectories live on the same vector space
and conventional encoding-decoding architectures can be
safely applied on the reference tangent space 1),y (S). It
is possible to project back transported trajectories to the
space of interest S and get approximated reconstructions
&(t). To summarize, the main contributions of this work
are three-folds: (1) A novel geometric deep convolutional
auto-encoder (DCAE) approach for classifying 3D skeletal
shape trajectories. To our knowledge, this is the first attempt
to accommodate Deep Learning techniques to the Kendall’s
shape space. The proposed approach shows robustness to
intra-class spatio-temporal variations; (2) A comprehensive
study of Deep Convolutional Autoencoder (AE) trained on
3D skeletal data in comparison with other three variants
including Gentle AE, Deep AE, Convolutional AE for the
purpose of 3D gait recognition; (3) Extensive experiments
on two publicly available datasets, comparative studies with
the state-of-the-art and an emphasize on important parame-
ters as the temporal resolution of shape trajectories, the size
of the convolution filter and the contribution of shape dy-
namics.

The rest of the paper is organized as following. In Sec.2,
we briefly review existing solutions for 3D Gait recognition
as well as Deep Learning approaches applied to 3D skele-
tal data. Sec.3 introduces our trajectory representation of

3D gait sequences. It reviews geometric properties of the
Kendall’s shape space as well as key operations. Our geo-
metric encoding-decoding schemes and related 3D gait clas-
sifiers are detailed in Sec.4. Experimental results and eval-
uation discussions are reported in Sec.5. Some conclusions
and perspectives are drawn in Sec.7.

2. Related Work

In this section, we review recent 3D gait recognition ap-
proaches and Deep Neural Network techniques applied to
3D skeletal data acquired using both MoCap sensors includ-
ing Kinect-like sensors.

3D Gait Recognition — The majority of existing 3D gait
recognition approaches are based on handcrafted features.
For instance, based on a 3D volumetric (voxel) gait dataset,
authors in [4] have extracted both gait structural and dynam-
ics features by generating an energy map between the data
and a structural gait model. Recently, several approaches
[1, 2, 6,26, 20] have exploited 3D skeletal data instcad of
silhouettes or volumetric data. Presenting a great potential,
this kind of data is independent of the illumination condi-
tions, robust to self-occlusions and to pose variations. They
are also source of relevant features as the anthropometric
measurements (body’s height, length of arms and legs, etc.)
and kinematic features (the stride length, evolution of some
angles, gait patterns, body’s velocity, etc.). In literature,
these features are either used separately or fused to provide
a gait signature used for recognition. For example, Preis
et al. [23] extracted thirteen gait features where eleven are
static features of the human body (height, length of legs,
length of both upper arms, etc.) and two are dynamic fea-
tures that are step length and the body’s speed. In addition
to these latter features, Sinha et al. [26] used other gait pa-
rameters such as areas of upper and lower body and inter-
joint distances. Kwolek et al. [20] also computed inter-joint
distances along with bone rotations and person’s height.
Horizontal distances and vertical ones between joints during
one gait cycle were considered in [1]. Statistical tools like
the mean and standard deviation were used in [9] and [2]
on extracted gait attributes such as joint angles, inter-joint
distances or lower limbs angles (hips, knees and ankles) in
order to get gait descriptor sets. In [6], as machine learning
techniques are well used in 2D gait recognition approaches,
Balazia et al. exploit some of these techniques to get better
gait classification results. In fact, gait features are learned
by maximizing the inter-class separability via a modifica-
tion of Fisher’s Linear Discriminant Analysis with Maxi-
mum Margin Criterion (MMC). More recently, Hosni et al.
have proposed in [13] to model 3D gait cycles as trajecto-
ries on the Kendall’s shape space. Grounding on the elas-
tic metric introduced in [7], they extended the well-known
functional PCA on shape trajectories mapped onto the tan-
gent bundle attached to the shape manifold on an arbitrary



average gait trajectory. In addition to this latter work, as
Kendall’s space is a Riemannian manifold, many other re-
searchers actually dealt with skeletal sequences depending
on Riemannian modeling assumptions. In fact, as already
cited, Ben Amor et al. [7], through introducing the elas-
tic metric, opted to parallel translate trajectories lying on
the Kendall space to a reference tangent space attached to
the underlying space at a fixed point. One can also cite [30]
where authors modeled skeletal sequences as trajectories ly-
ing on the Special Euclidean (Lie) group SE(3)™, then they
were mapped the tangent space attached to the Lie group at
the identity i.e. Lie algebra se(3)™ where they were ex-
ploited for action recognition.Working on the same mani-
fold, the approach in [3] is based on the TSRVF (Transport
Square-Root Velocity Function) representation [28] offer-
ing a metric with good properties to overcome the inherent
space non-linearity and temporal variability. By overcom-
ing the two latter challenges, they adapted some machine
learning methods such as PCA (i.e. Principal Component
Analysis) to the underlying space. Recently [16] have col-
lected two datasets called UPCV and UPCV K2. They pro-
posed to capture the deviation of 3D poses with respect to
a global model, in addition to intra-sequence pose variabil-
ity. They then map extracted features in a RKHS (Repro-
ducing Kernel Hilbert Space) of Euclidean and Riemannian
features fused using the Handmard product. The identity
classification is based on a kernelized version of SRC.

Deep Neural Networks on 3D Motion Data — Other
approaches to gait recognition and 3D motions in general
are based on deep learning and does not use any hand-
crafted features. All features are trained via the neural
networks that have shown their great power in learning
compact and discriminative representations for images and
videos, thanks to their ability to perform nonlinear com-
putations. In particularly, convolutional neural networks
are now very popular in different computer vision prob-
lems related to 3D skeletal data and achieve highest re-
sults. Based on [27], their first application to gait recog-
nition was made not long ago in [8] using spatio-temporal
cuboids of optical flow as input data. Earlier, while con-
sidering a 3D human body sequence as time seric of the
joints, many other researchers employed recurrent neural
networks (RNNs) with Long-Short Term Memory (LSTM)
neurons [[11],[33]]. These architectures presents difficul-
ties to memorize the information of the entire sequence with
many timesteps [31]. Holden et al. [12] tried to exploit
3D skeletal data jointly with a Convolutional autoencoder
in order to provide a motion manifold permitting synthe-
sis of characters movements. They also used an integration
process by stacking a feed-forward network on top of the
autoencoder for the sake of producing realistic motion se-
quences. As a new trend, other works were interested in
applying deep learning on non-Euclidean geometric data.

For instance, [14] incorporated the Lie group structure into
a deep network architecture to learn more appropriate Lie
group features for 3D action recognition. The main draw-
back of this approach is that while it allows to extend CNNs
to a non-Euclidean domain, it does not allow applying the
same model across different domains, since the convolution
coefficients are domain-dependent. Herein, inspired by the
work of Holden et al. [12], we are interested in provid-
ing a novel method that mixes non-euclidean structure with
a deep learning framework. In particular, the main differ-
ences of our approach compared to [12] are: (i) they used
skeletal data without any manifold assumptions while we
modeled them as time-parameterized shape trajectories ly-
ing on a non-linear space as described in Sec.3; (ii) they
exploited the latent representation for synthesis whereas we
use theses features obtained through the encoding-decoding
optimization to classify different persons identities (Sec.4).

3. Skeletal Kendall’s Shape Trajectories

Among promising approaches for skeletal motion data
representation and analysis, one can cite the Kendall’s 3D
shape trajectory approach proposed in [7] and successfully
extended in [29, 13]. The underlying representation build
rigorously a shape space where shape-preserving transfor-
mations (i.e. scaling, translations and rotations) are filtered
out. To reach temporal rate-invariance and shift-invariance,
Ben Amor et al. [7] have introduced an elastic metric which
accounts for temporal stretching and compression of shape
trajectories.
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Figure 1. Key geometric steps prior to the Encoding-Decoding us-
ing Deep Convolutional Neural Networks. The left panel shows
a set of shape trajectories *(¢) and their mean trajectory p(t)
(dashed line). In the right panel, v*(¢), the log-mapped versions of
a*(t) to the tangent spaces around the mean trajectory, are trans-
formed into v),; (0 (t), element of T}, (o) by parallel transla-
tion.

This rate-invariant metric allowed Hosni et al. [13] to
adapt the well-known fPCA (functional Principal Compo-
nent Analysis) on shape trajectories and obtain uncorrelated
latent variables as new representations. Taking a differ-
ent direction, [29] have introduced on top of the Kendall’s



representation a Sparse Coding and Dictionary Learning
(SCDL) approach to effectively represent shape trajectories
using time-series with suitable sparse and discriminatory
properties. To alleviate the temporal variability, the clas-
sification task uses Dynamic Time Warping followed by a
one-vs-all SVM classifier or applied a bidirectional LSTM
(Bi-LSTM). In this work, in contrast, we propose geometric
coding-decoding (AutoEncoder) Neural Networks for ef-
fective 3D gait recognition without a prior definition of any
clastic metric [7] or temporal warping (c.g. DTW) [30, 29].
Applying AE, or any advanced Deep Convolutional archi-
tecture, is not straightforward as trajectory representations
lie to a shape space S, a non-linear orbifold (set of orbits
of a preshape space C). To overcome this constraint, we ex-
ploit geometric properties of the underlying shape space,
in particular the parallel translation, the exponential and
the logarithm map applications, which will be described in
this section. Formally, we shall approximate a sequence
of discrete 3D skeletal data X;—q 1,7,2/7..,1 With a contin-
uous smooth time-parameterized trajectory «(t), with ¢ in
a time domain [0,1]. At any time ¢, scaling, translation
and rotational effects are filtered out to keep only shape-
relevant information in [«(t)]. After removing the transla-
tion then the scaling, trajectories lie to the unit sphere of
R3(™~1) where n denotes the number of landmarks — it is
termed a preshape space C. The shape space is defined by
S = C/S0(3) the quotient space of C by the rotation group
of R3. For further details on this methodology, we refer
the reader to [18, 10] and [7]. Our current goal is to make
use of Deep Convolutional Autoencoders for the classifica-
tion of gait shape trajectories. To this end, we propose to
parallel translate log-mapped shape trajectories to a fixed
tangent planc attached to S at the origin of a pre-computed
average trajectory (Fig.1) prior to train our Convolutional
Autoencoder. In the following, we provide definitions of
some useful tools such as tangent plane to S, Exponential
and Logarithm maps, and the parallel translation operation.

— Tangent space to S — The tangent space attached to
the pre-shape space at X € C is given by Tx(C) = {V €
Cltrace(VTX) = 0}. Hence, the tangent plane to S at
[X] can be defined as, Tix((S) = {V € Cltrace(VTX) =
0, trace(VTXA) = 0}, where A is any skew-symmetric
matrix of size 3 x 3. The first condition makes V' tangential
to the preshape space while the second condition imposes
its orthogonality to the rotation orbit. Together, they guar-
antee V' to be tangent to S. For convenience, the tangent
space Tjx)(S) is identified with R*"~7.

- Exponential map — for V' € Tjx(S), the Exponential
function expix;(.) : Tjx)(S) — S is defined as,

sin(f)

expix)(V) = |cos(0) X + 0

V. 1)

where 0 = /V,V = \/trace(VVT).

— Logarithm map — the inverse of the Exponential map
exp[_Xl](.) : 8 = Tix)(S), is given by V,

0

V = eXp[;(l]([Y]) - sin(6)

(YO —cos(0)X) (2)
with # = cos !(trace(X(YO*)T)). Here, O* is the
optimal rotation needed to register ¥ to X: O* =
argminge so(3) | X — Y O||3. O* is found via a Procruste
Analysis [10]. This 6 is also called Geodesic distance as
it quantifies the length of a geodesic (i.e. shortest) path
along the space that connects a source shape [X] € S to a
target shape [Y] € S.

— Parallel Translation: Additionally, later on, we will
also need to transport tangent vectors from arbitrary points
in S to a reference shape termed [«(0)] € S. This repre-
sents transfer of instantaneous deformation from one source
shape to another shape while respecting the geometry of the
shape space. The parallel translation of tangent vectors,
along a curve, is given by an ODE, as described in [17].
While one can use a numerical implementation with dense
time steps to solve this ODE, we follow [7] and use a coarse
approximation in this paper, to gain speed. For shapes [X]
and [Y], and a tangent vector V' € Tx1(S), an approxima-
tion of the parallel transport of V' to [Y], along a geodesic
connecting [X] and [Y], is given by Eq.3,
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In addition to these operations, one nceds to define an
average gait trajectory. Following [7], we compute a sam-
ple average trajectory u(t) as a sequence of cross-sectional
mean shape (Karcher mean of a set of shapes [X;] [10]) at
each time t of temporally aligned 3D gait trajectories by

minimizing Eq.(4). N

(t) = a{rgminst([X], [Xi])? “

Xles i
4. Encoding of Transported Gait Trajectories

Drawing from the success of principal component anal-
ysis as a feature reduction algorithm combined with the
breakthroughs of Convolutional neural networks (CNNs) in
features extraction and classification, we propose to com-
bine geometric tools related to the kendall’s shape space
with CNNs’ power in particular Autoencoder architech-
tures.

Based on the definitions cited in the previous section
(Section. 3), we present here the key geometric steps prior
to the Encoding-Decoding steps, as illustrated in Fig.1. For
that, let {a*(t)} be a set of skeletal shape trajectories resam-
pled to be of a fixed temporal length. Again, this operation
is inherited from the framework of [7]. Geometric opera-
tions followed by the encoding-decoding scheme consist in,



1. Compute a sample average shape trajectory p(t) from
aset {a’(t)}Tr, T, is the training set;

2. Log-map training T} and testing T, trajectories a(t)
to the tangent spaces 7)) (S), using Eq.(2). Let
v(t)" € T,y (S) denote obtained tangent vectors,

3. Parallel translate tangent vectors v*(t) to T}, (o) (S), us-
ing Eq.3. This led to vz’x(t)_m(o)(t), with suitable vec-
tor space properties,

(ix(t)ﬁu(o)(t)’ elements of

(0) With suitable vector space properties,

4. Apply variants of AE on v
T

m

5. If needed, one can go back to the original trajectory
representation via a reconstruction from latent vari-
ables, using the parallel translation (Eq.3) then the ex-
ponential map application (Eq.1).

In that, the encoding-decoding problem of trajectories
a(t) elements of S is turned to encoding-decoding of their
transported version to T}, (o)(S) after log-mapping a(t) into
corresponding tangent bundle. Once done, reconstructed
tangent vectors could be mapped back to the shape space
S to approximate original shape trajectories. As T}, () (S)
is a vector space of the same dimension than S, we shall use
conventional architectures of Autoencoders that will be de-
scribed in the following items of this section. We highlight
the fact that, prior to the aformentioned steps, no temporal
synchronization is applied to the gait trajectories in contrast
to [13] that temporally aligned them in order to make in-
ference interpretable while employing functional principal
components analysis.

Hereinafter, we provide more details about the proposed
encoding-decoding problem notably about steps 4. and 5.
Actually, when adapted to our a(t),t € [0, 1], shape trajec-
tories on S, it could be seen as a minimization problem of
the following loss function,
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The above formulation is now well adapted to S tak-
ing into account that the encoding function C' reflects the
encoding-decoding processes that enable the reconstruction
of any input trajectory; in other words, C needs to approx-
imate f o g. In the Euclidean case, C' defines linear com-
binations of some filter weights matrix W. However, us-
ing this operator on shape trajectories will result in out-
puts that steps out of the shape space S. Here, the distance
dr = [, ds([X(t)],[Y(t)]), is well adapted if C(a(t), w, b)
is a trajectory on the same manifold S which is not neces-
sary the case.

Therefore, translating the encoding-decoding problem to
Kendall Shape Space can’t be directly done. This is mainly
due to the non-linear geometry on the underlying space. A
seemingly straightforward method to overcome this prob-
lem is via an intrinsic approach by applying the above men-
tioned steps from 1 to 3 described in section.3. Conse-
quently, recasting Eq.(5) according to this embedding, re-
sults in

I{;lvill} 0806y () () — f(g(vfx(o—m(o)(t)ﬂg (©)

a(t)>p(0)
to note the transported version of the trajectory «(t) to
T,(0)(S). We are interested in training the deep convolu-
tional variant of the autoencoding network. As we jointly
optimize the parameters of the encoder g and decoder f
over the least-squares reconstruction cost Eq.(6), we need to
precise these two operations to train the parameters taking
into account that 9°(t) € R¥"*(3N) with F is the temporal
resolution and N is the number of 3D skeleton landmarks.
Thus, in our experiments ¥’ (¢) are reshaped to stacked 1-D
trajectories.

As depicted in Figure. 2, Deep Convolutional Autoen-
coder consists in three alternations between a 1D convolu-
tion layer and a 1D maxpooling layer for the encoder and
in three alternations between an 1D upsampling layer and
a 1D convolution layer for the decoder also with the hyper-
bolic tangent as an activation function. More specifically,
for each alternation, given the convolution operator , max
pooling operator 2, filter weights W, and biases b., the en-
coding operation is given by the following.

For better clarity, we will use o% instead of v

= g(o'(t)) = QTanh(3'(t) * WE +bE)) ()

where 2 allows the filters to express a degree of tempo-
ral invariance by reducing the temporal resolution to only
representative features [12]. As for the decoding operation,
considering the convolution operator *, the upsampling op-
erator P, filter weights W, and biases by, it can be written
as follows,

Flg(@' (1)) = Tanh(Y_ ®(h*) « Wi +b5) (8
keH

It is as though we are reconstructing the input data by con-
volving trained filters with latent feature maps.
Accordingly, the autoencoder network, while optimizing
Eq. 5 in the training phase, will allow the shape trajecto-
ries whether they belong to the training or the testing set
to be reconstructed from the latent variables by using the
parallel translation (Eq.(3)) then the exponential map appli-
cation (Eq.1).
Figure. 3 displays an arbitrary trajectory o (from CMU)
and its reconstruction f(g(«)) using our DCAE. The dis-
tance ls(«) = 0.084 on S is quite low. The trajectories are
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Figure 2. Deep Temporal convolutional autoencoder network architecture. Note that Conv1D stands for 1D convolutional layer that
convolve only in the direction of time, MaxP and UpS identifies maxpooling and upsampling layers respectively.The number and size
of layers is only for illustrative purposes. Blue layers depict the forward process while the green layers represent the backward process.
The first layer for example contains 94 filters of size 25x93. The first dimension of the filter corresponds to a temporal window, while
the second dimension corresponds to the number of features/filters on the previous layer. Consequently, after convolving and applying
temporal maxpooling, parallel translated tangent vectors v;m N M(O)(t) of size (160%93), the first dimension is divided by 2 while the

second is fixed to the number of filters (80%94).

Original and reconstructed trajectories

Figure 3. Reconstruction (in green) of an arbitrary sequence from
CMU gait dataset (original in blue). Pairwise distance between
trajectories is 0.084.

perfectly synchronized which proves the efficiency of con-
volutional networks in dealing with non aligned shape tra-
jectories. All that being said, we also exploit the forward
process of the autoencoder network as a shared network
to predict the identities labels. Once training is complete,
the filters exhibit strong temporal and inter-joint correspon-
dences. Each filter expresses the movement of several joints
over a period of time which corresponds to a natural, inde-
pendent components of gait motion. In fact, grounding on
the output H that presents optimal latent codes capturing
kind of meaningful representation of our data, we added a
softmax layer which allows us to deal with the classification
task with sufficient predictive power.

5. Experimental Results

In this section, we discuss several evaluation results of
our approach w.r.t. existing approaches. We consider two
publicly available 3D gait datasets — (1) the gait subset
of the Mocap CMU dataset'; and (2) the UPCV K2 col-
lected by the authors of [16]. On the first dataset, we re-

Inttp://mocap.cs.cmu.edu

port the results of our Transported DCAE and three other
variants of the AE (i.e. Gentle AE, DAE and CAE). We
study the impact of the temporal resolution of gait trajecto-
ries and the size of the convolutional filters. On UPCV K2,
we report results of our DCAE. Finally, we report an abla-
tion study which demonstrates the superiority of our Trans-
ported DCAE compared to LSTM/Bi-LSTM and DTW and
shows the importance of the Kendall’s shape representation.

5.1. Evaluation on CMU MoCap Gait Dataset

The CMU MoCap dataset contains different human ac-
tions and daily activities such as walking, running, playing
tennis, etc. It includes 3,843 gait cycles of 54 subjects.
They were extracted and released” by Balazia et al. [6]. We
have followed the homogeneous experimental protocol de-
scribed in [6] to train a shared discriminant network with
variants of AE as described in Section. 4. In details, a 3-
fold cross validation is performed by splitting extracted gait
cycles to three folds: one training set and two evaluation
sets. Each set contains disjoint instances from all the sub-
ject classes. Thus, the data of training set are only used
to compute the average sample trajectories then the evalu-
ation sets are divided into one fold as a test set and nine
others as a gallery set based on nested 10-fold cross valida-
tion. We trained our AE networks for 50 epochs and make
use of the adaptive gradient descent algorithm, i.e Adam.
While evaluating the shared network in terms of Correct
Classification Rate (CCR), our approach outperformed the
state-of-art as reported in Table. 1. Without any temporal
alignment (e.g. DTW) or modeling (using HMM or RNN)
of gait trajectories, an improvement of more than 3% is re-
ported which represents more that 76 additional sequences

2https://gait.fi.muni.cz/#framework



Table 1. Performances on CMU MoCap gait dataset and compari-
son with respect to state-of-the-art.

| Method | Year | # of features | CCR |
Preis et al. [23] 2012 13 0.1300
Sinha et al. [26] 2012 45 0.7666
Ahmed et al. [1] 2014 24 0.7134
Dikovski etal. [9] | 2014 71 0.8926
Kwolek et al. [20] | 2014 660 0.9099
Andersson et al. [2] | 2015 80 0.7787
Balazia et al. [6] 2016 54 0.8314
(PCA+LDA)
Balazia et al. [0] 2016 53 0.9102
(MMCOC)
Hosni et al. [13] 2018 85 0.9223
(fPCA+SVM)

Ours (AE) - 200 0.9412
Ours (DAE) - 128 0.9399
Ours (CAE) - 160x94 0.9354

Ours (DCAE) - 20256 0.9597

correctly classified by our approach. This demonstrates its
ability to compensate for temporal shift and rate variability
which characterize any gait cycles especially compared to
[13] that opted for a registration step when applying func-
tional PCA on shape trajectories.

— Impact of the temporal resolution — We have under-
taken some experiments to study the impact of varying the
temporal resolution on the correct classification rate when
using the different variants of encoding. The graph illus-
trated in the right panel of Figure. 4 shows that up to 80
frames per sequence there is a considerate increase in the
CCR for all the variants to reach a CCR around the 90%
then it varies slightly to attain a CCR value of 95.97%
for the deep convolutional autoencoder with 160-frames se-
quences using filters of width 25. We specify that, for these
experiments, the convolution filter size is proportional to
the temporal resolution, in that 25 temporal width for 160-
frames trajectories, 12 temporal width for 80-frames trajec-
tories and so on. These results prove that we need a suf-
ficient number of frames per sequence in order to capture
fluent gait patterns with stance and swing phases’ details.
It could be said that a natural time evolution of walking is
needed to be able to catch the appropriate dynamics proper-
ties in the latent representation thus improving the classifi-
cation task performance.

— Which contribution of the shape dynamics? — While
modeling the gait sequences as shape trajectories, it is inter-
esting to study the impact of the dynamics in our approach.
As a matter of fact, given 160-frames trajectories, we con-
sider only a portion (10%, 25%, 50%, 75% and 100%) of
the data cither to train the models or to evaluate them. The
obtained results are presented in left panel of Figure. 4. For

10% of the trajectories, the CCR values are the lowest for
each AE variant. Considering 25% and 50% and 100%
of gait trajectories, CCR keep increasing to reach about
95.97%. Based on these observations, one can highlight
the importance of the gait dynamics to predict the subject’s
identity considering the fact that the latent space features are
learned by optimizing the autoencoding objective (Eq. (6)).
Moreover, knowing that stance phase represents 60% of a
stride, it provides most of the discriminating information
but the swing phase also contributes to achieve higher per-
formance. The more dynamics information we get, the bet-
ter is the performance of gait recognition task.

— Impact of the convolutional filter size — We have car-
ried out experiments when varying the convolutional filter
size. We have studied in particular the DCAE (Deep Con-
volutional Autoencoder). We have fixed the temporal reso-
lution to 160 frames per cycle. Reported results are shown
in Table. 2. One can observe that the results are similar for 5
and 15 filter sizes, increase with convolutional filters of size
25 then decreases slightly for sizes 30, 40 and 45. Taking
into account that a gait cycle is a union of a stance phase
and a swing phase and the sequences are not synchronized,
we assume that discriminant information is captured during
the stance phase. So, if we set the filter width is too low, it
is as if we are training the model per frame and if it is the
opposite, it is learning a one block motion.

Table 2. Impact of the convolution filter size in the convolutional
layers in the case of DCAE.

Filter size 5 15 25 30 40 45

CCR (%) | 93.68| 93.85| 95.97| 94.19| 94.79| 94.67

5.2. Evaluation on UPCV K2 Dataset

Unlike the CMU MoCap dataset, the UPCV K2 [16] was
collected using a Kinect V2 sensor. The sensor was placed
at 30 degrees relative to the walking line. The dataset
consists of 300 sequences of 30 subjects (17 males and
13 females). Following the experimental settings reported
in [16], we have split the dataset into 20% of samples
per person for test and the rest 80% for train. Then, we
conducted this experiment for 20 iterations using optimal
parameters obtained from previous experiments reported
in Sec. 5.1. Obtained results are disclosed in Table. 3
with respect to state-of-the-art approaches. They show
respectful performance however it still falls behind [16]
and [13] results. We emphasize that we were able to reach
an accuracy of 92.41% by adding a batch-normalization
layer to the proposed architecture based on [15]. This
have maybe alleviate the over-fitting effect caused by the
reduced size of this database: the model is generalizing
better without learning too well the details and the noise
from training data.
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Figure 4. Left panel: impact of the dynamics (gait ratio) on the recognition accuracy; Right panel: impact of the temporal resolution on the

recognition accuracy for the four AE variants.

Table 3. Evaluation on UPCV K2 dataset.

Method CCR
Preis et al. [23] (from [16]) 0.4563
Kumar et al. [19] (from [16]) 0.9017
Kastaniotis et al. [16] (RK only) | 0.9333
Kastaniotis et al. [16] (EK only) | 0.9617
Kastaniotis et al. [16] (EK+RK) | 0.9705
Hosni al. [13] fPCA+SVM) 0.8842
Ours (DCAE, filter size=25) 0.8500
Ours (DCAE with BN) 0.9241

6. Ablative study

In addition to the above cited investigations, we have
conducted experiments based on DTW+NN (Nearest
Neighbor), LSTM (Long short-term memory) and Bi-
directional LSTM. As shown in Table. 4, the results reveal
the limitations of Recurrent models (LSTM/Bi-LSTM)
since all gait sequences are similar, differently to human
actions or activities. These results also state the interest of
our DCAE compared to a temporal alignment performed
using the well-known DTW algorithm.

Table 4. Comparison of our approach with baseline algorithms
(LSTM, DTW, and without geometric normalisation).

Approach - CCR (%) CMU gait | UPCV K2
LSTM 36.19 18.25
Bidirectional LSTM 46.45 30.83
DTW+Nearest Neighbor 76.10 71.66
No shape normalisation 92.49 68.74
without Parallel Transport 94.47 84.00
| Ours (DCAE) | 9597 | 8500 |

From another perspective, the second part of Table. 4
highlights the merit of our geometric pipeline — shape nor-

malization (Kendall’s representation), Riemannian log-map
and Parallel Translation — and the geometric extension of
DCAE. When applied on translated log-mapped data, our
DCAE achieves higher performances compared to DCAE
applied to skeletal data (i.e. without shape normalization).
An improvement of 3% on CMU (resp. 9% on UPCV K2)
is achieved by the latter one. Besides, we note that the pro-
posed approach performs less better when only applied to
log-mapped data on the tangent bundle. To sum up, the
intra-class variability (both spatial and temporal) is handled
by a two-step strategy. The first one is based on a geo-
metric normalization to filter out shape-preserving transfor-
mations (scaling, translations and rotations) which ends up
with the Kendall’s shape representation. The second strat-
egy, in contrast, allows robustness to temporal variations
based on data-driven invariance.

7. Conclusion and Future work

In this work, we have introduced a novel geometric
deep convolutional encoding-decoding networks on the
Kendall’s Shape Space for the purpose of 3D gait recogni-
tion. We opted for an intrinsic approach to overcome the
non-linearity constraint of geometrically normalized data
lying on the underlying space. To overcome the non-
linearity of the shape space, transporting the original trajec-
tories to a common tangent space was performed. Experi-
mental results on two publicly available datasets show the
competitiveness of the proposed approach compared to ex-
isting studies. When rigid transformations of human shapes
are filtered mathematically (Kendall’s representation), tem-
poral variations are handled thanks to the temporal ConvNet
architecture.
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