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Abstract

The Euler Curve Transform (ECT) of Turner et al. is

a complete invariant of an embedded simplicial complex,

which is amenable to statistical analysis. We generalize

the ECT to provide a similarly convenient representation

for weighted simplicial complexes, objects which arise nat-

urally, for example, in certain medical imaging applica-

tions. We leverage work of Ghrist et al. on Euler integral

calculus to prove that this invariant—dubbed the Weighted

Euler Curve Transform (WECT)—is also complete. We ex-

plain how to transform a segmented region of interest in

a grayscale image into a weighted simplicial complex and

then into a WECT representation. This WECT represen-

tation is applied to study Glioblastoma Multiforme brain

tumor shape and texture data. We show that the WECT rep-

resentation is effective at clustering tumors based on qual-

itative shape and texture features and that this clustering

correlates with patient survival time.

1. Introduction

Tools from algebraic topology have become increasingly

popular in shape analysis applications over the past sev-

eral years. At an intuitive level, the topological perspec-

tive is appealing because algebraic topology is, at its core,

designed to extract tractable algebraic invariants from com-

plex shape data. The dominant technique in topological

shape analysis is persistent homology, which summarizes

multiscale topological features of a shape, where scale is

measured relative to some filtration function. Roughly, for

a continuous function f : X → R on a topological space

X (satisfying certain tameness conditions), one computes

the degree-k homology of the sublevel sets f−1((−∞, r])
and tracks “births” and “deaths” of homological features as

the filtration value r is increased. This produces a sum-

mary statistic for the pair (X, f) called a persistence dia-

gram (see standard references [19, 9]), which can be used

as a proxy for X in shape analysis applications. This ap-

proach has been taken in several shape analysis tasks, with

shape data coming from cortical surfaces [13], brain artery

systems [3], proteins [29] and leaf contours [37]. While

the persistence diagram of a pair (X, f) provides a compu-

tationally tractable shape summary, the complex structure

of the invariant means that it is difficult to incorporate into

statistical models. A simpler invariant is the Euler curve

of (X, f); this is an integer-valued function on R whose

value at r is the Euler characteristic (i.e., the alternating

sum of ranks of the homology groups) of the sublevel set

f−1((−∞, r]).

Given shape data, one must answer the question of which

filtration function to apply in order to apply these topolog-

ical methods. For a shape represented as a simplicial com-

plex K embedded in a Euclidean space R
d, recent work

has advocated for using an ensemble of filtration functions

given by the height function along directions sampled from

the unit sphere Sd−1 [41, 24, 20, 17, 4, 14, 21]. The collec-

tion of all persistence diagrams for these height filtrations

is referred to as the persistent homology transform of K.

Likewise, the collection of Euler curves for all filtration di-

rections is called the Euler curve transform (ECT) for K.

The ECT provides a particularly attractive shape representa-

tion, as its simplistic structure allows it to be easily incorpo-

rated into statistical models. This was the approach taken in

[14], where the ECTs for Glioblastoma Multiforme (GBM)

brain tumor shapes were used as covariates in a model for

survival prediction.

In this paper, we consider a variant of the ECT, which we

dub the weighted Euler Characteristic Transform (WECT).

This object is defined for shape data consisting of an embed-

ded simplicial complex K endowed with an extra weighting

function g. The pair (K, g) is referred to as a weighted sim-

plicial complex. The WECT invariant incorporates both the

shape of K and the weighting function g into a topological

summary. Our motivation for defining this summary also

comes from analysis of brain tumor data, which is natu-

rally given as a segmented grayscale image. The segmented

shape is used to construct a simplicial complex K embed-

ded in R
2, and the grayscale pixel values inside the shape

define the weight function g. While the WECT is a simple
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generalization of the ECT, it is able to efficiently incorpo-

rate vital information that is ignored by the ECT.

1.1. Contributions and Organization of Paper

The proposed mathematical framework is laid out in de-

tail in Section 2. There, we give a precise definition of the

WECT as a generalization of ideas appearing in [41, 4]. We

show that recent work of Ghrist, Levanger and Mai implies

that the WECT is a complete descriptor of weighted sim-

plicial complexes, i.e., two weighted simplicial complexes

have the same WECT if and only if they are equal. In this

section, we also provide comparisons between the WECT

and other techniques appearing in the topological shape

analysis literature. In Section 3, we demonstrate some ap-

plications of the WECT framework. We begin with a toy

example exploring the utility of the WECT in classifying

and registering MNIST digit images. Next, we explore a

real application wherein we study the shape and appearance

of Glioblastoma Multiforme tumors using WECT represen-

tations. Using a simple distance-based clustering scheme,

we are able to distinguish clusters of tumors with low sur-

vival times, purely from imaging data. Open source code

for producing and analyzing WECTs has been made pub-

licly available [27].

2. Mathematical Framework

In this section, we lay out the mathematical framework

for the WECT. We begin by reviewing some basic defini-

tions in order to set notation.

2.1. Simplicial Complexes and the Euler Charac
teristic

Let K be a simplicial complex embedded in some Eu-

clidean space Rd. That is, K is a set of embedded simplices

σ. Each σ is the convex hull of a set of k+1 points in general

position in R
d, where k ≤ d is the dimension of the sim-

plex; we write k = dim(σ). For example, a 0-dimensional

simplex is a point, a 1-dimensional simplex is a closed line

segment and a 2-dimensional simplex is a triangle. The k
points defining σ are called its vertices. The convex hull of

ℓ < k of these vertices is also a simplex of K and is called

an ℓ-dimensional face of σ. If τ is a face of σ, we write

τ < σ. If σ and τ are simplices of K, we require that σ ∩ τ
is also a simplex of K. The maximum dimension of a sim-

plex in K is called the dimension of K, denoted dim(K).
A collection of simplices of K which itself forms a simpli-

cial complex is called a subcomplex of K. The union of

all simplices of K of dimension less than or equal to ℓ is a

subcomplex called the ℓ-skeleton of K, denoted K≤ℓ. The

set of simplices of K of dimension exactly ℓ is denoted Kℓ;

note that Kℓ is not a simplicial complex in general.

Abusing notation, we will alternate between treating

each embedded simplicial complex as a combinatorial ob-

Figure 1. Examples of embedded simplicial complexes commonly

arising in computer vision. A triangulated surface is a two-

dimensional simplicial complex embedded in R
3. An embedded

planar graph is a 1-dimensional simplicial complex in R
2.

ject (a set of simplices) and as a geometric object (a set of

points in R
d). We hope that the interpretation should always

be clear from context.

A simple combinatorial invariant of a simplicial complex

is its Euler characteristic, denoted χ(K). The Euler char-

acteristic is defined as

χ(K) =

dim(K)
∑

d=0

(−1)d ·#Kd,

where #A will generally be used to denote the cardinality

of a set A. The concept of the Euler characteristic gen-

eralizes to more flexible classes of spaces, and it is a ba-

sic fact of algebraic topology that χ is a homotopy equiv-

alence invariant. Simplicial complexes form a convenient

category for computation, since they can be represented ab-

stractly in a purely combinatorial way by keeping track of

all simplices and their inclusions. In this paper, we are fo-

cused on the geometrically motivated case where are sim-

plicial complexes are specified by an embedding into a Eu-

clidean space. While not strictly necessary, the invariants

we describe are most interesting when K ⊂ R
d is a d-

dimensional simplicial complex. Moreover, we restrict our

attention to the finite setting, i.e., #Kℓ is finite for all ℓ.

2.2. Euler Curve Transform

Consider a function f : K → R as an assignment of

a real number to each simplex of K, i.e., the function is

constant along faces. The function is a filtration function if

each sublevel set f−1((−∞, r]) is a subcomplex of K. A

filtration function induces a chain of inclusions of simpli-

cial complexes f−1((−∞, r1]) ⊂ f−1((−∞, r2]) ⊂ · · · ⊂
f−1((−∞, rn]), where r1 < r2 < · · · < rn are the finitely

many (using the assumption that K is finite) values in the

range of f . From this data, one obtains the Euler curve

χf : R → Z defined as χf (r) = χ
(

f−1((−∞, r])
)

.

Given data consisting of an embedded simplicial com-

plex and a relevant function (or more general space and

function where similar concepts can be defined), the Eu-



Figure 2. Glioblastoma multiforme tumor image data. From left to right: axial slice with largest tumor area selected from a 3D MRI

image; binary tumor segmentation mask; segmented tumor image; weighted simplicial complex created from the segmented tumor image.

Observe that the tumor shape data from the segmentation mask is enriched by the overlaid pixel value function extracted from the original

image: the level sets of the pixel value function have interesting shape and topological features.

ler curve produces a multiscale topological summary which

is amenable to classical analysis, and can be viewed as a

simplification of the richer but more computationally taxing

persistence diagram [19, 9]. On the other hand, if a relevant

function is not provided, one is left with the question of how

to filter the simplicial complex.

It was observed in [41] that for an embedded complex

K ⊂ R
d, there is a family of natural filtration functions:

orthogonal projections onto the oriented one-dimensional

subspaces of R
d, which can be parameterized by the unit

sphere Sd−1 ⊂ R
d. The Euler Curve Transform (ECT) of

an embedded simplicial complex K ⊂ R
d is the function

ECTK : Sd−1 × R → Z defined as

ECTK(v, r) = χpv
(r),

with pv : K → R defined on the vertex set K0 by the dot

product

pv(σ) = v · σ. (1)

The function is extended inductively to higher-dimensional

simplices as

pv(σ) = max{pv(τ) | τ < σ}. (2)

In practical computations, one uses an approximation of the

ECT given by sampling finitely many projection directions

from Sd−1 and finitely many filtration values from R.

One can also apply a smoothing operator to each single

variable function ECTK(v, ·) to obtain the Smooth Euler

Curve Transform (SECT). The SECT was applied in [14] to

study Glioblastoma Multiforme tumor imaging data. In par-

ticular, the SECT served as a shape covariate in a Gaussian

process regression model for survival prediction. Another

variant of the ECT—very closely related to the one that we

consider in subsequent sections—was applied in [4] to pro-

vide a topological signature for grayscale image data.

2.3. Weighted Euler Characteristic

Next, suppose that our data consists of an embedded sim-

plicial complex K ⊂ R
d together with a function g : K →

N, where N = {1, 2, . . .}. We refer to the pair (K, g) as a

weighted simplicial complex. The goal is to define a variant

of ECTK , which also incorporates data from g. We note

that weighted simplicial complexes have already appeared

in the literature in various contexts. To the best of our

knowledge, they were first studied in [18], where a homol-

ogy theory was developed. Abstract weighted simplicial

complexes, i.e., those which do not come with a preferred

embedding into a Euclidean space, serve as models for col-

laboration networks [11] and Vietoris-Rips complexes for

weighted point clouds [38]. We provide some examples of

embedded weighted simplicial complexes next.

Example 1. Our main motivating example comes from

grayscale images containing a region of interest, e.g., a tu-

mor image with a segmentation mask, which can be con-

verted into weighted simplicial complexes using Algorithm

1. An example of this process is described in Figure 2.

Example 2. Although the main examples considered in this

paper will be of the form described in Example 1, we note

that there are many other situations where one might wish to

consider weighted simplicial complexes. Given shape data

as a simplicial complex K, one could consider the weight

function g as an annotation or measure of importance. For

example, if K is a complex representing a molecule shape,

the weight function could be used to annotate different atom

types. If K is an anatomical surface, g can be used to indi-

cate regions of importance landmarked by a radiologist.

For a simplicial complex K and a function g : K → N,

we define the weighted Euler characteristic

χw(K, g) =

dim(K)
∑

d=0

(−1)d
∑

σ∈Kd

g(σ).

Remark 1. If g(σ) = 1 for all σ ∈ K, then χw(K, g) =
χ(K). The weighted Euler characteristic is therefore a di-

rect generalization of the classical version.

Remark 2. The same definition essentially appears in [4];

the only difference is that only simplicial complexes which

are finite axis-aligned lattices were considered there.



Algorithm 1 Grayscale Image to Weighted Complex

1: function IMAGETOWEIGHTEDCOMPLEX(A)

2: ⊲ A ∈ N
m×n greyscale image matrix

3: Vcenter = FIND(A 6= 0)
4: ⊲ treat nonzero pixels as coords for vertices

5: V = Vcenter ⊲ initialize vertex list

6: for v ∈ Vcenter do ⊲ add corner vertices

7: append v + [±1/2,±1/2] to V
8: end for

9: V = UNIQUE(V ) ⊲ remove duplicates

10: F = [] ⊲ initialize face list

11: for v ∈ Vcenter do

12: append triangles containing v to F
13: end for

14: E = all resulting edges

15: for f ∈ F containing v ∈ Vcenter do

16: Fw(f) = weight of corresponding pixel value

17: end for

18: for v ∈ V do

19: V w(v) = largest weight of face containing v
20: end for

21: for e ∈ E do

22: Ew(e) = largest weight of face containing e
23: end for

24: return V,E, F, V w,Ew, Fw
25: end function

Remark 3. A generalization of the weighted Euler charac-

teristic is a classical object of study in algebraic geometry;

see, e.g., [28].

We are particularly interested in functions g : K → N

which satisfy the consistency condition g(τ) = max{g(σ) |
τ < σ}. Note that this condition is satisfied by the con-

struction given in Algorithm 1. If a function satisfies this

condition, we say that it is admissible. For functions of this

type, the weighted Euler characteristic has a natural inter-

pretation.

Proposition 1. Suppose that g : K → N is an admissible

function. Then, each superlevel set g−1([z,∞)) is a sub-

complex of K. The weighted Euler characteristic χ(K, g)
is the sum of Euler characteristics of all superlevel com-

plexes of g; that is,

χw(K, g) =
∑

z∈N

χ(g−1([z,∞))). (3)

Proof. We first show that the superlevel sets are sub-

complexes of K. It suffices to show that for any σ ∈
g−1([z,∞)) and τ < σ, we have τ ∈ g−1([z,∞)). This

is easy to see from the definition of an admissible function,

since τ < σ implies g(τ) ≥ g(σ) ≥ z, which implies

τ ∈ g−1([z,∞)). It remains to show that Equation (3) is

true. In what follows, for a logical statement S, let 1S de-

note the indicator function taking the value 1 if S is true,

and 0 if S is false. Then,
∑

z∈N

χ(g−1([z,∞)))

=
∑

z∈N

dim(K)
∑

d=0

(−1)d#{σ ∈ K | g(σ) ≥ z}d

=

dim(K)
∑

d=0

(−1)d
∑

z∈N

#{σ ∈ Kd | g(σ) ≥ z}

=

dim(K)
∑

d=0

(−1)d
∑

z∈N

∑

σ∈Kd

1g(σ)≥z

=

dim(K)
∑

d=0

(−1)d
∑

σ∈Kd

g(σ) = χw(K, g).

2.4. Weighted Euler Curve Transform

We now define the Weighted Euler Curve Transform

(WECT) as a straightforward generalization of the ECT; the

WECT is specifically designed to treat weighted simplicial

complexes. Let (K, g) be a weighted simplicial complex,

and let f : K → R be a filtration function. The weighted

Euler curve associated to f is the function χw
f : R → Z

defined as

χw
f (r) = χw(f−1((−∞, r]), g),

where g is understood by context to be the restriction of g to

the subcomplex f−1((−∞, r]). We then define the WECT

of a weighted simplicial complex (K, g) with K ⊂ R
d as

the function WECTK,g : Sd−1 × R → Z defined as

WECTK,g(v, r) = χw
pv
(r),

with pv the projection function as defined in Equations (1)

and (2). Clearly, if the weight function g is constant and

equal to one, then WECTK,g = ECTK .

As in the case of the ECT, a WECT is represented in

practice by sampling a finite number of directions on the

sphere Sd−1. An example of a WECT is shown in Figure

3. As in [14], when analyzing WECTs, we often preprocess

them to improve robustness, by applying a smoothing oper-

ator. Unlike [14], we do not specify a particular smoothing

operation, and leave the particular method as a hyperparam-

eter in the data analysis pipeline.

2.5. Distance Between WECTs

The WECT of a weighted simplicial complex (K, g) in

R
d is naturally viewed as a family of integer-valued func-

tions WECTK,g(v, ·) : R → Z, parameterized by Sd−1.



Figure 3. The WECT for a weighted simplicial complex con-

structed from an MNIST digit. Each panel shows a single weighed

Euler curve, with the red curve on the left representing filtering by

projection to the vector (−1, 0), and the other curves constructed

similarly by projection onto other directions.

Since K is assumed to be compact, each function is con-

stant outside of a compact subset of R, and we may restrict

each function to this common compact domain; moreover,

given a dataset of weighted simplicial complexes, one may

assume without loss of generality that all WECT functions

are defined on the same compact domain. After applying a

smoothing operator, the smoothed WECT is likewise iden-

tified with a parameterized family of compactly supported

functions of higher regularity. Any metric d on such func-

tional data gives rise to a metric on WECT data, by integrat-

ing the function

v 7→ d(WECTK1,g1(v, ·),WECTK2,g2(v, ·))

over v ∈ Sd−1 with respect to its standard volume form.

The most convenient metric on compactly supported

functions is the one induced by the standard L2 norm (with

respect to Lebesgue measure), denoted ‖·‖L2 . We abuse no-

tation slightly and denote the induced metric on the space of

WECTs also using norm notation as follows:

‖WECTK1,g1 −WECTK2,g2‖L2 . (4)

This notation is in fact warranted, since this metric is equiv-

alent to the one induced by the L2 norm on Sd−1×I , where

I is a compact interval, with respect to the product of the

standard measure on Sd−1 with Lebesgue measure on I .

With this metric, the space of WECTs has a Euclidean struc-

ture, meaning that WECTs are amenable to methods from

functional data analysis and machine learning.

Computationally, a WECT is represented by a finite

number of samples. Taking m samples from R and n sam-

ples from Sd−1, the values of the WECT can be arranged in

a matrix of size m × n. Then, the L2 distance in Equation

(4) can be computed simply as a Frobenius norm, making

the process of comparing WECTs numerically efficient.

2.6. Injectivity of the WECT

Inverse problems in topological data analysis have re-

cently become an active topic of research [36]. The basic

general question is: Is it possible for inequivalent spaces

to be mapped to the same topological summary statis-

tic? This question has recently been tackled for vari-

ous flavors of topological signatures [22, 35, 15, 12] in-

cluding Persistent Homology and Euler Curve Transforms

[41, 24, 20, 17, 4, 14, 21].

The original paper on the ECT [41] demonstrated a

uniqueness result for ECT representations of compact em-

bedded simplicial complexes with an algorithmic proof.

This perspective has been pushed further to provide a suf-

ficient number of direction samples to guarantee injectivity

[17]. It is shown in [4] that for weighted cubical complexes

defined on a regular axis-aligned lattice in R
d, only 2d

generic samples are sufficient and an explicit reconstruction

algorithm is provided. Our Algorithm 1 produces a simpli-

cial complexes which is essentially equivalent to the cubical

complexes of [4], so the reconstruction results their can be

ported over directly to weighted simplicial complexes con-

structed via Algorithm 1.

In anticipation of the possibility of studying non-axis-

aligned weighted simplicial complexes through the WECT

signature, one might hope for a more general injectivity re-

sult. An alternative approach to the injectivity question for

ECTs is given in [24, 17]. In these articles, the theory of Eu-

ler integral calculus is employed to prove injectivity. This

approach is more theoretical and comes with the cost of a

less explicit inversion algorithm. This is balanced by more

general applicability. In particular, one has the following,

quite general, result.

Theorem 1 (Theorem 1, [24]). The map

R : CFc(R
d) → CF(Sd−1 × R)

defined by

(R(g)) (v, r) =

∫

Rd

g(x) · 1x·v≤r dχ(x) (5)

is injective.

We use CF(Rd) to denote the space of constructible

functions; these are functions Rd → Z whose level sets sat-

isfy a certain tameness condition, defined nowadays in the

technical language of o-minimal set theory [2, 16, 24]. The

set CF(Sd−1 × R) is defined similarly. We are restricting

to compactly supported constructible functions CFc(R
d).

This space in particular contains admissible functions de-

fined on embedded simplicial complexes in R
d. The right



side of Equation (5) is defined in terms of Euler integra-

tion. Roughly, one treats the Euler characteristic formally

as a measure, allowing for integration of sufficiently well-

behaved functions. The transform R can be understood as

a topological version of the classical Radon transform used

in tomography applications [25]. Theorem 1 is proved by

appealing to a general result of Schapira on inverting topo-

logical Radon transforms of this type [40]. The authors of

[24] observe that if g is the indicator function for an embed-

ded simplicial complex K, then R(g) is exactly the ECT

for K, whence the ECT is injective [24, Corollary 1]. On

the other hand, if we consider functions g which are admis-

sible weight functions on embedded simplicial complexes,

we obtain the following result as an immediate corollary.

Theorem 2. The Weighted Euler Characteristic Transform

is injective on the space of weighted simplicial complexes.

That is, if (K1, g1) and (K2, g2) are weighted simplicial

complexes in R
d with WECTK1,g1 = WECTK2,g2 , then

(K1, g1) = (K2, g2).

2.7. Comparison to Other Methods

The WECT provides a topological signature which si-

multaneously incorporates shape data and non-geometric

weight data. In the case of image data, by discretely sam-

pling the domain Sd−1 × R one obtains a discrete signa-

ture with a similar memory footprint to the original image.

However, we show experimentally that the WECT provides

a representation, which is more effective at distinguishing

shape features. In this subsection, we compare the WECT

representation to other shape descriptors appearing in the

topological data analysis literature.

Persistent Homology. The WECT representation has sev-

eral benefits over the commonly used persistence diagram

signature. Foremost, it is a nontrivial task to simultaneously

incorporate geometric and non-geometric features into a

persistence diagram. One approach is to use a multiparame-

ter filtration of the dataset [23, 10]. The major drawback of

such an approach is that multiparameter persistent homol-

ogy does not in general admit a convenient analogue of the

persistence diagram statistics used in classical persistent ho-

mology. An alternative approach to incorporating geomet-

ric and non-geometric features into persistent cohomology

was recently proposed in [8], where an enriched barcode

representation is obtained through least squares optimiza-

tion of persistent cohomology cycle representatives.

The simple WECT representation for weighted simpli-

cial complex data also has the benefit of immediately pro-

viding a vectorized topological signature. This allows

straightforward usage of WECT summaries as covariates in

statistical models—this was the main idea of [14], where the

ECT summaries were used as covariates in a Gaussian pro-

cess regression for prediction of survival times of subjects

with Glioblastoma Multiforme brain tumors. This is in stark

contrast to analysis using persistence diagrams or barcodes

from persistent homology. Indeed, a persistence diagram is

an unstructured point cloud in R
2 and care must be taken to

vectorize this signature in order to incorporate it into statis-

tical models. There are several extant vectorization methods

in the literature, including persistence landscapes [6] and

persistence images [1], as well as more straightforward fea-

ture aggregation [3]. Any vectorization of the persistence

diagram space necessarily distorts its natural latent geome-

try, since the canonical metric on persistence diagrams, the

bottleneck distance, is non-Euclidean [7].

Variants of the ECT. When studying simplicial complexes

arising from grayscale image data, one could imagine other

relevant simplicial complexes to which one could apply the

standard ECT. Examples include thresholding pixel values

in the image and building restricted two-dimensional com-

plexes or using the pixel values to build a three-dimensional

simplicial complex. We found these approaches to give

unsatisfactory performance on our tumor dataset, although

they may be viable approaches for other applications.

3. Applications

3.1. Classification of MNIST Digit Images

To understand the descriptive power of the WECT rep-

resentation of image data, we first explore its ability to

classify images from the ubiquitous MNIST handwrit-

ten digit dataset [30]. We use a small subset of 1000

28× 28 grayscale images, evenly distributed over 10 digits

0, 1, . . . , 9. As a baseline, we treat each image as a vector

in R
28×28 and classify them using Support Vector Machines

(SVM) with a linear kernel. Next, we produce WECT rep-

resentations of all digit images. In this experiment, we dis-

cretize S1×R into a 25×50 grid (i.e., 25 Euler curve direc-

tions, 50 points along each curve domain). We also smooth

the Euler curves to improve robustness using a Gaussian

kernel with window size 0.2 · 50 (these particular param-

eters were chosen in a tuning step, but we found that the

results are generally insensitive to the parameter choice).

We then considered each WECT representation as a vector

in R
25×50 and classified using SVM with a linear kernel.

We also produced smoothed ECT representations with sim-

ilar parameters and ran an SVM classification. The ten-fold

cross-validated classification rates from these experiments

are displayed in Table 1.

The classification results show that the WECT represen-

tation of the digit images is adept at encoding and distin-

guishing shape features, while having a similar memory

footprint to the original image representation. It also out-

performs the classification using smoothed ECT represen-

tations. We stress that this classification result is, of course,

not meant to be competitive with those obtained by deep

learning methods. Rather, this simple experiment suggests



Table 1. SVM ten-fold classification performance of vectorized

image, ECT and WECT representations for the MNIST digit data.

Representation Classification Rate

Image R
28×28 87.84 ± 1.42 %

ECT R
25×50 89.88 ± 1.66 %

WECT R
25×50 94.68 ± 1.57 %

Figure 4. T-SNE embeddings of the MNIST image dataset. Left:

Raw image vectors. Middle: Smoothed ECTs. Right: Smoothed

WECTs.

Figure 5. Top: MNIST digit images randomly rotated and trans-

lated. Bottom: The same digits after rigid registration to a tem-

plate digit via the process described in Section 3.2.

that the WECT representation produces an interesting shape

summary for this type of image data, which is computation-

ally efficient and can be trivially incorporated into various

statistical models.

To get a more detailed qualitative picture of the differ-

ences between the raw image, ECT and WECT represen-

tations of the MNIST image data, we also computed t-

SNE embeddings [31] for each representation; see Figure 4.

While class separation is apparent in all three embeddings,

it is immediately evident that the embeddings of the ECTs

and WECTs are much more distinctly clustered. On the

other hand, one can easily see how classification errors arise

in the ECT embedding. We believe that these errors occur

because the ECT is more sensitive to topological differences

between digits, while the WECT smooths these differences

using weight data.

3.2. Rigid and Scale Registration

One benefit of the simplicial complex representation of

image data is that registering over scale and rigid transfor-

mations (translations and rotations) becomes trivial. Once a

pair of images have been converted to weighted simplicial

complexes (K1, g1) and (K2, g2), they can be immediately

registered with respect to translation and scaling by cen-

tering each complex at the origin, and normalizing (treat-

ing vertex locations as vectors). To register over rotations,

one then computes weighted Euler characteristic transforms

WECTKj ,gj , j = 1, 2 and solves the optimization problem

min
R∈SO(2)

‖WECTK1,g1 −R ·WECTK2,g2‖L2 , (6)

where the rotation group SO(2) acts on a WECT by pre-

composition in the S1-coordinate. As was noted above, the

L2 distance is numerically trivial to compute for finite ap-

proximations of WECTs. Thus, the optimization problem in

Equation (6) can be solved quickly by an exhaustive search

over cyclic permutations of the WECT matrix. The mini-

mizing rotation R can then be used to register (K2, g2) to

(K1, g1) with respect to rotations—see Figure 5.

3.3. Analysis of GBM Tumor Data

Glioblastoma Multiforme (GBM) is the most common

malignant brain tumor in adults [26]; for most patients, the

prognosis is very poor: less than 10% of individuals survive

longer than five years and the median survival time is ap-

proximately 12 months [42, 34, 33]. GBM is a morphologi-

cally heterogeneous disease. GBM tumors exhibit complex

structure in terms of their overall shape as well as internal

makeup. Often, dead cells are present inside the tumor and

increased blood flow near the boundary of the tumor [32].

These features result in various pixel value patterns of GBM

tumor images. Thus, characterization of both the shape and

texture of GBM tumors, based on medical imaging data,

is important for disease prognosis as well as survival pre-

diction. While previous studies have considered these two

features separately [5, 39] in the analysis, our approach is

to analyze them jointly under a unified representation.

In this study, we use T1-weighted post contrast magnetic

resonance images (MRIs) of GBM tumors from 63 subjects.

For our analysis, we select a single axial slice with largest

tumor area from each 3D image (the same approach was

taken in [5, 39]), and summarize the tumors’ shapes and tex-

tures via the WECT. For details on the image pre-processing

steps that were used prior to our analysis, see [39].

We use a simple distance-based clustering approach to

analyze the tumor data. First, each of the 63 tumor images

is converted into a weighted simplicial complex using Al-

gorithm 1. To isolate the shape and weight information, all

simplicial complexes are centered at the origin and normal-

ized so that the vertex farthest from the origin is at distance

1. The weights of the simplicial complexes are then nor-

malized to have maximum weight one; this was done to ac-

count for the varying pixel value distributions of the MRIs

for each subject. Next, each weighted simplicial complex

is given a smoothed WECT representation. Specifically, for

each tumor image, we use 25 directions and 50 points along



Table 2. Clusterwise mean and median survival.

Mean 6.7 12.9 20.2

Med. 6.2 9.6 15.2

Figure 6. Weighted simplicial complex representations of tumors

from the low survival time cluster in Table 2.

Table 3. Clusterwise mean and median survival for Figure 7.

Blue Cyan Red Magenta Yellow Green

Mean 18.1 28.0 17.9 19.4 5.0 12.6

Med. 14.9 22.3 14.3 20.4 4.5 10.7

the domain of the Euler curve for each direction. The Eu-

ler curves were smoothed using a Gaussian kernel with a

smoothing window of ten. Next, the L2 distance between

each pair of smoothed WECT representations was com-

puted with registration of the tumor images over rotations

(see Section 3.2). We applied hierarchical clustering with

Ward linkage to the 63 × 63 distance matrix, which first

suggested three natural clusters. The clusterwise mean and

median survival times (in months) are reported in Table 2.

These statistics suggest that the clusters are roughly char-

acterized as low, medium and high survival. Figure 6 shows

tumors from the low survival cluster; they are visually ir-

regular in shape and intensity distribution, which explains

their presence as a distinct cluster. To explore the data in

more depth, we consider the clustering dendrogram with

this cluster of tumors removed. Figure 7 shows this dendro-

gram on the remaining 58 tumors, with six highlighted clus-

ters; mean and median survival times for patients in these

clusters are shown in Table 3. Inspecting the tumors in these

clusters, one can observe various common qualitative shape

and intensity features. For example, the tumors in the blue

and cyan clusters both tend to have intensity patterns with

a ring-like structure near the boundary. The tumors in the

blue cluster tend to have higher irregularity in shape and/or

intensity patterns, see Figure 8.

4. Future Work

Our work suggests several directions for future research.

Driven by the qualitative distance-based clustering results

presented here, we next plan to incorporate WECT repre-

sentations into more sophisticated statistical models for tu-

mor survival prediction. The WECT representation is flexi-

Figure 7. Clustering dendrogram for the tumor dataset with low

survival cluster tumors removed.

Figure 8. Samples of weighted simplicial complex representations

of tumors from cyan (top) and blue (bottom) clusters of Figure 7.

ble in the sense that it provides a summary of any weighted

simplicial complex. We plan to apply this type of analysis

to other shape data, such as weighted simplicial complexes

representing annotated molecule shapes. On the theoretical

side, there are several interesting questions left open. Prin-

cipally, one could attempt to strengthen Theorem 2 on in-

jectivity of the WECT in several ways. In its current form,

it is mainly a theoretical result and an implementation of an

inversion algorithm would be desirable. A practical version

of such a construction would only require information about

weighted Euler curve measurements in finitely many direc-

tions, along the lines of results in [17] on the ECT. It would

also be interesting to have a quantitative version of the injec-

tivity theorem; if WECTs of (K1, g1) and (K2, g2) are close

in L2 distance, does this imply that (K1, g1) and (K2, g2)
are close in some resonable metric, such as Wasserstein dis-

tance (treating a normalization of gj as a probability mea-

sure supported on Kj)?
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[34] Mairéad G McNamara, Solmaz Sahebjam, and Warren P

Mason. Emerging biomarkers in glioblastoma. Cancers,

5(3):1103–1119, 2013. 7

[35] Steve Oudot and Elchanan Solomon. Barcode embeddings

for metric graphs. arXiv preprint arXiv:1712.03630, 2017. 5

[36] Steve Oudot and Elchanan Solomon. Inverse problems in

topological persistence: a survey. In Abel Symposia, 2019. 5

[37] Vic Patrangenaru, Peter Bubenik, Robert L Paige, and Daniel

Osborne. Challenges in topological object data analysis.

Sankhya A, pages 1–28, 2018. 1

[38] Shiquan Ren, Chengyuan Wu, Jie Wu, et al. Weighted per-

sistent homology. Rocky Mountain Journal of Mathematics,

48(8):2661–2687, 2018. 3

[39] A. Saha, S. Banerjee, S. Kurtek, S. Narang, J. Lee, G. Rao, J.

Martinez, K. Bharath, A.U.K. Rao, and V. Baladandayutha-

pani. DEMARCATE: Density-based magnetic resonance im-

age clustering for assessing tumor heterogeneity in cancer.

NeuroImage: Clinical, 12:132 – 143, 2016. 7

[40] Pierre Schapira. Tomography of constructible functions.

In International Symposium on Applied Algebra, Algebraic

Algorithms, and Error-Correcting Codes, pages 427–435.

Springer, 1995. 6

[41] Katharine Turner, Sayan Mukherjee, and Doug M Boyer.

Persistent homology transform for modeling shapes and sur-

faces. Information and Inference: A Journal of the IMA,

3(4):310–344, 2014. 1, 2, 3, 5

[42] B Tutt. Glioblastoma cure remains elusive despite treatment

advances. OncoLog, 56(3):1–8, 2011. 7


