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Abstract

Dimensionality reduction problem is stated as finding

a mapping f : X ∈ R
m → Z ∈ R

n, where n ≪
m while preserving some relevant properties of the data.

We formulate topology-preserving dimensionality reduc-

tion as finding the optimal orthogonal projection to the

lower-dimensional subspace which minimizes discrepancy

between persistent diagrams of the original data and the

projection. This generalizes the classic projection pursuit

algorithm which was originally designed to preserve the

number of clusters, i.e. the 0-order topological invariant

of the data. Our approach further allows to preserve k-th

order invariants within the principled framework. We fur-

ther pose the resulting optimization problem as the Rieman-

nian optimization problem which allows for a natural and

efficient solution.

1. Introduction

We reformulate the classic projection pursuit [17, 24]

algorithm using persistent homology-based loss function.

The projection pursuit seeks for ”interesting” representa-

tions of data, by finding the data’s low-dimensional projec-

tion maximizing the certain loss function, called projection

index.

While there can be a lot of possible indices, the projec-

tion pursuit’s original loss function [17], being the trade-off

between the data spread and local density is designed to pre-

serve clusters in data. This could be naturally formulated as

minimizing the Wasserstein distance dW2
between 0-th per-

sistence diagrams D(X) and D(PTX) – the discrete mea-

sures, quantifying the topology of the data X ∈ R
m and its

orthogonal projection PTX ∈ R
n, in terms of their 0-order

topological invariants – connected components or clusters

min
P∈St(n,m)

dW2
(D(X), D(PTX)), (1)

where St(n,m) is the set of orthonormal m×n matrices,

such that n < m.

The benefit of the new formulation is that it is more gen-

eral, further allowing to preserve the higher-order topol-

ogy invariants of the data with nontrivial topology, with re-

taining the intrinsic clusters present in the data being the

simplest case. More engaging case is the preservation of

k-dimensional topological holes with (k − 1)-dimensional

loops bounding them for k ≥ 1, as this pattern is present

in periodic data. Examples of such data are natural images

under different lighting conditions, 3D shapes under rota-

tions, and sliding window embeddings of periodic time se-

ries [33].

There are various examples of dimensionality reduction

algorithms which are designed to preserve intrinsic geomet-

ric properties of the dataset such as local or global geodesic

[38] distances, affine connections [36], heat kernels [5], and

tangent spaces [43]. We propose to preserve a weaker in-

variant of the dataset under consideration, namely its topol-

ogy and explicitly encode topology preservation in the loss

function. Unlike local-to-global methods which may pre-

serve topology to some extent, we consider directly mini-

mizing the discrepancy between the discrete measures sum-

marizing the global topological invariants of the original

and compressed data. We show the example on model data

for which our algorithm and PCA give two different low-

dimensional representations, preserving the cycle in the for-

mer case and recovering the maximum variance in the latter.

We are aware of two works [41, 31] studying the same

problem of global structure preservation, relying on persis-

tent homology and discrete Morse theory. Our approach

is conceptually simpler and selects the data transformation

from the class of linear transformations, which have the

benefits of interpretability and explicit out-of-sample map-

ping, compared to the algorithm [41] based on landmark

Isomap. While [31] use topology loss as a regularization,

we show that the preservation of the global structure of the

data may be of interest on its own and could lead to mean-

ingful results if paired with local structure preserving trans-

formation.

Our work relies on the results of differentiablity of op-

timal transport [18] and its’ approximations, particularly
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entropy-regularized Wasserstein distance [34] and recently

introduced notion of differentiability of the persistent ho-

mology mapping [20, 35, 19] for the finite metric spaces.

Our model is end-to-end differentiable, thus optimized by

gradient descent, and is composed of three differentiable

mappings, for one of which the parameters lie on nonlinear

matrix manifold, parameterizing the low-dimensional lin-

ear subspace, projection to which maximally preserves the

global topology of the dataset.

Selection of the proper emdedding dimension n is as im-

portant as the projection itself. The intrinsic dimension es-

timation methods [10] could be used to provide the initial

guess to find the dimension of low topology distortion.

The rest of the paper is organized as follows: in section 2

we give our formulation of the topology-preserving dimen-

sionality reduction problem, write down optimization prob-

lem and give the solution of it. In section 3 we give the re-

quired background on topological inference , persistent ho-

mology, Riemannian optimization, and computational opti-

mal transport to keep the paper self-contained, followed by

section 4 which summarizes the algorithm. In section 5 we

present the results of experiments on model data. Section 6

concludes the paper.

2. Problem formulation

Given a dataset X ∈ R
m find a mapping fθ : X ∈

R
m → Z ∈ R

n, where n ≪ m while preserving the

topological properties of the data. The topology-preserving

loss function is defined as Wasserstein distance [40, 37] be-

tween the discrete measures quantifying the topology of the

data, namely persistent diagrams [15] of the original dataset

D(X) and its transformation D(fθ(X)):

f∗
θ = min

θ
W2(D(X), D(fθ(X))) (2)

We select the transformation fθ from the class F of lin-

ear transformations, which makes our approach linear di-

mensionality reduction method. Although being concep-

tually simple, this class of methods enjoy interpretability,

computational tractability, and explicit mapping for out-of-

sample data points.

Problem formulation

Find the linear projection P ∈ R
m×n to a n-dimensional

linear space Z = PTX in the m-dimensional ambient

space projection to which minimizes the loss function men-

tioned previously:

P ∗ = min
P

W2(D(X), D(PTX)) (3)

2.1. Optimization problem

Following the approach to solving linear dimensional-

ity reduction problems proposed in the the seminal pa-

per [12] we pose the optimization problem of topology-

preserving linear dimensionality reduction with differen-

tiable Wasserstein loss [18] as optimization on Stiefel man-

ifold St(n,m). This makes our optimization problem Rie-

mannian optimization problem, which is unconstrained op-

timization problem over the constrained feasible set with

well established theory [14, 1] and solvers available [8, 39].

min W2(D(X), D(PTX)),

s.t. P ∈ St(n,m).
(4)

2.2. Solution

Finding the solution requires giving precise answers

to the following questions: (1) what are persistent dia-

grams D(X) and how to compute them? (2) how to find

optimal linear transformation P ∗ and how exactly it is

parametrized? (3) how to solve the problem of learning

with Wasserstein loss efficiently? We address the aforemen-

tioned questions in the two following sections.

3. Methods

3.1. Topological inference
and computational topology

For a finite sample from a probability distribution per-

sistent homology allows to robustly infer and quantify the

topology of the data. Surprisingly enough, while the topol-

ogy is inferenced using the discrete structures – simplicial

complexes, the resulting persistent homology mapping is

differentiable under mild assumptions [26].

3.1.1 Persistent homology

Given a topological space X and a function f defined on it,

the persistent homology [3, 16] quantifies the topology of a

pair (X, f), more concretely the changes in topology of the

sequence {Xt}t∈T of sublevel sets Xt = f−1(−∞, t] =
{x ∈ X | f(x) ≤ t} of the function f .

For a sequence of sublevel sets {Xt}t∈T , called a fil-

tration of a set X w.r.t. the function f , persistent ho-

mology sets in correspondence a collection of k-th persis-

tence diagrams {Dk
f (X)}, where k = 0, 1, . . . , kmax for

some kmax. A k-th persistence diagram is a multiset of

pairs {(bi, di)}i∈I of birth bi and death di of topological

features of order k, such as connected components and k-

dimensional holes, bounded by (k− 1)-dimensional cycles.

In the following we will omit k, with the order of the per-

sistent homology mapping and the persistent diagram to be

inferred from the context. A topological feature is called



Figure 1. Topology of a continuous sets (clusters, annulus) and their finite samples. The continuous sets topology is non-trivial, having

3 connected components for the clusters and 1 connected component and 1 hole for annulus. For the finite samples from these sets the

number of connected components equals to the number of points, and the all the higher-order topological features are non-existent.

persistent if it exists for a long interval of the filtration pa-

rameter t.

3.1.2 Persistent homology of finite metric spaces

Finite metric space topology is uninteresting by itself, with

the number of connected components equals to the number

of points, and the all the higher-order topological features

are non-existent (see the Figure 1). By assuming the data is

just a finite sample from a continuous set, one can inference

the topology of the underlying data manifold by considering

the collection of ε-thickenings of the space [6]. In practice

ε-thickenings are modeled by discrete geometric simplicial

complexes having data points X as the vertex set, showed

to have the same topology as the union of balls [7, 15] (or

close approximation) in the ε-thickening, such as Čech (or

Vietoris-Rips complex) respectively.

An (abstract) simplicial complex K on a finite set X
(called vertex set) is the family of subsets σ = {v0, . . . , vk}
of X closed under inclusion. That is for every σ ∈ K any

of its subset τ ⊆ σ is also in K. A subset σ having k + 1
elements is called k-simplex and has dimension k. In a pair

of simplices (τ ⊆ σ) ∈ K, τ is a face of σ and σ is a coface

of τ .

Given a finite metric space X and an ε-ball Bε(x) at

point x a Čech complex of X is as a family of k-simplices

corresponding to intersections of k ε-balls Cechε(X) =
{σ ∈ X |

⋂

x∈σ Bε(x) 6= 0}. A Vietoris-Rips complex of

X at radius ε is defined V Rε(X) = {σ ∈ X | d(x, x′) ≤
2ε, ∀(x, x′) ∈ σ}, that is k + 1 points form a k-simplex if

they are all pairwise 2ε-distant.

3.1.3 Differentiability of persistent homology

A persistent homology can be viewed as a mapping which

takes a topological space X and a function f to the k-th

persistent diagram Df (X)

PH : (X, f) → Df (X). (5)

Consider a topological space X with a continuous func-

tion f : X → R defined on it. During the filtration

(i.e. changing ε from 0 to ∞) topological properties of

the sublevel sets of the function f will change only at fi-

nite number of critical points of f . A persistence pairing

Πf (X ) = {(bi, di)}i∈I is the set of pairs of critical points

of the function corresponding to the birth and death of topo-

logical features. A persistence diagram is the set of function

values at critical points Df (X ) = {(f(bi), f(di)) ∈ R
2 |

(bi, di) ∈ Πf (X )}i∈I .

Now consider the finite sample X of the topological

space X with the same continuous function f defined on

it. The topology of the space is inferred by taking a

sequence of ε-thickenings of the space and tracking the

changes of topological properties of the sublevel sets of

the function f , modeled by a geometric simplicial complex

K(X). In this setting, a persistence pairing Πf (K(X)) =
{(τbi , σdi

)}i∈I , such that dim(σ) − dim(τ) = 1 is the set

of pairs of simplices of K(X), corresponding to the criti-

cal points of the function f . Then, a persistence diagram

is the set of function values at simplices corresponding to

the critical points Df (K(X)) = {(f(τbi), f(σdi
)) ∈ R

2 |
(bi, di) ∈ Πf (X)}i∈I .

In the case of the Vietoris-Rips filtration of a finite met-

ric space X the function value on a simplex f(σ) is ex-

tended from the pairwise distances between the pairs of

points (xi, xj) constituting a simplex σ

f(σ) = max
(xi,xj)∈σ

f(xi, xj) = max
(xi,xj)∈σ

‖xi − xj‖2,

f(xi) = 0.
(6)

The inverse function πf [20, 35] maps points in the di-

agram Df (X) corresponding to the critical values of the

function f to the vertices of the critical simplices giving

birth and death to topological features, thus allowing to dif-

ferentiate the points in the diagram w.r.t. the data points X
[9]. In the case of the Vietoris-Rips filtration this function

is given by the persistent homology algorithm [44] and can

be efficiently computed [29, 4].



Figure 2. Given a Riemannian manifold M ∈ R
n and a scalar

function f , for the each iteration the Euclidean gradient ∇xf is

projected πx to the tangent space TxM where the gradient step is

performed, followed by the retraction rx to the manifold.

3.2. Riemannian optimization

Riemannian optimization [14, 1, 22] generalizes opti-

mization algorithms to the Riemannian manifolds [25] other

than R
n. Applications which can benefit of such approach

include dimensionality reduction [12, 42], matrix factoriza-

tion and completion, optimization with orthogonality con-

straints [14], computing statistics of manifold-valued data

[30], and learning on manifold-valued data [23] or with

manifold-valued outputs [21].

Let M be a Riemannian manifold, and f : M → R is

a scalar real valued function defined on M, then a Rieman-

nain optimization problem

min
x∈M

f(x) (7)

could be solved iteratively by gradient descent along the

geodesics:

Data: A manifold M, a scalar field f on M, a

projection πx : Rn → TxM, a retraction

rx : TxM → M, an initial iterate x0 ∈ M,

step size α ∈ R+

Result: Sequence of iterates {xk}

for k = 1, 2, . . . do
xk+1 = (rxk

◦ απxk
)(−∇xf(xk));

return {xk}

Algorithm 1: Gradient descent on a Riemannian mani-

fold [1]

3.2.1 Optimization on the Stiefel manifold

As we previously mentioned we pose the algorithm’s op-

timization problem as optimization on the Stiefel mani-

fold, parameterizing the optimal linear subspace w.r.t. the

loss function. The Stiefel manifold [1] is the set of all n-

dimensional orthonormal frames in m-dimensional space,

represented by m× n matrices

St(n,m) = {X ∈ R
m×n : XTX = I}, (8)

where I ∈ R
n×n.

In the case of the Steifel manifold the projection and

retraction maps are given in terms of matrix decomposi-

tions. Specifically, the projection can be based on SVD-

decomposition [1], let X = USVT , then πX : Rm×n →
TXSt(n,m) is πX = UV.

The retraction mapping based on QR-decomposition [1]

is given by rX := qf(X + V), where qf(A) denotes the

Q factor of the decomposition of A ∈ R
m×n as A = QR,

where Q belongs to St(n,m) and R is an upper triangular

m× n matrix with strictly positive diagonal elements.

3.3. Computational optimal transport

Optimal transport considers comparing the measures

over the domain X . Given a ground metric d : X×X → R

optimal transport equips the space of measures P(X) with

a metric referred to as Wasserstein distance, which for any

µ, ν ∈ P(X) and p ≥ 1 is defined as [40, 27]

W p
p (µ, ν) = inf

π∈Π(µ,ν)

∫

X×X

dp(x, y)dπ(x, y) (9)

where W p
p denotes the p-th power of Wp and Π(µ, ν) is

the set of probability measures on the product space X×X
whose marginals coincide with µ and ν; namely

Π(µ, ν) = {π ∈ P(X ×X) | P1#π = µ, P2#π = ν}, (10)

with Pi(x1, x2) = xi the projection operators for i =
1, 2 and Pi#π the push-forward of π [40].

Consider the discrete measures µ, ν ∈ P(X) that can

be written as linear combinations µ =
∑n

i=1 aiδxi
and

ν =
∑m

j=1 bjδyj
of Dirac’s deltas centred at a finite number

n and m of points (xi)
n
i=1 and (yj)

m
j=1. In order for µ and ν

to be probabilities, the vector weights a = (a1, . . . , an)
T ∈

∆n and b = (b1, . . . , bm)T ∈ ∆m must belong respec-

tively to the n and m-dimensional simplex, defined as

∆n = {p ∈ R
n
+ | pT1n = 1}, (11)

where Rn
+ is the set of vectors p ∈ R

n with non-negative

entries and 1n ∈ R
n denotes the vector of all ones, so that

pT1n =
∑n

i=1 pi for any p ∈ R
n.

The Wasserstein distance between the two discrete mea-

sures µ and ν with corresponding weight vectors a and b

corresponds to the solution of network flow problem



Figure 3. Example on model data of noisy cylinder S1 × [−2, 2] for which our algorithm and PCA give two different low-dimensional

representations, preserving the cycle in the former case and recovering the maximum variance in the latter.

W p
p (µ, ν) = min

T∈Π(a,b)
〈T,M〉F , (12)

where M ∈ R
n×m is the cost matrix with entries Mij =

d(xi, yj)
p, 〈T,M〉F is the elementwise Frobenius inner

product, and Π(a,b) denotes the transportation polytope

Π(a,b) = {T ∈ R
n×m
+ : T1m = a,TT1n = b}. (13)

3.3.1 Optimal transport for persistence diagrams

Consider persistence diagrams D(X) and D(Z) of cardi-

nality n and m respectively. The cost matrix M ∈ R
m×n

is augmented [15, 32] with matrices ∆D(X) ∈ R
n×1 and

∆D(Y ) ∈ R
1×m where each entry is the persistence topo-

logical feature p ∈ D(·) to effectively balance measures,

allowing to match points in the diagrams with a diagonal

∆, meaning the topological feature with zero persistence.

M̃ =

(

M ∆D(X)

∆D(Y ) 0

)

(14)

3.3.2 Gradient of approximated Wasserstein distance

While it is possible to compute a subgradient of the Wasser-

stein distance, the complaxity of its evaluation is quadratic

with respect to the dimension of the output space [18, 27].

Thus, computationally Wasserstein distance is approxi-

mated either by the entropic regularization [13, 2] or as the

integral of 1D measures [11] derived from the original one.

Computation of both approximations consist of matrix op-

erations for which closed form of the gradient exists or au-

tomatic gradient [28] can be efficiently evaluated.

Sinkhorn distance

The Sinkhorn algorithm gives the solution to the opti-

mal transport problem with the entropic regularization, and

gives gradient in closed form [18], automatic differentiation

is also available.

The Sinkhorn distance, given the entropy of the trans-

port plan matrix h(T) and the regularization parameter λ is

defined

Sλ(a,b) = min
T∈Π(a,b)

〈T,M〉F −
1

λ
h(T), (15)

where h(T) = −

n,m
∑

i,j=1

Tij(logTij − 1)

The optimization can be solved efficiently via Sinkhorn’s

matrix scaling algorithm [13] and its variants [2].

4. Algorithm

With all the technicalities described in the previous sec-

tion we conclude the persistent-homology based projection

pursuit algorithm.

Given a dataset X ∈ R
m, the Vietoris-Rips simpli-

cial complex Kf (X) with the filtration function f(σ) =
max(i,j)∈σ ‖xi − xj‖2 construct the following mappings

and their gradients:

Orthogonal projection

Orthogonal projection Z = PTX , P ∈ St(n,m) and its

Riemannian gradient ∂Z
∂P

according to the Algorithm 1 us-

ing projection π and retraction r mappings for the Stiefel

manifold.



Figure 4. Loss function and persistence diagrams of data D(X) (red, fixed) and low-dimensional projection D(Z) (black) at k-th steps of

gradient descent.

Persistent homology mapping

Compute the persistent homology mapping PH : (X, f) →
Df (X) by constructing the filtration of the Vietoris-Rips

complex Kf (Z), computing its boundary matrix B, ap-

plying the persistence algorithm [44] to obtain a reduced

boundary matrix R and extracting the persistent diagram

Df (X) and the persistent pairing Πf (X) out of it. To

compute the gradient
∂D(Z)
∂Z

for each (bi, di) in Πf (X)
apply the inverse function πf to find two pairs of critical

vertices (x+
j , x

+
k ) = argmax(xj ,xk)∈τbi

‖xj − xk‖2, and

(x−
j , x

−
k ) = argmax(xj ,xk)∈σdi

‖xj − xk‖2 belonging to

the simplices giving birth and death to the topological fea-

tures and extreme w.r.t. the function f . Evaluate the gra-

dients ∂bi/∂x
+
j , ∂bi/∂x

+
k , ∂di/∂x

−
j , and ∂di/∂x

−
k given

in the case of the Vietoris-Rips filtration by ∂xj
f(σ) =

xj−xk

‖xj−xk‖2

, and ∂xk
f(σ) = −

xj−xk

‖xj−xk‖2

.

Wasserstein distance

Compare two diagrams of the data D(X) (which is kept

fixed, thus computed only once) and its projection D(Z)
computed at each step of gradient descent using Wasser-

stein distance dW2
: D × D → R loss L, particulary its

entropic approximation – Sinkhorn distance dE [13, 2] and

its gradient ∂L
∂D(Z) computed by the automatic differentia-

tion.

Total gradient

Finally, given L = dW2
(D(X), D(Z)), DZ = PH(Z),

Z = PTX , the total gradient ∇PL = ∂L
∂P

is given by the

chain rule

∂L

∂P
=

∂L

∂D(Z)

dD(Z)

dZ

∂Z

∂P
. (16)

5. Evaluation

We give the proof of concept of the proposed algorithm

on the model data sampled from a cylinder S1×[−2, 2] with

added Gaussian noise with zero mean and σ2 = 0.05.

We used Python’s pymanopt [39] package as the

solver, topologylayer [9] package for the computation

of the persistent homology mapping and its’ gradient, and

our own implementation of the Sinkhorn distance.

In the Figure 3 we show the example of the model data

for which our algorithm and PCA give two different low di-

mensional representations, preserving the cycle in the for-

mer case and recovering the maximum variance in the lat-

ter. For the data expressing periodic behavior, for example

the sliding window embeddings of periodic time series [33]

preserving the global topology given by cycles in data could

be of more importance then finding the maximum variance.

The graph of the convergence of the total loss function

optimized by gradient descent along with the persistence

diagrams of data D(X) and low-dimensional projection

D(Z) for the consecutive steps of the optimization algo-

rithm are shown in the Figure 4.

6. Conclusions

We have showed proof of concept of linear dimension-

ality reduction seeking to preserve the global structure of

data. Our approach could be seen as generalization of the

classic projection pursuit method designed to preserve clus-

ters in data. Clusters are topological invariants of data of or-

der 0, and the higher-order invariants include cycles bound-

ing holes or voids. Preserving the higher-order may be of

interest for data expressing periodic behavior.

The efficient numerical implementation scaling to hun-

dreds of thousands of points in high-dimensional spaces ap-

plied to real data is left for the future work.
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