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Abstract

This paper is concerned with developing a novel ap-

proach to tackle the problem of subspace clustering. The

approach introduces a convolutional autoencoder-based ar-

chitecture to generate low-rank representations (LRR) of in-

put data which are proven to be very suitable for subspace

clustering. We propose to insert a fully-connected linear

layer and its transpose between the encoder and decoder

to implicitly impose a rank constraint on the learned repre-

sentations. We train this architecture by minimizing a stan-

dard deep subspace clustering loss function and then re-

cover underlying subspaces by applying a variant of spec-

tral clustering technique. Extensive experiments on bench-

mark datasets demonstrate that the proposed model can not

only achieve very competitive clustering results using a rel-

atively small network architecture but also can maintain its

high level of performance across a wide range of LRRs.

This implies that the model can be appropriately combined

with the state-of-the-art subspace clustering architectures

to produce more accurate results.

1. Introduction

Data clustering is the problem of partitioning a set of

given sample points into multiple groups, called clusters

so that the points within each cluster are more similar to

each other than those in other clusters. Standard cluster-

ing algorithms mostly rely on specific distance measures

(e.g. Euclidean distance) to perform clustering and compute

the cluster memberships. However, these algorithms often

fail to exhibit satisfactory performance in high-dimensional

space due to some inherent structures and characteristics of

the data (e.g. irregular patterns of data, curse of dimension-

ality, etc) (shown in Figure 1). Subspace clustering is a spe-

cial data segmentation scenario which aims to partition a set

of given points, drawn from a union of subspaces, into dis-

joint groups corresponding to the subspaces [3, 8, 26, 34].

There is a rich literature of works involving the cases with

underlying linear subspaces [6, 9, 33, 34]. These studies of-

ten rely on the concept of self-expressiveness, stating that

each sample point from a given dataset can be efficiently

expressed as a linear (or affine) combination of other points

[9]. Given that, the cluster memberships can be inferred

using the assumption that the points of the same subspace

can be expressed as a combination of each other. Motivated

by this idea, various subspace clustering methods have been

developed for different machine learning applications, such

as motion segmentation [19, 32], face clustering [5, 45],

movie recommendation [25, 44], etc. The basic idea behind

these methods is to transform the input data into a new set

of desired representations (e.g. sparse, low-rank) to build a

graph showing the pairwise similarities between the entire

points [9, 10, 20, 21, 35]. Then, a variant of the spectral

clustering technique [24] is adopted to divide the graph into

multiple sub-graphs corresponding to the underlying clus-

ters. Among these methods, well-established sparse sub-

space clustering (SSC) [9] is a popular instance that adopts

an ℓ1-regularized model to limit the number of points used

to reconstruct each sample point. This work has received

special attention from the researchers in the field and many

studies have been conducted to investigate its theoretical

and practical aspects [30, 33, 42, 43].

Nowadays, deep models are increasingly used in vari-

ous areas of clustering to boost the performance of tradi-

tional methods [7, 11]. In subspace clustering, deep models

are adopted as powerful tools to exploit complex underlying

patterns of data and learn suitable representations that sat-

isfy the self-expressiveness property. This naturally leads

to superior clustering performance compared to the conven-

tional subspace clustering approaches [1, 15, 17, 29, 39, 49].

In particular, this superiority is more apparent in cases

where the sample points reside on a union of non-linear sub-

spaces since deep models can effectively capture the non-

linearities of data and learn representations lying on a union

of linear subspaces [15, 49]. A notable model is deep sub-

space clustering (DSC), introduced in [15], that utilizes a

convolutional autoencoder with a self-expressive layer be-

tween the encoder and decoder to learn favorable deep sub-

space clustering representations.
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Figure 1: The distribution of points from two datasets. Sam-

ples are clustered together if (a) they are sufficiently close;

(b) they belong to the same subspace. Distance-based clus-

tering techniques are suitable when the points are uniformly

distributed across the space. However, they perform poorly

in cases where the data has a certain underlying structure.

In this work, we introduce a novel deep architecture that

leverages convolutional autoencoders to learn low-rank rep-

resentations (LRR) of the input data which are proven to

be very suitable for the subspace clustering problem [35].

The proposed approach possesses the same architecture as

the DSC method [15] except that we insert a fully con-

nected linear layer and its transpose between the encoder

and decoder to implicitly impose a rank constraint on the

learned representations. Extensive experiments on bench-

mark datasets demonstrate the effectiveness of the proposed

architecture compared to the DSC algorithm which is fre-

quently adopted by various deep subspace clustering meth-

ods. In this sense, our model can serve as a proxy for the

DSC model to enhance the performance of the state-of-the-

art subspace clustering approaches [1, 17, 47, 49]. More-

over, we show that the proposed model not only requires

much fewer learnable parameters compared to the DSC al-

gorithm but also can maintain its high level of performance

across a wide range of LRRs.

2. Related Works

A vast majority of subspace clustering approaches can

be unified into a single framework consisting of two steps:

1) building a weighted graph with edges representing the

similarity relationships between the points; 2) applying a

variant of the spectral clustering technique [24] to partition

the graph into multiple disjoint sub-graphs corresponding

to different clusters [9, 12, 14, 31]. The following shows

an optimization problem commonly used to obtain such a

desired weighted graph:

minimize
C∈R

n×n

1

2
‖X−XC‖

2

F
+ λ g(C) (1a)

subject to diag(C) = 0, (1b)

where X ∈ R
d×n is a data matrix with its columns de-

noting the sample points {xi ∈ R
d}ni=1

, C, called self-

expression matrix, is a matrix whose (i, j)th element in-

dicating the contribution of the ith sample in reconstructing

xj , g : R
n×n → R is a specific regularization function,

and λ > 0 is a fixed parameter to balance the contribution

of different terms in (1a). The weighted graph can be con-

structed given the optimal solution of (1a) – (1b) and (1b)

is an additional constraint to avoid getting the trivial solu-

tion
∗

C = In. To impose a desired structure on the graph,

function g(.) is mostly set to a specific matrix norm, such

as ‖C‖
0

[40, 42], ‖C‖
1

[9], ‖C‖
∗

[21, 35], ‖C‖
F

[30], etc.

Sparseness of C is a desirable property that is commonly

enforced in the literature [9, 27]. Additionally, the low-

rankness of matrix C well suits the problem of subspace

clustering [2, 16, 27, 35]. Many approaches in the litera-

ture, such as robust principal component analysis [4], latent

LRR [46], low-rank-sparse representation [36, 48], robust

Kernel LRR [37], etc, leverage the low-rank representation

of data to compute the clusters and recover the underlying

subspaces.

Conventional subspace clustering approaches are mostly

focused on the cases in which the points are drawn from

linear subspaces. However, many applications are involved

with sample points residing on a union of non-linear sub-

spaces [15]. One empirical solution to deal with this non-

linearity is to leverage kernel trick to implicitly map the data

into a new space so that they better conform to linear sub-

spaces [27, 28, 37, 41]. Unfortunately, this idea is not gen-

erally appealing as it is difficult to find an appropriate kernel

for a given set of data points.

Recently, deep models are widely used in different areas

of clustering to capture and encode the complex underlying

pattern of the data [22, 23, 38]. Among them, autoencoders

are frequently adopted by subspace clustering approaches

to learn deep self-expressive representations from the in-

put data. One pioneer approach that has received increas-

ing attention in the literature is deep subspace clustering

(DSC) [15]. This approach proposed to insert a fully con-

nected linear layer between the encoder and decoder to gen-

erate suitable subspace clustering representations. The DSC

model is further adopted by [49] to develop an adversarial

approach for generating high-quality subspaces. [47] also

used the DSC model to develop a novel end-to-end frame-

work that achieves high-performance clustering results by

jointly learning the representations, self-expression matrix,

and the clustering results. More recently, [17] proposed an

extension of the DSC by combining information from dif-

ferent levels of the encoder and decoder.

Notice that the aforementioned deep models mostly

leverage ‖C‖
1

and ‖C‖
2

to learn desired representations.

Despite the advantages derived from using LRR, deep mod-

els show less interest in using low-rank regularization con-
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Figure 2: Deep Low-Rank Subspace Clustering Model: An example of the proposed architecture consisting of three convo-

lutional layers in the encoder, three deconvolutional layers in the decoder, and two linear layers with weight matrices c̄ and

c̄
⊤. Observe that the self-expression layer can be defined as a linear layer whose weight matrix is C , c̄c̄

⊤. Since the rank

of matrix c̄ is bounded by m (m ≪ n), it is guaranteed that rank(C) ≤ m holds true. Such formulation allows to impose

rank constraint on the self-expression matrix C by selecting different values of m.

straints (e.g. ‖C‖
∗
). The reason may stem from the fact that

learning LRR is mostly involved with computing singular

value decomposition (SVD) in each training step which is

computationally cumbersome, especially when the problem

dimension is large. Our approach introduces an idea to gen-

erate LRR without the requirement of computing SVD. We

use the same architecture as the DSC algorithm except that

we adopt a fully connected linear layer and its transpose to

facilitate imposing a rank constraint on the self-expression

matrix. Additionally, our model requires much fewer net-

work parameters to learn compared to the DSC algorithm.

3. Problem Formulation

Compared to the conventional subspace clustering meth-

ods, deep models are extremely powerful to transform input

data into a set of representations lying on a union of lin-

ear subspaces. The well-known DSC algorithm [15] devel-

ops a deep model consisting of an autoencoder with a fully-

connected linear layer between the encoder and decoder to

capture the non-linear relationships between data and pro-

duce self-expressive representations. Let Θ̌, Θ̂, and C re-

spectively show the parameters associated with the encoder,

decoder, and the fully connected layer. The DSC algorithm

aims to train the model by solving the following problem

minimize
Θ̌,C,Θ̂

‖X− X̂‖
2

F
+ λ‖Ž− ŽC‖

2

F
+ γ‖C‖p (2a)

subject to diag(C) = 0, (2b)

where X = [x1| . . . |xn] ∈ R
d×n is a data matrix consisting

of n d-dimensional sample points, p ∈ {1, 2} determines

the norm type, C ∈ R
n×n shows the self-expression ma-

trix, Ž ∈ R
ď×n denotes the encoder output where ď is the

dimension of the latent space, and X̂, called reconstructed

data matrix, shows the output of the decoder to the input

matrix ŽC. The main purpose of problem (2a) – (2b) is to

capture the non-linearities of the input data and learn rep-

resentations satisfying the self-expressiveness property (i.e.

Ž ≈ ŽC). Given that, the spectral clustering technique can

be applied to infer underlying subspaces and determine the

sample assignments.

As noted earlier, LRR is proven to be very favorable for

subspace clustering algorithms. This provides a strong mo-

tivation in leveraging powerful deep learning frameworks to

generate deep LRR of data. In what follows, we propose a

deep subspace clustering model that can implicitly impose

a rank constraint on the self-expression matrix C to learn

self-expressive LRRs.

4. Proposed Method

The most common technique to promote low-rankness

on matrix C is to incorporate the nuclear norm regulariza-

tion term ‖C‖
∗

into the loss function. This technique might

not be appealing for deep models due to the computational

cost of computing its gradient in the backpropagation pro-

cess. To deal with this issue and to learn low-rank represen-

tations, an alternative idea is to modify the DSC algorithm

by considering an optimization problem of form

minimize
Θ̌,C,Θ̂

‖X− X̂‖
2

F
+ λ‖Ž− ŽC‖

2

F
+ γ‖C‖p (3a)

subject to diag(C) = 0, (3b)

rank(C) ≤ m, (3c)



where scalar m (m ≪ n) is a hyperparameter that limits the

maximum possible rank of matrix C.

To design a deep subspace clustering model based on

the formulation (3a) – (3c), we propose to replace the self-

expression layer C in the model with a fully-connected lin-

ear layer c̄ ∈ R
n×m and its transpose. In this case, the

self-expression layer can be seen as a symmetric matrix of

form C , c̄ c̄
⊤ where weight matrix c̄ ∈ R

n×m needs

to be learned. With this definition and since the condition

rank(c̄) ≤ min(m,n) is always valid, we can conclude that

rank(C) ≤ m is guaranteed to hold true. Hence, it can be

seen that the proposed architecture implicitly poses a rank

constraint on the self-expression matrix C.

Notice that the rank constraint (3c) avoids the trivial so-

lution
∗

C = In for (3a) – (3c) because rank(c̄c̄⊤) is guaran-

teed to not exceed m. Therefore, we can train the proposed

architecture by solving the following minimization problem

minimize
Θ̌,c̄,Θ̂

‖X− X̂‖
2

F
+λ‖Ž− Žc̄c̄

⊤‖
2

F
+γ‖c̄c̄⊤‖

2
. (4a)

Problem (4a) can be solved using standard backpropagation

technique. Given the optimal solution
∗

c̄ of the problem, we

form the symmetric affinity matrix W = |
∗

c̄
∗

c̄
⊤| representing

the pairwise relationships between the sample points. Then,

we apply a variant of the spectral clustering technique on

matrix W to recover the underlying subspaces and deter-

mine the point assignments.

Figure 2 illustrates the proposed architecture in detail.

The encoder output is fed into the self-expression layers

consisting of a fully-connected linear layer and its transpose

layer. The output of the self-expression layers is then used

by the decoder to reconstruct the original data. Observe

that the proposed model uses mn learnable parameters in

the self-expression layer which is much fewer than that for

the DSC algorithm which is n2. This leads to a signifi-

cant difference, particularly when the dataset size becomes

large. Additionally, our approach facilitates incorporating

nuclear norm regularization at a much lower computational

cost due to the fact that ‖c̄c̄⊤‖
∗
= ‖c̄⊤c̄‖

∗
. Therefore, the

regularization is involved with computing the nuclear norm

of a m×m matrix which is computationally much cheaper

than that for a n× n matrix since m ≪ n.

In the following, we conduct multiple experiments on

benchmark datasets to evaluate the performance of the pro-

posed model on different subspace clustering tasks.

5. Experiments

In this section, we assess the performance of the pro-

posed approach, named DLRSC, on three benchmark

datasets: Extended Yale B, COIL20, and COIL100. Our

results are compared against some baseline subspace clus-

tering algorithms, such as Low Rank Representation (LRR)

[20], Low Rank Subspace Clustering (LRSC) [35], Sparse

Subspace Clustering (SSC) [9], SSC with the pre-trained

convolutional auto-encoder features (AE+SSC), Kernel

Sparse Subspace Clustering (KSSC) [28], SSC by Orthog-

onal Matching Pursuit (SSC-OMP) [42], Efficient Dense

Subspace Clustering (EDSC) [13], EDSC with the pre-

trained convolutional auto-encoder features (AE+EDSC),

and Deep Subspace Clustering (DSC) [15].

Notice that it is not the intention of this work to com-

pete with the state-of-the-art subspace clustering methods

[17, 47] on different tasks. Instead, we aim to highlight

the advantages offered by our architecture over the well-

established DSC algorithm which is widely adopted by re-

cent deep subspace clustering approaches in the literature

[1, 17, 47, 49]. Moreover, we conduct additional experi-

ments on the Extended Yale B dataset to evaluate the sensi-

tivity of the DLRSC to the choice of parameter m.

In all experiments, we use the same network settings,

pretraining and fine-tuning strategy as the DSC algorithm

to provide a fair comparison. We adopted Adam optimizer

[18] with β1 = 0.9, β2 = 0.999, and set the learning rate to

0.001 for training the network parameters. All implemen-

tations are done in PyTorch and the code will be publicly

available on GitHub. In what follows, we provide hyperpa-

rameters used in each experiment separately and report the

final results in terms of the clustering error, i.e. the percent-

age of the points that are incorrectly clustered:

error =
# of incorrectly clustered samples

# of all samples
× 100% (5)

Extended Yale B: This is a human face dataset containing

2432 images of size 192 × 168 from 38 different subjects

(K = 38), 64 images per each subject, where the images are

taken under various illuminations and poses. Following the

literature [9, 15], we down-sample the images to 48×42 for

computational purposes. Motivated by the assumption that

the underlying lower-dimensional subspaces share the same

dimension, we set hyperparameter m to a number which

is in proportion to the number of clusters. Hence, in our

fine-tuning step, we set λ, γ, and m to 0.1, 1, and 10 × K

(m ≪ n = 64 × K), respectively, and adopt the standard

backpropagation technique to train the model.

COIL20/COIL100: COIL100 is an object dataset consist-

ing of 7200 images of size 32 × 32 from 100 different ob-

jects (K = 100), 72 images per each object, taken at pose

intervals of 5 degrees. The hyperparameters used for con-

ducting experiment on this dataset are as follows: λ = 2,

γ = 2, m = 10 ×K; COIL20 is a smaller dataset consists

of 1440 images of 20 different objects (K = 20) from the

COIL100 dataset. We use λ = 10, γ = 1, and m = 10×K

(m ≪ n = 72 × K) for performing experiments on the

COIL20 dataset.



Table 1: Clustering error (%) of different methods on Yale B, COIL20, and COIL100 datasets. The best results are in bold.

Dataset LRR LRSC SSC AE+SSC KSSC SSC-OMP EDSC AE+EDSC DSC DLRSC

Yale B 34.87 29.89 27.51 25.33 27.75 24.71 11.64 12.66 2.67 2.47

COIL20 30.21 31.25 14.83 22.08 24.65 29.86 14.86 14.79 5.14 2.92

COIL100 53.18 50.67 44.90 43.93 47.18 67.29 38.13 38.88 30.96 28.14

Table 2: Clustering error (%) of DLRSC method on Yale B

for different choices of parameter m (K = 38).

m 5×K 6×K 7×K 8×K 9×K 10×K

error 4.65 3.24 3.66 4.12 2.75 2.47

The clustering error of the DLRSC algorithm on the

aforementioned datasets are reported in Table 1. Observe

that DLRSC outperforms the DSC algorithm and achieves

very competitive results compared to the state-of-the-art

methods by leveraging low-rankness property and learning

representation lying on a union of linear subspaces. For

each dataset, the proposed model only uses n × m learn-

able parameters in the self-expression layer which is much

smaller than that for the DSC model which requires having

n × n parameters. Besides these advantages, it should be

noted that DLRSC replaces a single self-expression layer

with two linear layers which in turn may increase the com-

putational complexity, particularly for larger choices of m.

To evaluate the sensitivity of the DLRSC algorithm with

respect to the rank of the self-expression matrix, we conduct

multiple experiments on the Extended Yale B dataset for

various choices of parameter m and report the correspond-

ing clustering errors to Table 2. As it can be seen from the

table, DLRSC can maintain the clustering error relatively

small over a wide range of m which certifies the potential

of the proposed model for handling low-rank subspace clus-

tering problem.

6. Conclusions

This work proposed a novel deep subspace clustering ap-

proach that can efficiently transform input data into new

representations lying on a union of linear subspaces. Moti-

vated by advantages derived from using low-rank represen-

tation (LRR) of data, the proposed approach can effectively

incorporate rank constraints into a deep learning framework

to learn deep LRR. Our deep model can be seen as an exten-

sion of the well-established deep subspace clustering (DSC)

algorithm that leverages low-rank representation to perform

subspace clustering. Compared to the DSC model, the pro-

posed model requires much fewer network parameters and

allows to incorporate some rank-regularization terms (e.g.

nuclear norm) at a very lower computational cost. Exper-

iments demonstrate that our approach is very robust to the

level of low-rankness and can achieve very competitive re-

sults on benchmark datasets. This highlights the potential

of our model in promoting the performance of some recent

deep subspace clustering approaches.
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Schmidhuber. Stacked convolutional auto-encoders for hi-

erarchical feature extraction. In ICANN, 2011. 2

[23] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and

Sreeram Kannan. ClusterGAN: Latent space cluster-

ing in generative adversarial networks. arXiv preprint

arXiv:1809.03627, 2018. 2

[24] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In NeurIPS, 2002. 1,

2

[25] Eirini Ntoutsi, Kostas Stefanidis, Katharina Rausch, and

Hans-Peter Kriegel. Strength lies in differences: Diversify-

ing friends for recommendations through subspace cluster-

ing. In CIKM, 2014. 1

[26] Lance Parsons, Ehtesham Haque, and Huan Liu. Subspace

clustering for high dimensional data: a review. SIGKDD

Explor., 6(1):90–105, 2004. 1

[27] Vishal M Patel, Hien Van Nguyen, and René Vidal. Latent
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