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Abstract

Describing longitudinal morphometric differences be-

tween populations and individuals is a critical task in com-

putational anatomy. In the context of the random orbit

model of computational anatomy, this often implies study

of the variation of individual shape trajectories associated

to some mean field, as well as longitudinal morphological

differences as encoded by similar subjects from representa-

tive populations. In this paper, we present a new method for

computing the deviation of individual subjects from mod-

els of flow. We demonstrate estimation of the infinitesimal

drift representing the mean flow of a population and its en-

trance into the Eulerian vector field controlling that flow.

Each individual is studied longitudinally by modeling an-

other associated individual drift which acts as the personal-

ized control of the flow. We provide an augmentation of the

classic LDDMM equations to generate ”biased geodesics”

for trajectory shooting algorithms, allowing for direct com-

putation of the individual’s deviation under the influence of

a mean drift. Our new model is inspired by diffusion models

from stochastic processes in which the personalized control

is a non-stochastic term representing the additive Brownian

component on top of the infinitesimal drift representing the

population. We present results of our model on entorhinal

cortical surfaces extracted from a patient population of the

Alzheimer’s Disease Neuroimaging Initiative.

1. Introduction

The use of diffeomorphic mapping in computational

anatomy has been extremely successful in the longitudinal

and cross-sectional study of shape and structure. The basic

model employed is that the space of shapes I ∈ I is an orbit

acted on by the group of diffeomorphisms ϕ ∈ Diff, where

the orbit is generated by the group action I
.
= {ϕ · I, , ϕ ∈

Diff} [19, 28]. Typically the shape I can be a dense image

[7], sets of landmarks [23], or surfaces and currents [44, 13]

with and without correspondences.

Diffeomorphic flows are controlled by the evolution

φ̇t = vt ◦ φt, t ∈ [0, 1] with ϕ
.
= φ1 for smooth vec-

tor fields v ∈ V in a smooth reproducing kernel Hilbert

space, ensuring that the flows are diffeomorphisms [12, 41].

As well, atrophy and growth have been studied for un-

derstanding cohorts of shapes under transformation [31],

in which time plays a role in simulation time for generat-

ing diffeomorphisms as well as in understanding the space-

time phenomena of developmental and degenerative disease

[10, 11, 47, 46, 45, 38, 9, 37, 25, 5, 4]. This field has pro-

gressed quickly and numerous groups have mapped popula-

tions of anatomical structures to common coordinate spaces

in multiple contexts. These mappings have been studied

largely using mixed-effects modeling with statistical per-

mutation testing [43, 40, 30, 48] or linear operations on pa-

rameterized deformation fields [36, 2, 35, 26, 42, 39]. The

motivation is to understand the typical representative shape

change of populations as well as to make decisions concern-

ing large deviations away from typical shape.

At the same time, the representation of population statis-

tics in terms of high dimensional shape models has lagged

behind. The mentioned examples have described methods

for encoding means and variances of mapped populations

in low dimensional statistical representations. However, lit-

tle work has been done on directly encoding diffeomorphic

modeling with typical population shape. The work pro-

posed here is motivated by this goal. We explicitly define

the population shape as represented by the mean vector field

encoding the flow of the cohort, and we associate to each in-

dividual in the population a deviation encoding another per-

sonalized vector field. Viewing the diffeomorphism as the

state in a dynamical system, then the typical flow encodes

the overall average control; the individual is encoded by the

deviation via an additional personalized control. These high

dimensional trends directly encode typical growth, atrophy,

and disease. We embed into our new algorithms both the

estimation of the vector field common to the population and

the estimation of the per-subject deviation.

In describing the model, we use the language of diffusion

and stochastic differential equations studied in the classical

stochastic process literature of Brownian motion with drift



[24]. We appreciate that in our setting, the state is infinite

dimensional. The infinitesimal drift in our model is the dif-

ferential change in state given by the diffeomorphic flow;

we associate the mean flow or ”mean drift” representing the

population to the infinitesimal mean of Brownian motion,

and likewise associate the personalized infinitesimal motion

or ”personalized control” to the infinitesimal variance. Our

personalized deviation is not stochastic, but is another de-

terministic drift term replacing the explicit Brownian term.

Holm [20] has examined diffeomorphic flows in the context

of the stochastic term in this infinite dimensional setting.

Our focus on the infinitesimal mean to encode the pop-

ulation of typical shape as a method to study individual de-

viations is motivated by the success of representing popula-

tion means in machine learning and data science. The con-

ditional mean as an estimator is remarkably efficient and

ubiquitous. Examples abound in the literature for repre-

sentation of the expected value of moments via the use of

maximum entropy models for speech and image represen-

tation [21, 22, 6, 3, 15, 29, 8, 49]. In stochastic optimiza-

tion and random sampling for inference in high dimensional

spaces, the drift term has seen many successful applications

by guiding a process towards a particular set of explanations

as represented by the posterior distribution [17, 16, 18]. Our

representation is also reminiscent of the principles embed-

ded in the usual mixed-effects modeling of lower dimen-

sional statistics. Our goal is to build both the typicality of

shape as represented by the population mean and the vari-

ance of the individual associated to the individual deviation

element into the diffeomorphic flow model itself.

In this work, we present a new model for computing

the deviation of individual subjects from the infinitesimal

mean drift. We introduce an augmentation of the classic

geodesic shooting algorithm to generate what we term ”bi-

ased geodesics”, which allows direct computation of the

personalized control under the influence of some flow as-

sociated to a population drift term. This deviation can rep-

resent intra- or inter-population comparisons. We illus-

trate methods for computing the mean drift of a popula-

tion of shapes following neurodegeneration associated to

Alzheimer’s disease in a common coordinate space by map-

ping the longitudinal flows using large deformation diffeo-

morphic metric mapping (LDDMM) parameterized by ini-

tial momentum whose coordinate systems can be changed

via coadjoint transport. The results of our model are pre-

sented associated to a significant cohort in the Alzheimer’s

Disease Neuroimaging Initiative study.

2. Drift Model for Longitudinal Shape Analysis

Our basic model for longitudinal shape is a mechano-

dynamical system in which structures are viewed as being

embedded in a condensed matter continuum where advec-

tion and transport hold [19, 1, 28]. In the following text,

we will refer to the infinitesimal mean as the mean drift

and the individual deviation as the personalized control for

simplicity. The model of dynamics for a given subject i is a

dense space-time flow of the state t → ϕ
(i)
t (x) ∈ R

3, x ∈

R
3 with control t → v

(i)
t given as the superposition of drift

µ
(i)
t (·) representing typicality and personalized or individ-

ual mechano-dynamics w
(i)
t (·):

dϕ
(i)
t

dt
(x) = v

(i)
t ◦ ϕ

(i)
t (x) , ϕ

(i)
0 (x) = x (1a)

with v
(i)
t = µ

(i)
t + w

(i)
t (1b)

where the mean drift µt in an exemplar coordinate system

(see Figure 1) is transported into the coordinate system spe-

cific to subject i to produce µ
(i)
t , and w

(i)
t is the personalized

control. The Eulerian vector fields v
(i)
t ∈ R

3 are modeled

as elements of a Hilbert space of smooth and 1-time differ-

entiable functions of space. In the continuum, this smooth-

ness corresponds to the motions seen for transport and ad-

vection as associated to growth and atrophy from millimeter

to meso-scale. We model the dense vector fields v ∈ V as

being generated via differentiable scale-space kernels k(·, ·)
acting on L2 functions:

V = {v =

∫
k(x, y)h(y)dy, ‖h‖22 =

∫
|h|2dx < ∞} .

(2)

A diagram of the proposed generative model is displayed

in Figure 1. The model is similar to that proposed in

[14] in which there is a normalization of of each individ-

ual flow of the population relative to the template which

essentially defines the initial condition of each individual

flow, denoted as Φ(i), i = 1, . . . , N . To define the mean

flow of the normalized population within each individual’s

time series, we coadjointly transport [32] it and denote it as

µ
(i)
t , i = 1, . . . , N .

2.1. Estimating Personalized Control under Drift

The dynamics space is huge. We select the parsimonious

ones based on what we term ”biased geodesic flow” via

Hamilton’s principle and the principle of least action. We

term it biased due to the addition of an infinitesimal mean

drift representing the population statistics to the standard

geodesic equations of LDDMM. We adopt a Hamiltonian

control systems model for flows of human anatomy [33].

Given the mean drift µ
(i)
t in an individual’s coordinates, we

define the Hamiltonian of our dynamical system:

H(p, ϕ(i), w(i), t) =

∫
p·((µ(i)+w(i))◦ϕ(i))dx−

1

2
‖w(i)‖2V

(3)

where ϕ̇(i) = (µ(i) +w(i)) ◦ϕ(i) is a dynamical constraint,

and p is termed the Hamiltonian momentum acting as a La-

grange multiplier on the constraint. Our dynamical systems



Figure 1. Diagram of infinitesimal mean drift model. The black

curve represents the flow generated by the population mean drift

µt, while individual subject observations’ flows are governed by

ϕ̇
(i). The red curve represents transport Φ(i) of the personalized

controls w
(i)
t into the coordinate space of the mean drift.

model becomes the following:

ϕ̇
(i)
t = (µ

(i)
t + w

(i)
t ) ◦ ϕ

(i)
t

ṗ
(i)
t = −d(µ

(i)
t + w

(i)
t )T ◦ ϕ

(i)
t p

(i)
t (4)

w
(i)
t (·) =

∫
K(·, ϕ

(i)
t (x))p

(i)
t (x)dx

The initial momentum p
(i)
0 driving the time-varying velocity

field w
(i)
t can be computed under this constrained optimiza-

tion scheme and represents the deviation or personalized

control of individual i from the background mean drift µ
(i)
t .

We model p
(i)
0 as being initially seeded on a set of k discrete

control points q(i) such that p
(i)
0 (x) =

∑
k w

(i)
k δ(x− q

(i)
k ).

Notably, µ
(i)
t does not appear in the regularization term of

(3) and thus this formulation does not produce the same w
(i)
t

as for the more classical LDDMM.

2.2. Surface Matching Algorithm

For the following experiments, we assume that the in-

finitesimal mean drift µt of a given population is gener-

ated offline and is transported from the population space

to the individual subjects’ longitudinal trajectory µ
(i)
t , i =

1, . . . , N . To estimate the mean drift, we model populations

of time series of surfaces Stj , tj ∈ {t1, t2, . . . , tm} viewed

as longitudinal observations from members of labeled co-

horts undergoing disease modeling processes. In our set-

ting, we have triangulated mesh cortical surfaces associated

to studies such as ADNI [34]. We use current matching

for surfaces [44] as adopted for LDDMM to generate the

initial momentum fitting through the time-series [42, 43].

We solve for the variational solutions as an optimal control

problem, defining the state t 7→ qt = ϕt · S and the control

t 7→ vt satisfying the dynamical equations of (4).

The time series of surfaces enters as input data with

matching term given by the smooth energy U : qt →

R+, t ∈ [0, 1] which drives the state through the target sur-

faces with pre-defined mean drift µt, t ∈ [0, 1]. We pose the

following control problem:

Control Problem :

ϕ̇
(i)
t = (µ

(i)
t + w

(i)
t .) ◦ ϕ

(i)
t ,

q
(i)
t = ϕ

(i)
t ◦ S0, q

(i)
0 = S0, (5)

min
vt,t∈[0,1]

E(v) :=
1

2

∫ 1

0

‖w
(i)
t ‖2V dt+

∫ 1

0

Ut(q
(i)
t )dt .

The Hamiltonian momentum satisfies Eqn. (4) with forces:

ṗ
(i)
t = −d(µ

(i)
t + w

(i)
t )T ◦ ϕ

(i)
t p

(i)
t +

∂U
(i)
t

∂q
(q

(i)
t ) . (6)

The energy Ut, t ∈ [0, 1] is defined by the current match-

ing norm on surfaces (see Supp. A) denoted as ‖ · ‖S :

U
(i)
t (q

(i)
t ) =

∑
tj

δ(t− tj)
1

σ2
m

‖q
(i)
tj

− S
(i)
tj

)‖2S . (7)

We solve the minimization of this new control problem fol-

lowing the method of matching onto surfaces which has

been previously described for this class of problems [28].

2.3. Estimating Mean Drift of a Population

We now describe our method for computing the mean

drift µt from a population of shapes. Figure 2 depicts

the setting for our model assuming two populations, dis-

ease and control, each with their own mean drift represent-

ing their cohort. More generally, there can be any num-

ber of subpopulations. The basic idea is to generate for

each subject i’s time-series the optimal momentum p
(i)
0,sub

by geodesic shooting of a single trajectory through a time-

series, followed by transport of the trajectory’s initial mo-

mentum into the common population coordinates where we

average the momentum of each of the subjects to generate

p̄0. Each subject’s LDDMM flow and initial momentum is

transported into the template coordinate space by comput-

ing the diffeomorphism Φ(i) of the subject time-series onto

the population template, and then coadjointly transporting

[32] the initial momentum into the template coordinates.

For all experiments shown we assume the time series are

synchronized allowing us to average the initial momentum

of all subjects transported into population template coordi-

nates. Notably, under our proposed framework, any syn-

chronization can be used with no requirement for tempo-

rally overlapped data. For instance, time-varying velocity

fields associated to the initial momentum could be trans-

ported and averaged at a sampling of corresponding time

points to produce µt. This would increase the number of

estimated dimensions of the model. Based on our current

sample size we did not believe it was statistically stable to

re-estimate those additional dimensions.



The average momentum p̄0 encodes the population drift

µt for which we generate Hamiltonian equations for mo-

mentum evolution associated to the principles of least ac-

tion. To derive the mean drift in subject coordinates we

coadjointly transport p̄0 back to the coordinates of each sub-

ject defined by the diffeomorphism Φ(i) mapping the sub-

ject i to population coordinates. The coadjoint transport

of any initial momentum seeded on discrete control points

along Φ(i) multiply used above is defined by the following

(shown here for transport of p̄0 into the coordinate space of

subject i along Φ(i),−1):

p̄
(i)
0 = D[Φ(i)]−1(Φ(i))T p̄0([Φ

(i)]) . (8)

Φ(i) can be determined in several ways – in our exam-

ples, we choose to compute Φ(i) by mapping the first obser-

vation of each subject (for instance the first MRI in a longi-

tudinal series of scans, hereafter termed the ”baseline”) to

the template surface at the corresponding time point in the

mean flow. Thus each subject’s individual trajectory param-

eterized by p
(i)
0,sub lies in the reference frame of the baseline

but is seeded at control points corresponding to vertices of

the template surface triangulation, ensuring p
(i)
0,sub exists at

corresponding points for all subjects.

Algorithm 1 Estimating Infinitesimal Mean Drift Repre-

senting Population Shape

Given: time-series surface S
(i)
t , t ∈ {t1, . . . , tm} and

mappings Φ(i) to population template, i = 1, . . . , N :

Geodesic shoot p
(i)
0,sub through time-series, i = 1, . . . , N .

Transport p
(i)
0,sub, i = 1, . . . , N into population template

using Eqn. (8) and average:

p̄0 =
1

N

N∑
i=1

DΦ(i)([Φ(i)]−1)T p
(i)
0,sub([Φ

(i)]−1) .

Generate population inifinitesimal mean µ solving con-

servation laws from p̄0.

Coadjoint transport template-space initial momentum

into subject i coordinate space:

p̄
(i)
0,sub = D[Φ(i)]−1(Φ(i))T p̄0(Φ

(i)) .

Generate mean flow in subject-specific coordinates for

each subject i = 1, . . . , N from initial conditions p̄
(i)
0 :

d

dt
p̄
(i)
t = −d(µ

(i)
t )T p̄

(i)
t , i.c. p

(i)
0 (9a)

µ
(i)
t =

∫
K(·, ϕ

(i)
t (x))p̄

(i)
t (x)dx . (9b)

Figure 2. Estimating mean drifts associated to two subpopulations

of surfaces corresponding to labeled subjects forming the control

(µc) and disease (µd) subgroups where subjects 1 & 2 belong to

the control group and subjects 3-5 belong to the MCI group.

3. Experiments

3.1. Simulations based on Geodesic Shooting

We first apply our proposed model to simulated triangu-

lated surface data. Illustrated in Figure 3, a disc-like surface

and a cube-like surface are observed deforming over time

by their own subject specific trajectories parameterized by

p
(i)
0,sub. Each p

(i)
0,sub is transported into the template coordi-

nate space where the template is represented by a sphere.

Here, the momenta are averaged, producing p̄0 (purple vec-

tors), the momentum parameterizing the mean drift. For

simplicity, we show simulated data that are synchronized in

time by their baseline observations with surface triangula-

tions that have corresponding vertices.

Figure 4 shows examples of subject-specific deviations

from the simulated drift of Figure 3. In this example, a

pyramid-like subject changes longitudinally by expanding

in the horizontal plane along an axis between two corners of

the pyramid. The drift p̄0 can be transported into the space

of this subject, producing p̄
(i)
0,sub (shown in purple vectors

on the pyramid). The method described in (6) is used to

compute the personalized control, shown in the bottom row.

Naturally, because the pyramid expands from corner to cor-

ner with no change in any other direction while the drift

expands in all directions, the resulting personalized control

shows sharp expansion from corner to corner and shrink-

age in all other directions. Shrinkage of a surface can be

measured by several metrics. We choose to examine the log

determinant of the jacobian of the deformation of the trans-

ported template surface in directions tangent to the surface,

hereafter referred to as the ”surface atrophy measure”.



Figure 3. Longitudinal LDDMM shooting on simulated data com-

putes the independent subject trajectories parameterized by initial

momentum p
(i)
0,sub shown as red and blue vectors in the left column

of panel (a). The subject surface at time 0 is transported by p
(i)
0,sub,

following the rightwards arrows for two subjects in panel (a) where

subject 1 uniformly expands and subject 2 expands along a single

axis. Panel (b) shows the initial momenta p
(i)
0,sub transported into

the template coordinate space by coadjoint transport along Φ
(i)

for both subjects, where the template is chosen as a sphere. The

transported momenta are averaged in template space in panel (c)

to produce p̄0 in purple and the template surface is shown being

transported by the mean drift resulting from p̄0.

3.2. Alzheimer’s Disease Neuroimaging Initiative

We apply our model to neuroimaging data from the

Alzheimer’s Disease Neuroimaging Initiative dataset, a lon-

gitudinal imaging study of neurodegeneration in a patient

population at risk for Alzheimer’s. The dataset contains 3T

MRI scans for 57 patients (22 controls and 35 diagnosed

mild cognitive impairment [MCI]) over the course of two

years with intervals at baseline, 6 months, 12 months, and

24 months; the patient cohorts have been examined by mul-

tiple prior studies. We extend our model to study the drift

Figure 4. Personalized controls are shown for a simulated surface

from the mean drift of Figure 3. The top row shows an individ-

ual subject’s longitudinal trajectory, in which a pyramid-like sur-

face expands in one direction across two corners. The middle row

shows the initial momentum parameterizing the mean drift µ
(i)
t

in purple arrows (transported into the subject coordinate space) of

Figure 3 and the baseline (t = 0) subject surface deformed by the

flow resulting from the transported drift. The bottom left panel

shows p
(i)
0 computed for this subject, the initial momentum pa-

rameterizing w
(i)
t , computed by (6). The panels to the right show

the subject baseline surface deformed by the flow resulting from

w
(i)
t overlayed with the surface atrophy measure associated with

the personalized control where red indicates shrinkage tangent to

the surface.

of two populations as illustrated in Figure 2.

For simplicity of demonstration we choose to chronolog-

ically synchronize all subjects to their baseline scan date,

however we note the proposed framework is suitable for

any arbitrary synchronization with no requirement for cor-

responding baseline scan times. We then demonstrate the

computation of the deviation of MCI patient group mem-

bers from the mean drift of the normal population.

3.3. Surface Representation of Subcortical Struc­
tures in ADNI

We choose to examine longitudinal shape changes in the

entorhinal and transentorhinal cortex (hereafter referred to

as the entorhinal cortex) of the brain, a region which has

previously been linked to Alzheimer’s Disease. Figure 5

illustrates the process of seeding triangulated surfaces onto

the combination of these regions in MR. Manual voxel-wise



Figure 5. Surface generation process. (left) Sagittal view of 3T brain MRI in a section passing through the entorhinal cortex. (mid-

dle) Manual voxel-wise segmentations of the entorhinal and transentorhinal cortex are performed by anatomical experts. (right) Smooth

triangulated surfaces are seeded on the segmentations.

binary segmentations of the entorhinal cortex were per-

formed by anatomists and these segmentations were used to

build smooth triangulated surfaces for each subject at every

time point.

3.4. Computing the Drift of ADNI Populations

Bayesian template estimation [27] was performed on

baseline surfaces for the 57 subjects in order to build a tem-

plate coordinate space at the baseline timepoint (t=0). The

Figure 6. Population mean drift of ADNI patient cohort separated by control group and MCI group. The left column displays initial

momentum vectors at each vertex of the template surface parameterizing the mean drift of each population. The right columns show the

template surface deformed by the resulting flow of each population drift, sampled at baseline, one year, and two years. The surface atrophy

measure is plotted on the flowing surfaces where red represents shrinkage tangent to the surface and blue represents expansion.



template surface T was mapped to each subject baseline us-

ing diffeomorphic surface matching with data attachment

term based on currents [44], producing the transform Φ(i)

for i ∈ 1, 2, ..., 57. Then, at each baseline timepoint for

each subject, we have Φ(i) · T which is mapped longitudi-

nally through each subject’s subsequent surfaces in a single

trajectory which minimizes the sum of currents between the

deformed template and the subject’s triangulated surface at

each time point, producing p
(i)
0,sub for i ∈ 1, 2, ..., 57.

The initial momenta p
(i)
0,sub parameterizing each indepen-

dent subject specific trajectory are then transported into the

template space using coadjoint transport and averaged to

produce the population drift. We produce two population

drifts: 1) the 22 control subjects who did not develop MCI

and 2) the 35 subjects who did develop MCI.

In order to visualize the mean flow of each popula-

tion, we transport the template surface along each computed

drift. Snapshots of the deformed template sampled at se-

lected time points along the continuous drift trajectory are

shown in Figure 6 with each surface face colored by the log

determinant of jacobian of the drift deformation tangent to

the surface (where red indicates shrinkage).

As expected, the mean drift of the control population

fluctuates around identity. On the other hand, the mean

drift of the MCI population shows obvious atrophy as ev-

idenced by the red region in the bottom row of Figure 6.

Measurements on our transported templates showed 1.6%

volume loss in the control population and 8.3% volume loss

in the MCI population. These values are in line with previ-

ous studies of entorhinal cortex atrophy in Alzheimer’s Dis-

ease [43] and notably, the atrophy pattern measured by the

drift qualitatively matches that observed in those studies.

3.5. Computing the Personalized Controls of ADNI
Subjects

Having computed the drift of populations in the dataset,

we can now apply our new biased geodesic shooting algo-

rithm to compute the deviation or personalized control of in-

dividuals from the mean drift. For understanding biomark-

ers of Alzheimer’s Disease and dementia, we are interested

in examining the deviation of entorhinal cortex atrophy of

Figure 7. Personalized controls for two selected subjects from the MCI patient group. The left column shows the mean control population

drift initial momentum p̄0 (in purple vectors, scaled linearly for visibility) along with the additional deviation computed to match the

subject-specific observations p
(i)
0 transported to template space (in red vectors, scaled by the same linear factor). The right column shows

the baseline surface of each subject deformed by the flow resulting from the personalized control only. The surface atrophy measure is

plotted on the flowing surfaces where red represents shrinkage tangent to the surface and blue represents expansion.



Figure 8. Mean personalized control parameterized by initial momentum vectors are shown in the left column. The template flowed

along the trajectory defined by the mean personalized control is shown to the right, overlayed with the surface atrophy measure where red

represents shrinkage.

patients in the MCI group from the mean drift of the control

group. This would inform us about the additional deforma-

tion imposed on each subject’s entorhinal cortex on top of

the shape change associated with normal aging.

We apply the model of (4) in order to compute the per-

sonalized control of each individual. First, we transport the

drift into the coordinate space of the subject. Since the drift

is specified by the initial momentum p̄0 in our case, we

coadjointly transport p̄0 into each subject coordinate space

to obtain p̄
(i)
0,sub. From there we apply Eqn (6) to compute

w
(i)
t for each subject. Figure 7 shows two sample deviations

from the drift of the MCI patient population overlayed with

the surface atrophy measurement at selected time intervals.

In order to summarize the individual deviations for the

entire population, we compute the individual deviations for

all 37 subjects in the MCI patient group, as described above.

The initial momenta parameterizing the flows associated to

their personalized controls are then coadjointly transported

back into the template space and averaged using the same

method of Algorithm 1. The resulting flow describes the

average deviation in the shape of the entorhinal cortex of

MCI patients from the mean drift characterizing the normal

population. Figure 8 shows this mean deviation sampled

at several time points. As expected, we generally observe

a trend towards shrinkage of the entorhinal cortex in MCI

patients away from the normal population drift. Our model

shows precisely where this deviation occurs in specific pa-

tients as well as on the average.

4. Conclusion

In this paper we have introduced a new method for

computing biased geodesics that describe deviations of

subject-specific longitudinal trajectories, or ”personalized

controls”, from a given drift. We have described the dy-

namical systems framework that governs our model as well

as an algorithm to solve for the personalized controls. We

solve the control problem of mapping a template onto mem-

bers of a population using surface matching of triangulated

meshes onto targets. This method can be generalized to in-

clude volumes or landmarks, as well as to simultaneously

optimize the mean flow along with each individual’s per-

sonalized flow. We emphasize that there is no penalty on the

drift generated from the population as we assume the drift

is of dimension consistent with that of the population from

which it was estimated. Our algorithm treats the mean drift

as having no metric cost like identity, and as a result, devi-

ations from that drift are more naturally penalized. For this

reason, we use LDDMM shooting onto the population to

control the initial dimensions of the mean drift as the order

of the database is limited. In our experiments on entorhinal

cortical surfaces from the ADNI dataset, we show that we

are able to compute a realistic mean drift of two diagnostic

groups within the patient cohort under our model, and that

we are able to compute the deviations of MCI group indi-

viduals from the normal population drift as well as compute

the mean deviation in a common coordinate space.
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