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Abstract

The individual stages of most popular manifold learn-

ing algorithms are complicated by overlapping ideas – of-

ten consisting of a mix of learning how to embed, unfold

and reduce the dimension of the manifold at the same time.

Furthermore, the effect each step has on the final result is

in many cases not clear. Research in both machine learning

and mathematical communities has focused on the steps in-

volved in manifold embedding and estimation, and sample

sizes and performance bounds related to these operations

have been explored. However, the problem of unwrapping

or unfolding manifolds has received relatively little atten-

tion despite being an integral part of manifold learning in

general. In this work, we present a new generic algorithm

for unfolding manifolds that have been estimated by local

linear approximations. Our algorithm is a combination of

ideas from principal curves and density ridge estimation

and tools from classical differential geometry. Numerical

experiments on both real and synthetic data sets illustrates

the merit of our proposed algorithm.

1. Introduction

Manifold learning is one of the fundamental directions of

Machine Learning research [42, 38, 45, 36, 44, 8, 35]. It is

motivated by the notion that high dimensional data sets of-

ten exhibit intrinsic structure that is concentrated on or near

manifolds of lower local dimensionality. This notion has in-

spired a plethora of algorithms such as ISOMAP [38], Local

Linear Embedding [33], or Maximum Variance Unfolding

[44].

These pioneering algorithms have major drawbacks.

First, the steps of actually learning from manifolds – di-

mensionality reduction, manifold estimation and unfold-

ing/linearizing the manifold – are all interlaced. Second,

most algorithms fail to produce an actual manifold that is

close to the true manifold the data are sampled from [6].

Recent research includes several works that separately

analyze, and justify theoretically, the different steps of a

general manifold learning framework. [16], [28] and [18]

investigates and proves the manifold estimation part of the

manifold learning framework. [30], [1] and [2] proposes

practical algorithms for estimating manifolds. [43] defined

a general and theoretically valid embedding algorithm for

n-dimensional manifolds.

The final piece that has been less studied separately is

the notion of unfolding. This is the key contribution of this

paper: A novel generic algorithm for unfolding manifolds

estimated by a collection of local linear approximations.

It is a well-known fact that manifolds that are isometric

to R
d can always be unfolded into a linear subspace of Rd

[25]1. On the other hand, depending on the shape of the

manifold (a function of both the reach of the manifold and

the total volume of the manifold [28]), the trivial unfold-

ing via a linear projection such as PCA is seldom likely to

provide a proper isometric unfolding.

Instead, given a collection of local linear approximations

as in [28] or a principal manifold estimate as in [30], we use

the property that geodesics along a manifold isometric to

R
d will neither converge or spread out [25]. This allows us

to unfold the manifold directly by (1) transporting all local

linear approximations to a reference point on the manifold

via parallel transport along geodesics in the ambient space

and (2) sending them back along the same geodesics, with

the translation vector projected onto the local tangent space

at each step. The last step is equivalent to setting to zero

the last D − d elements of the parallel translation vector,

and ensures a d-dimensional global chart for the isometric

manifold. We consider a global isometric chart in R
d, rep-

resenting the manifold M ∈ R
D as an unfolded version of

the manifold.

To conclude this introduction, we acknowledge the fact

that the isometry constraint on M is restrictive, but this

1The unfolding will always exist, but might be hard to implement in

practice.
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is a contribution towards a general understanding of mani-

fold learning research. Also for example in analyzing latent

spaces of (deep) generative models, a popular direction in

modern manifold learning, it could be assumed that certain

parts, e.g. different classes, of the latent space is isometric

to R.

Structure of paper: We begin with a short introduction

to the relevant background theory in Section 2, namely prin-

cipal manifold estimation and some basic differential geom-

etry. We then proceed by presenting our algorithm and the

approximations we introduce in Section 3. Section 4 and

Section 5 presents numerical experiments and a short con-

clusion respectively.

2. Background material

This section starts with a brief review of Riemannian ge-

ometry. For a more complete overview, we refer the reader

to the books of Tu, Lee or do Carmo [40, 25, 26, 13].

2.1. Differential geometry – a quick reminder

A manifold is a second countable, locally Euclidean

Hausdorff space. Throughout this paper we are referring

to submanifolds of R
D. Given a manifold M diffeomor-

phic to R
d, at each point p ∈ M the tangent space, TpM ,

is the Euclidean space of dimension d which is tangent to

M at p [25]. The tangent bundle is the disjoint union of all

tangent spaces of M . A Riemannian manifold is a smooth

manifold equipped with a smoothly changing metric, given

by the inner product g : TpM×TpM → R. This metric de-

fines lengths of vectors and curves on the manifold as well

as the volume element[31]. The mapping from the tangent

space TpM to the manifold M is known as the exponential

map, and the inverse transformation from M to TPM as

the log map [7]. Vectors in TpM can be expressed by local

coordinates, x = (x1, x2, . . . , xd) with an induced basis of

differentials Ei = ∂p
∂xi

[25]. A geodesic is a locally mini-

mizing curve along M between two points on M . Parallel

transport is the translation of a tangent vector along M that

keeps the length and direction of the vector[22, 34]. Finally

we assume, for simplicity, throughout this paper that M is

geodesically convex and does not contain holes. The latter

can be relaxed and is covered by Rosman et al. [32], but this

is beyond the scope of this work.

2.2. Manifold estimation – density ridges and local
PCA

There are two types of manifold estimates relevant to

this paper, principal manifold estimation via density ridges

(PME) and manifold estimation via local PCA. This is also

reflected in the recent theoretical contributions of [16], [28]

and [17], where both local PCA and PME are shown to be

useful empirical estimators that are close to the true mani-

fold in Hausdorff distance.

Local PCA manifold estimation consists of selecting a

collection of points with a corresponding local neighbor-

hood, and then for each local neighborhood perform a PCA

projection to d dimensions [28]. Thus the manifold estimate

would correspond to M =
K⋃
i=1

Ci, where Ci are the local

coordinates obtained by local PCA and K is the number of

local approximations used.

PME is based on principal curves that were originally

introduced by Hastie and Stuetzle [20]. Several exten-

sions were made, [23, 15, 39], until [30] redefined princi-

pal manifolds as being the ridges of a probability density

estimate, [30].

Given a probability density f(x), its gradient g(x) =
∇T f(x) and Hessian matrix H(x) = ∇∇T f(x), the

ridge/PME can be defined in terms of the eigendecompo-

sition of the Hessian matrix:

Definition 2.1 (Ozertem 2011). A point x is on the d-

dimensional ridge, R, of its probability density function,

when the gradient g(x) is orthogonal to at least D−d eigen-

vectors of H(x) and the corresponding D − d eigenvalues

are all negative.

Furthermore, they also propose an algorithm for estimat-

ing the ridges through orthogonal projections of points onto

the principal manifold estimate. Given the spectral decom-

position of H as H(x) = Q(x)Λ(x)Q(x)T , where Q(x)
is the matrix of eigenvectors sorted according to the size of

the eigenvalue. Λii(x) = λi, λ1(x) > λ2(x) > . . . , is a

diagonal matrix of sorted eigenvalues. Furthermore Q(x)
can be decomposed into

[
Q⊥(x) Q‖(x)

]
, where Q⊥ is the

d first eigenvectors of Q(x), and Q‖ are the D − d small-

est – sorted according to eigenvalue. The set Q⊥ is referred

to as the orthogonal subspace due to the fact that when at

a ridge point, all eigenvectors in Q⊥ will be orthogonal to

g(x). This yields the following initial value problem for

projecting points onto a density ridge:

dyt

dt
= VtV

T
t g(yt), (1)

where Vt = Q⊥(x(t)) at yt = y(t), and y(0) = x. We

denote the set of y’s that satisfy equation (1), as the d-

dimensional principal manifold estimate2 R̂. In practice,

f̂(x) is usually estimated by a kernel density estimate or a

gaussian mixture model.

Genovese et al. [19] showed that the kernel density

ridges R̂ are consistent estimators of the true underlying

ridges R under Hausdorff loss (see Theorem 7 in their ex-

position).

2The R̂ is inherited from the name ridge.



2.3. Some connections between principal manifold
estimation and local PCA

To end this section on background material, we would

like to address some properties connecting the PME and the

local PCA estimate. By this we would like to answer the

question of why the principal manifold estimation frame-

work is introduced, when we claim that the methodology

presented in Section 3 should hold for any locally linear

manifold estimate? The answer lies in several such prop-

erties, of which several will be used directly later in this

paper:

1. By construction the modes of f̂ ,
{
mi : ∇

T f = 0
}

are

points which lie on the principal manifold estimate.

These points can be found by the mean shift algorithm,

[12]. This is also further backed up by Morse theory,

[22], which states that a given a function defined on

M , M itself is the union of the unstable manifold of

the critical points of this function. Taking f̂ as this

function, with several possible critical points, these un-

stable manifolds corresponds to the gradient ascent tra-

jectories of the mean shift algorithm [10, 3]. Thus, the

attraction basins of f̂ and serve as good local neigh-

borhoods for approximation by local PCA

2. A single local PCA estimate serves as an estimate of

TpM at a certain selected point on M . Conversely,

given a principal manifold estimate R̂ and a point p ∈
R̂, Q‖(p) is a basis for TpR̂, see e.g. [19]. Moreover,

if we look closer at the expression for the Hessian of f̂

at x,

H(x) =
1

n

n∑

i=1

(
uiu

T
i −

1

σ2
I

)
K

(
||x− xi||

σ2

)
,

(2)

where ui = (x − xi), we see that the Hessian ma-

trix is a local approximation – due to the restriction

of points included by K( ||x−xi||
σ2 )– of the covariance

matrix used in PCA.

Thus, a manifold estimate based on the critical points of f̂

and the projection of their corresponding basins of attrac-

tion onto Q‖(mi) is an intuitive, theoretically justified and

computationally efficient – no need to solve (1) for all points

– compromise between PME and Local PCA. In light of

this, we use this combined with kernel density estimation

throughout the rest of this paper.

3. A generic algorithm for isometric unfolding

In this section we aim to answer the question: how can

we unfold manifold estimates consisting of local linear ap-

proximations? We will answer this question by proposing

a simple algorithm founded in basic geometric properties.

It is assumed that the manifold estimate is of good quality,

and we refer the reader to [16] and [28] for examples of

error quantification and algorithms.

We start by outlining the main steps of our algorithm

in Algorithm 1, and then proceed by explaining underly-

ing principles behind our unfolding scheme. Initially, due

Algorithm 1 Generic unfolding algorithm

Input: A collection of local linear approximations (charts)

1: Select a reference point of unfolding.

2: Calculate geodesics from the reference point to the ori-

gin of all local linear approximations.

3: Transport all local charts along the corresponding

geodesic towards the reference point.

4: Transport all local charts back along the geodesic, set-

ting the last D− d coordinates of the parallell transport

vector to zero to enable d dimensional transport.

Output: Global unfolding.

to the assumption of M being isometric3 to R
d, we know

that the manifold can be covered by a single global chart

⊂ R
d. Furthermore, this assumptions also ensures that the

length of geodesics along the embedded manifold should

be preserved in this global chart. Given a sufficiently ac-

curate manifold estimate, such as by a principal manifold

estimate or local PCA, we already have a collection of local

linear charts for the manifold (we note that our definition

of chart is a slight abuse of terminology, but we follow the

definitions of [31] where coordinates defined on a local tan-

gent space can be considered an approximation of a chart

on the manifold). Thus, what is needed to obtain a glob-

ally unfolded chart is to orient all local charts according to

the direction and length of the geodesics connecting them.

Here, we note the similarity of our methodology to that of

Fast manifold learning by Riemannian normal coordinates

[7], where a global chart is directly created by calculating

the geodesic distance and initial angle to all data points and

keeping only the length and initial angle information.

To be more concrete, we first select a reference point p

on the manifold we wish to unfold. We recall that each

chart consists of a local linear approximation as well as a

point of origin on the manifold. Given that the manifold is

geodesically convex, p can be connected to all other charts

via geodesics. Moreover, this allows us to apply paral-

lel transport and translate all charts to the same reference

point. This will center all charts at p, and by projection

3This is a necessary assumption if we expect a proper unfolding of the

manifold – most often this is overlooked in manifold learning methodol-

ogy.



onto TpM we get at d dimensional chart over M . To fur-

ther emphasize our point, this is illustrated in (a) to (d) of

Figure 1.

Finally to carry out the actual unfolding (a global chart in

R
d), the last D−d coordinates of the parallel transport vec-

tor will be set to zero and d dimensional transport (transla-

tion constrained to stay in the global chart) is obtained. This

is illustrated in (d) to (f) of Figure 1. Since M is isometric

to R
d the length of the geodesic is trivially preserved. This

also ensures the orientation of the charts to be preserved, as

the isometry condition implies zero intrinsic curvature – the

geodesics will not diverge or converge along their original

path [25]. In practice, due to ambiguity in the orientation

of local charts and the directions of geodesics, the actual

implementation is somewhat more involved. The complete

algorithm is presented in Appendix A.

We end this section with an illustration of the unfold-

ing procedure in practice. Figure 1 shows the, by now fa-

mous, swiss roll dataset unfolded by our algorithm. Each

subfigure shows a different stage of the procedure and in

Figure 2 the entire unfolding is shown. The next two sec-

tions presents necessary details on the approximation and

practical implementations of our algorithm; geodesics and

parallel transport.

3.1. Approximating geodesics

Given a metric tensor at each point of the manifold solv-

ing the Euler Lagrange equation admits a computationally

tractable scheme for finding geodesics through solving a

system of differential equation [21] . As the PME frame-

work does not explicitly provide a metric tensor, we reframe

an idea presented by Dollár et al. [14]. The idea is to min-

imize the distance between two points using gradient de-

scent, while at the same time keeping the starting points

and endpoints fixed and making sure that all points on the

path lies approximately on the manifold.

Given a sequence of points {γi}
n
i=1
∈ M between two

points on the manifold x and y we can formulate the prob-

lem of finding a shortest path constrained to the manifold as

follows:

minimize
γ

n−1∑

l=2

||γl − γl−1||
2

subject to γ1 = x, γn = y, γ ∈M.

(3)

To optimize (3) the path γ is initialized using Dijkstra’s

algorithm and further discretized with linear interpolation

between the n given points. Then minimization is per-

formed by alternating between gradient descent to shorten

distance and projection to the PME, equation (1), to ensure

that points stay on the manifold.

In addition we use another idea from the work of [14]

for fast out of sample projections. After a selection of points

have been projected to the PME, by equation (1), the tangent

space of the ridge estimator is at each point x spanned by the

parallel Hessian eigenvectors Q‖(x). To project a new out-

of-sample point xo orthogonally to the manifold estimate,

||xo − xM ||
2, where xM is a point on the ridge, needs to be

minimized. This can be solved by setting xM to the closest

point of xo on the manifold and then iterating over xM ←
xM + αQ‖(xM )Q‖(xM )T (xo − xM ).

3.2. Approximate parallel transport

An alternative definition of a geodesic is that it can be

characterized as a curve with a velocity vector field that is

parallel to the curve [25]. This enables the translation of

vector fields, e.g. the local linear approximations at TpM ,

along a geodesic.

Given Ci, the local coordinates of the manifold estimate

centered at some point mi ∈M , let γ be the vector contain-

ing the points of the approximate geodesic from γ0 = mi

to a point γn = mr – e.g. the reference point – as found

by solving (3). The approximate parallel transport is per-

formed by translating the local coordinates Ci along the fi-

nite difference tangent vectors of the approximate geodesic

γ. At each step of the translation the points are projected to

the local tangent space by Q‖(γt)Q‖(γt)
T . This is to en-

sure that the local coordinates stay in the tangent space all

the way along the geodesic towards the target point mr. The

algorithm for approximate parallel transport is summarized

in Algorithm 2.

Algorithm 2 Approximate parallel transport from mi to mj

Input: Coordinate vectors Ci and approximate geodesic

γ = [γt]
n
t=1

.

1: Calculate Q||(γt) for t = [1, · · · , n].

2: Initialize C
′

i = Ci.

3: for t = [2, · · · , n] do

4: C
′′

i = Q||(γt)Q||(γt)
T
(
C

′

i + (γt − γt−1)
)

5: C
′

i = C
′′

i

6: end for

Output: Local coordinates C
′

i transported from mi to mj

along the manifold.

4. Experiments

In this section, we present empirical results illustrating

our generic unfolding framework on both real and synthetic

data sets. Our intention is to illustrate prototypical unfold-

ing scenarios and that our algorithm gives meaningful re-

sults. Each experiment is designed to illustrate different as-

pects of task of unfolding manifolds. In addition, we also

include an illustration of how the unfolding algorithm be-



(a) (b) (c)

(d) (e) (f)

Figure 1: These figures illustrate the main intuition behind our unfolding strategy: The point where the red and blue lines

meet is the reference point of unfolding. (a) to (d) illustrates the parallel translation of a local linear approximation (shown as

a linear subspace) to the reference point along the geodesic (shown in blue). (d) to (f) shows the final unfolding steps, where

the translation back along the geodesic has been restricted to d = 2. The final unfolding result, including all local linear

approximations, is shown in Figure 2. This figure is best viewed online or in color.

haves when we try to unfold a manifold (a hemisphere) that

is not isometric to R
d. For all the data sets we use the aver-

age distance to the 5th neighbor heuristic rule for the band-

width of the kernel density estimate [29] and all data sets

have been standardized to have zero mean and unit variance.

4.1. Swiss roll dataset

We begin by testing our algorithm on the so-called swiss

roll dataset [42, 33]. It consists of a deformed but isomet-

ric two-dimensional manifold embedded in R
3. We use

the mean shift algorithm to obtain a set of reference points

on the manifold and we perform a linear projection of all

points belonging to each reference point. Recall that mean

shift provides a partitioning of the manifold according to

Morse theory [22, 10]. We select the point with the lowest

z coordinate as reference point of unfolding and then pro-

ceed with all steps mentioned in Algorithm 1. The result

is shown in Figure 2. We see from the figure that the local

relationships of the linear approximations, marked in color,

are preserved.

4.2. MNIST handwritten digits

We test our algorithm on the ones of the MNIST hand-

written digits dataset [24]. Due to the deterioration of the

performance of the kernel density estimator as a function

20
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Figure 2: Swiss roll data set. Both the original data set and

the unfolded version are shown. The reference point is the

lowest mean shift mode which(also seen in Figure 1).

of dimension, we pre-process the data set by performing

a global dimensionality reduction to 10 dimensions using

PCA. The dimensionality of MNIST has previously been

found to be approximately 10 [27, 9, 37]. We apply the

same steps as for the swiss roll data set. Due to the re-

stricted variations of the digit one, we make the assumption

that the underlying manifold is isometric to R
2 and run our

algorithm. The result is shown in Figure 3, with a uniform

selection of the original images overlain on top of the un-

folded chart. We clearly see that both the orientation and
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Figure 3: Unfolded version of MNIST ones shown as a sin-

gle chart in R
2.
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Figure 4: Principal manifold estimate (blue points) and

an example of an approximate geodesic (red) between two

random points of the top 10 principal components of the

MNIST ones. (a) PCA dimensions 1 to 3. (b) PCA dimen-

sions 1, 2, and 4. (c) PCA dimensions 2 to 4.

thickness of the one digits is captured in each dimension of

the chart. In Figure 4 we see an example of the approxi-

mate geodesic used in the MNIST unfolding, the results are

shown on the top three, 1, 2, 4 and 2, 3, 4 principal com-

ponents respectively. We clearly see that even though the

manifold is nonlinear in the different dimensions, the ap-

proximate geodesic is able to smoothly follow the manifold

estimate.

4.3. Comparison with alternative algorithms

We compare our algorithm to a selection of benchmark

manifold learning algorithms. For clarity, we use a very

simple toy data example consisting of a small part of the

swiss roll dataset. Furthermore, to illustrate the smooth-

ing properties of the principal manifold estimate, we add

isotropic Gaussian noise with the same dimension as the

ambient space. The goal of this experiment is to illustrate

that our algorithm gives meaningful results when the main

goal is restricted to unfolding. The data set with and with-

out noise and the unfolded version using our algorithm is

shown in Figure 5. In Figure 6 we see the data processed to

two-dimensions by Isomap, LLE, MVU, LTSA, Laplacian

eigenmaps and our algorithm [38, 33, 45, 44, 5]. The true

underlying chart is shown with red dots, and the unwrapped

coordinates from the different algorithms are shown with

the same color coding as in Figure 5. All result were ob-

tained with neighborhood parameter k = 12 and both the

results and true underlying parameterization have been nor-

malized and centered.

Looking at the figures we see that Isomap is the closest to

ours, but it is not able to capture the manifold structure with-

out retaining the noise. The other four algorithms, Lapla-

cian eigenmaps, Local linear embedding, Maximum vari-

ance unfolding and Local tangent space aligment all fail to

unfold the underlying manifold and the results are accord-

ingly hard to comment on. We tried different parameters

for all algorithms, but all failed to give reasonable results,

except Isomap and our algorithm. Due to this we choose to

show only the results of the default parameter k = 12.

3210-1
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Figure 5: Dataset with (small red dots) and without (large

colored dots) noise. The result of our algorithm projected

to the tangent space of a reference mode shown in the same

colors as the data without noise.

4.4. What happens when the manifold is not isomet
ric to R

d?

As a final experiment we illustrate how our algorithm

behaves when the manifold we want to unfold is not iso-

metric to R
d. We illustrate this on a hemisphere toy data

set. In general a sphere has constant positive curvature and
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(a) Isomap k = 12.
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(b) Laplacian eigenmaps k =

12.
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(c) Local linear embedding k =

12.
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(d) Maximum variance unfold-

ing k = 12.
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(e) Local tangent space align-

ment k = 12.
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(f) Our algorithm

Figure 6: Uncovering the underlying parameterization of

the manifold shown in Figure 5 using various benchmark

manifold learning algorithms. The small red dots shows

the true underlying parameterization, while the colored dots

shows the output from the various manifold learning algo-

rithms.

is therefore not isometric to R
d. Unfolding this set with-

out shearing or breaking is not possible. In Figure 7 we see

that the algorithm breaks the manifold when unfolding it.

Even though this might be considered a negative result, this

is in accordance with the theory and we see that the algo-

rithm keeps the structure of the local tangent vectors. Fur-

thermore, seen relative to the reference point, the euclidean

distance of the unfolded structure is close to the geodesic

distance. On the other hand, it is obvious that relative dis-

tances across local approximations not connected directly

to the reference point gets broken.

5. Conclusion

In this paper we have illustrated the principles and pro-

posed a methodology needed to create a generic unfolding

(a)

(b)

Figure 7: An example where the algorithm fails. The red

dots represents the unfolded local linear approximations of

the manifold. The black dot is the reference point. The

tangent space of the reference point is shown as a shaded

plane. This figure is best viewed online.

strategy for principal manifold and local PCA estimates.

We have shown simple numerical experiments that back

up our claims, which are all motivated by well established

mathematical theory.

There are several steps needed to perform the unfold-

ing in this methodology, most notably density estimation,

calculating geodesics and performing parallel translation.

All of these steps carry with them some form of inaccu-

racies which needs to be further studied and quantified.

[16, 28, 19, 11] have all come a long way in analysing man-

ifold estimation from noisy data, and some of their tech-

niques could be extended to our work.

The kernel density estimation part of the framework

clearly presents a weakness, especially when faced with

very high-dimensional input spaces. But due to the gener-



ality of the methodology, this should not have major impact

in further practical applications.

Further work in this direction would most certainly in-

volve analysis of latent spaces of Deep Generative Mod-

els. Several works are already investigating the geometry

of such latent spaces using geometry and manifold learning

[34, 4, 41].

A. Algorithm for unfolding transported coor-

dinates

The algorithm for unfolding the transported tangent

space vectors is presented in Algorithm 3. The operator

null() returns the null space of a matrix, and ∆ν = νt−νt−1

is the difference vector between two points along a curve.

Algorithm 3 Isometric unfolding

Input: Local coordinates transported to a reference mode

C = {C
′

i}
m−1

i=1
and the geodesic from the reference

mode to all other modes, νi.

1: Choose a basis Ei for the tangent space of a point along

the geodesic νt, Tνt
M :

Ei =
[
∆νt null

([
∆νt Q⊥ (νt)

])]
.

2: for all Translated charts C
′

i do

3: for t = [2, · · · , n], n is the number of steps in νi do

4: Choose the translation direction as being along νt

such that the step along the geodesic will be ξ =

[‖ν′t‖, 0]
T , ξ ∈ R

D, 0 ∈ R
D−d.

5: Ensure that the orientation of the basis vectors stay

consistent: B = BET
t Et+1, initialized as B =

E1.

6: Translate and project to the next tangent space

along the geodesic,

Ui = Q‖(νt)Q‖(νt)
T
(
C

′

i +Bξt

)

7: end for

8: end for

Output: Unfolded manifold consisting of all charts M̂ =⋃m
i=1

Ui.
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[37] Ke Sun and Stéphane Marchand-Maillet. An information ge-

ometry of statistical manifold learning. In ICML, pages 1–9,

2014.

[38] Joshua B Tenenbaum, Vin De Silva, and John C Langford.

A global geometric framework for nonlinear dimensionality

reduction. Science, 290(5500):2319–2323, 2000.

[39] Robert Tibshirani. Principal curves revisited. Statistics and

Computing, 2(4):183–190, 1992.

[40] Loring W Tu. An introduction to manifolds, volume 200.

Springer, 2008.

[41] Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless,

Noah Snavely, Kavita Bala, and Kilian Weinberger. Deep

feature interpolation for image content changes. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 7064–7073, 2017.

[42] Laurens JP van der Maaten, Eric O Postma, and H Jaap

van den Herik. Dimensionality reduction: A comparative re-

view. Journal of Machine Learning Research, 10(1-41):66–

71, 2009.

[43] Nakul Verma. Distance preserving embeddings for general

n-dimensional manifolds. The Journal of Machine Learning

Research, 14(1):2415–2448, 2013.

[44] Kilian Q Weinberger and Lawrence K Saul. An introduction

to nonlinear dimensionality reduction by maximum variance

unfolding. In AAAI, volume 6, pages 1683–1686, 2006.

[45] Zhen-yue Zhang and Hong-yuan Zha. Principal manifolds

and nonlinear dimensionality reduction via tangent space

alignment. Journal of Shanghai University (English Edi-

tion), 8(4):406–424, 2004.


