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Abstract

Rate-invariant or reparameterization-invariant match-
ing between functions and shapes of curves, respectively,
is an important problem in computer vision and medical
imaging. Often, the computational cost of matching using
approaches such as dynamic time warping or dynamic pro-
gramming is prohibitive for large datasets. Here, we pro-
pose a deep neural-network-based approach for learning
the warping functions from training data consisting of a
large number of optimal matches, and use it to predict op-
timal diffeomorphic warping functions. Results show pre-
diction performance on a synthetic dataset of bump func-
tions and two-dimensional curves from the ETH-80 dataset
as well as a significant reduction in computational cost.

1. Introduction

A key ingredient in rate or parameterization-invariant
matching of shapes of one-dimensional functions or curves
is a cost function (either an L; or an Lo norm) that includes
a nonlinear one-one differentiable function with a differ-
entiable inverse (diffeomorphism) that controls the rate of
change of one function (shape) with respect to the other.
This transformation can be conveniently described by a
group action if an appropriate representation or mapping
of shapes or functions is defined, or by a direct non-linear
transformation of the coordinates of the curves or graphs
of functions. In both cases, the transformation results in a
composition of a shape with a diffeomorphic warping func-
tion. While the full problem of shape analysis for curves
also involves an invariant matching over a set of transla-
tions, scalings, and rotations, the main computation for both
curves and one-dimensional functions requires an optimiza-
tion over a set of diffeomorphic warping functions. There
have been several algorithms proposed to solve this opti-
mization problem. A classical, widely-used algorithm is dy-
namic time warping (DTW), which is amenable to a global
solution using dynamic programming [!3]. This algorithm
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has a computational complexity of O(T"?) for T samples or
points along the shape. In this paper, instead of solving the
dynamic programming (DP) problem explicitly, we outline
a deep learning (DL) framework for predicting the warping
functions by learning from pairwise matches from a training
dataset.

1.1. Motivation

Our motivation for learning to predict reparameteriza-
tions is multifold.
Computational cost: Direct computation of alignment, ei-
ther exclusively using dynamic time warping or by optimiz-
ing a cost function to find geodesics as in [3, 4, 14], in-
curs a computational cost. This cost is negligible for small-
sized functional or curve-shape datasets with sizes on the
order of a few thousands. However, for an order increase
of tenfold, hundredfold, or larger (data sizes > 100K or
> 1 million), the computational cost becomes prohibitive.
In real-world applications, such data arise from biological
shapes [2, 5], clinical time-series data of heart rates [1 1], or
functional magnetic resonance imaging signals (fMRI) [8].
Thus, we suggest that a prediction or an evaluation-type of
an approach has the potential to yield sizable cost savings
as compared to a direct computation-type of an approach.
In spirit, this motivation is similar to the idea proposed by
Yang et al. who predict the momentum-parameterization of
diffeomorphisms using a deep learning approach to achieve
a speedup in image registration [ 7].
Shape learning and classification: As proposed by Thomp-
son [15], the task of comparing the deformations of the ob-
jects, rather than a precise definition of the object itself,
often yields more interesting information. The temporal
warps or spatial reparameterizations (diffeomorphisms) can
be analyzed under a statistical learning framework includ-
ing tangent-space principal component analysis or linear
discriminant analysis. Under a deep-learning framework for
warping functions, one would not only have the predicted
warping function, but also the weights associated with the
underlying model training from the population. Thus the




goal of shape learning or shape understanding may poten-
tially benefit from having more information about the pop-
ulation. We also note that Lohit et al. [10] aims to achieve
this by jointly learning the time warping functions associ-
ated with temporal human activity. There, the approach is
classification-focused and is trained to give the best perfor-
mance with respect to classification.

Novel descriptors: Finally, the output of the intermediate
layers can serve as a rich feature descriptor for the shape
of the population. This can be achieved by following the
process of feature extraction and obtaining the projection
of a novel shape as a mapping of the intermediate layers
of the neural network, or by modeling the ensembles of the
activation layer for a population level shape descriptor.

1.2. Background and related work

Several ideas have been proposed for learning-based pre-
diction of the warping functions. Here, we outline them in
brief. Kazlauskaite et al. proposed a method for automati-
cally learning functional alignments based on a probabilis-
tic model built on non-parametric priors [6]. Another idea,
deep canonical time warping (DCTW) for learning warp-
ing functions (for multiple time-series) uses deep learning
to achieve simultaneous temporal alignment and maximal
correlation of time-series in a common subspace [16]. The
work by Oh et al. [12] uses a sequence transformer net-
work to learn linear transformations along the temporal axis
(stretch, compress, flip and/or shift the signal) to identify
and account for invariances in clinical time-series data. A
more recent approach by Lohit et al. [10] uses a temporal
transformer network (TTN) to learn warping functions in
the context of classification. Their network performs learn-
ing as well as class-aware discriminative alignment jointly
for time-series classification including action trajectories by
reducing the intra-class variability and also increasing the
inter-class separation. Notably, in their framework the pre-
diction of the warping functions is achieved without an ex-
plicit template for the class.

1.3. Contributions

The contributions of this paper are as follows. We pro-
pose a deep learning based framework for predicting dif-
feomorphic warps giving rise to invariant matching of one-
dimensional functions and two-dimensional curves. The
network architecture is simple and consists of a convolu-
tional layer followed by three dense layers. We propose
a choice of three loss functions that measure discrepan-
cies between i) warping functions, ii) linear combination of
the coordinates (graphs in case of functions) and warping
functions, and a iii) linear combination of the shape rep-
resentations and warping functions, and demonstrate that
the latter yields the best performance. We train the network
on warping functions obtained using dynamic programming

and show prediction results for a large set (~500K) of data
for synthetic bump functions and two-dimensional curves
from the ETH-80 dataset [9].

Our architecture differs from [10] in the following ways:
1) we permit negative inputs into the fully connected lay-
ers by using leaky reLU activation functions with parame-
ter 0.1, ii) we train our network directly on the shapes and
warping functions to minimize loss functions that penalize
shape matching differences as opposed to minimizing loss
functions that penalize classification errors, and iii) we do
not enforce a positive monotonicity in the network output
and instead try to learn this constraint.

Additionally, different from the approach in [10], we
achieve reparameterization-invariant matching for pairs of
curves by integrating loss functions that aim to find the
shortest distance between points in a Hilbert sphere.

This paper is organized as follows. Section 2 outlines
the preliminaries for the shape representation and matching
problem. Section 3 outlines the deep learning architecture
including the choice of loss functions, followed by results
in section 4 and discussion in section 5.

2. Shape representation preliminaries

Throughout this paper, we will consider a parameterized
representation for two-dimensional curves and functions.
We will let p denote a parameterized curve such that
p: D =[0,27] — R2. In this paper we will only consider
those ps that are differentiable and their first derivative is
in L?(D,R™). For a one-dimensional function, we assume
that p : D — R with a slight abuse of notation. Though
the following discussion is for two-dimensional curves,
the theory holds for one-dimensional functions. For the
purpose of studying the shape of p, we will represent it
using the square-root velocity function (SRVF) [3, 4, 14]

defined as ¢ : D — R™, where q(t) = p(t)/+/ |lp(t)|]. We
note that for every ¢ € L?(D,R"™) there exists a curve p
(unique up to a translation) such that the given ¢ is the
SRVF function of that p. This curve is recoverable using

the equation: p(t) = fg q(s)|lq(s)||ds.

To achieve invariance to scale, we re-scale all curves to
be of length 2. This causes the SRVF functional repre-
sentation for these curves to be identified as elements of a
hypersphere in the Hilbert manifold L?(D,R?). In this pa-
per, we will use the notation C° to denote this hypersphere.

We impose a standard L? metric on the tangent space
of this hypersphere as follows. Since C° is a sphere in
L?([0,27],R™), its tangent space at a point ¢ is given by:
T,(C%) = {v € L*([0,2n],R")|(v,q) = 0}. Here, (v, q)

denotes the inner product in L?([0,27],R™): (v,q) =

027r(v(t).q(t))Rndt. In this paper, we deal with one-

dimensional functions (n = 1) and two-dimensional curves



(n = 2). This standard metric on L?([0, 27|, R™) restricts
to one on C° and is used to compute geodesics between
shapes.

Representing a parameterized curve p(t) by its
SRVF function ¢(t), and imposing the constraint
Jp (a(t),q(t))dt = 2w, makes it invariant to trans-
lation and scaling.  Further, the rotation and the re-
parameterization variability is accounted for as follows.

For two-dimensional curves, a rotation is an element of
SO(2), the special orthogonal group of 2 x 2 matrices,
and a re-parameterization is an element of I, the set of all
orientation-preserving diffeomorphisms of D. The rotation
and re-parameterization of a curve p are both denoted by
the actions of SO(2) and T on its SRVF. While the action
of SO(2) is denoted by multiplication: SO(n) x C° —
C° (0,q(t)) = Oq(t), the action of T" is derived as fol-
lows. For a v € T', the composition p o v denotes its re-
parameterization; the SRVF of the re-parameterized curve

is given by ¢(7(t))1/7(t), where ¢ is the SRVF of p. This

gives us the action I x C° — C°, (q,7) = (goY)V7-
Next, we enable comparisons between functions by com-
puting the shortest path between them. Since the space Q
is a Hilbert sphere, the shortest path between two points
(shapes) g1 and g2 can be expressed analytically as,

xi(q1;v) = cos (tcos™ (g1, g2)) g1+ sin (tcos (g1, q2)) v,

ey
where ¢ € [0, 27| and the initial tangent vector v € T, (Q)
is given by v = g2 — (q1, ¢2)q1. Then the shortest distance
between the two shapes ¢; and ¢, in Q is given by

27
d(q1,q2) = ; vV (Xt, Xe)dt. ()

The distance in Eqn. 2 can be made invariant by searching
over all reparaemterizations ~y as

d- (a1, ¢2) = min (g, VA2 0 7). 3)

We use dynamic programming to minimize Eqn. 3 to
find the optimal reparameterization vpp as the minimizer

Ypp = arg min d(q1, V7g2 © 7).

In the fo?lowing discussion with a slight abuse of nota-
tion, we refer to the yp p obtained using dynamic program-
ming as ~y without the subscript DP and will refer to the
predicted warping function using deep learning as 7. Next,
we outline the framework for learning this warping function
by considering a training dataset of pairwise matchings.

3. Deep Learning Architecture

In an effort to minimize training time, we constructed our
network to be relatively simple with sufficient complexity to
be applicable to varying datasets. Indeed, we use the same

architecture across various datasets as discussed further in
section 4.

Drawing inspiration from TTN [10], our network also
consists of a convolutional layer. However, this is then fol-
lowed by three dense layers as illustrated in Figure 1.

As presented, this network operates on two-dimensional
curves; that is, given p; : D — R? and py : D — R?, the
network aims to find the optimal diffeomorphism mapping
p2 to p1. The curves p; and po are first downsampled by
selecting T" evenly spaced points in the interval [0, 27] and
then evaluating the curves at these points. As such, p; and
p2 can be regarded as matrices each of size 7' x 2. With a
slight abuse of notation, we refer to these matrix represen-
tations of p; and py as p; and p,. Concatenating the two
matrices yields [py, p2] € RT>4. This is what is then fed
through the network.

The input is first passed through a convolutional layer
with 32 filters of size 3 x 3 and a unit stride. The output of
this layer is then fed through the standard reLLU activation
function. After flattening this output, it is then fed through
two successive fully-connected layers of sizes 256 and 128,
respectively. Both of these layers have a leaky reLU activa-
tion function with parameter 0.1 and both are followed by
dropout layers with a drop probability of 0.25. The output
layer has 1" neurons and, to restrict the output to be in D,
the activation function is given by Q(x) = 2mwo(x) where
o(z) = H% is the sigmoid function.

For p1,p2 : D — R, the network remains the same ex-
cept the convolution layer now has filters of size 2 x 2 and
the input to the network is [p1, p2] € RT*2,

In contrast to [10], we do not enforce a non-decreasing
output but rather try to learn it from the data. Moreover,
our network aims to reproduce warps obtained from DTW
rather than warps that yield the best classification results.

3.1. Choice of loss functions

Given discretized curves p; and ps, our network outputs
4, which is an estimate of the « obtained by solving

7 = arg min [|q - Vg o3 @)
where ¢; and g2 are the SRVF representations of p; and
D2, respectively.
Since we desire 4 to be as close to v as possible, it is
natural to consider their squared ¢, difference as a measure
of similarity. As such, one possible loss function is

L1(v,3) = Iy = 4l13. )

After warping ps, we expect the distance between p; and
this warped ps to be smaller than that of p; and ps. As such,
we can also aim to minimize ||p; — p2 0 4||3 with respect to
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Figure 1. Deep neural architecture of the prediction network.

4. However, this loss does not make use of the true value +,
rendering the use of deep learning moot. As such, we can
simply consider a linear combination of this and £;:

La(v,9) = allpr = p2 03113 +blly = 4113 (6)

where a,b € R<.

Since the true -y is obtained by solving (4), it makes sense
to include this function in our loss. As such, the final loss
function we consider is again a linear combination of this
function and £4

£5(1.%) = allay — Vi@ o NI+l —A1E. @

Because we do not impose a nonnegativity constraint
on %, instead of considering loss (7), we will consider the
equivalent (8) for numerical stability

(P2 0 )4 |

L3(7,9) = allg - [+lly =415 ®

(P2 0 4)A]
4. Results
4.1. Data Generation

We consider two separate applications of time warp-
ing: to one and two-dimensional curves. One-dimensional
curves were synthesized by appending sinusoidal waves of
varying phase and amplitudes. We refer to these curves as
bumps and characterize them by their number of peaks. Ex-
amples of one, two, three, and four-bump curves is given in
figure 2.

AL

A\

Figure 2. Examples of synthesized bumps.

Each curve was discretized to 7' = 300 points. Ampli-
tudes were sampled uniformly on the interval [0.15, 3] and
wave lengths were chosen to be a percentage of 1" chosen
uniformly on the interval [5, 10].

Two-dimensional curves were constructed by first modi-
fying the contours in the ETH-80 [9] dataset. In particular,
each contour was manually inspected and modified so that
the curve did not exhibit any holes. Figure 3 illustrates this
process on an example of a cow contour from the dataset.
This process yields closed curves in R? with no holes.

Since the dataset consists of PNG images, we first bi-
narize the image and then apply the Moore-Neighbor trac-
ing algorithm to extract the curve boundary. This process
gives a set of points in R2. Using linear interpolation, the
curve is downsampled to 7' = 300 points so that the curve
is an element of R3%9%2_ This process is applied to each
of the modified ETH-80 curves, yielding 3280 curves be-
longing to one of eight evenly distributed classes: apple,
car, cow, cup, dog, horse, pear, and tomato. Within each



Figure 3. Hole removal from ETH-80 contour dataset.

class, each curve is enumerated according to its original file
name; afterwards, every possible image pair (,75),j > 4
is considered. Since each class has 410 curves, there are
4102& = 83845 such pairs. Across all 8 classes, this gives
a total of 670760 curve pairs.

For each curve pair (4, j), the optimal diffeomorphism
that warps curve j to curve ¢ was computed using DTW.
With the curves and diffeomorphisms at hand, the data is
split into training/validation/testing in a 70/10/20 split, re-
spectively, for a total of 469532 training pairs.

In the one-dimensional case, for each bump curve we
generate 650000 random pairs so as to be consistent with
the size of the two-dimensional dataset. The optimal align-
ment diffeomorphism is then found using DTW for each
pair and the same training/validation/test split is applied.
This is repeated for one, two, three, and four-bump curves
so that we have 450000 training pairs for each bump class.

4.2. Loss function performance

Using the one-bump dataset, we trained the network us-
ing the £4, L5 and L3 losses and used ¢ = 1 and b = i
for £4 and L3. Figure 4 depicts the average value of the
L1 loss on the validation data when trained using each loss.
We see that the L3 loss gives outputs that are most simi-
lar, in the /5 sense, to the desired output. Consequently, we
use the L3 loss to train our network on the remaining bump
datasets. The L3 loss also gives the best performance on the
two-dimensional dataset as depicted in figure 5.

4.3. Model performance

Figure 6 illustrates the performance of our network
trained on one, two, three, and four-bump datasets sepa-
rately using the L3 loss
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Figure 5. Average £, loss on 2-d validation data.

blue) where 7y (t) = ¢. The second row is a correspondence
plot between p; and ps as determined by ;. The third row
is a correspondence plot between p; and po as determined
by ~ and the fourth row is a correspondence plot between
p1 and po as determined by 7.

Similarly, figure 7 illustrates the performance of our net-
work when trained on the full 2d-dataset consisting of all
classes.

Figures 8 and 9 show the average error £, for the one-
dimensional (bump) data and the two-dimensional curves
for different bump and curve types. It is observed that in
the case of bumps, the lowest error is obtained for the one-
bump case, whereas the highest error is obtained for the
three-bump case, with the two and three-bump cases giv-
ing similar errors. For curves, rotund shapes such as apples,
cups, pears, and tomatoes yielded lower errors compared
to shapes with articulated features such as cows, dogs, and
horses.

4.4. Implementation and computational cost

The network was trained with a batch size of 32 for 200
epochs using an Adam optimizer [7] with a learning rate of



)
1)

(0

PP

°r

PisP2

Pi-P2°Y

One bump Two bumps

— ]

—

()

Three bumps Four bumps

Figure 6. Performance for the one, two, three, and four-bump cases. Top: Warping functions from DP () and DL (%). Matching by an
identity warp (2™ row), DP v (3"% row), and deep learning 4 (4" row).

Table 1. Time (in seconds) to obtain 100,000 warps on an
i7-7700K CPU @ 4.20GHz (dynamic programming) and two
NVIDIA GP102 TITAN Xp GPUs (deep learning).

Dynamic Programming
45130.011
5519.849

Deep Learning
14.047
5.639

Bumps
Shapes

0.001, and exponential decay rates of 0.9 and 0.999 for the
first and second moment estimates, respectively.

Table 1 shows comparisons of computational costs be-
tween the dynamic programming approach and the deep
learning prediction approach. All experiments were per-
formed on an Intel i7-7700K CPU @ 4.20GHz. The ma-
chine was equipped with 2 TITAN Xp GPUs for deep
learning. The network was implemented and trained using
TensorFlow [1]. The dynamic programming was executed
on the same machine. It is observed that the deep learn-
ing warping prediction approach was approximately 3000
times faster for one-dimensional functions (bumps) and 900
times faster for two dimensional curves.

5. Discussion

We presented a deep learning approach for predict-
ing warping functions that achieve rate-invariant alignment
in the case of functions and reparameterization-invariant

matching for two-dimensional curves. While we listed
shape learning and novel shape representation as poten-
tial applications, in this paper, our primary motivation was
demonstrating reduced computational cost. The network ar-
chitecture was simple to construct and has similarities with
the approaches in [10] and [12]. We experimented with
three loss functions, the first of which only plenalized the
cost between warping functions. The second penalized the
cost between the coordinates of curves and functions, and
the third penalized the cost between their SRVFs; both of
these penalized the cost between warping functions as well.
We showed that the latter yielded the best results. While,
visually, the predicted warping, and consequently the ensu-
ing matching, appear close to each other, we also observed
cases where the predicted function failed to achieve an opti-
mal warping. We also noted that, occasionally, the dynamic
programming algorithm partially failed to achieve a good
match.

In the one-dimensional case, figure 6 suggests our net-
work is able to perform reasonably well in aligning curves
when the curves are relatively close to one another. Fig-
ure 10 (a) is an example where the alignment of the curves
would require significant stretching and we see that both the
DP and DL solutions fail to achieve this. Because the train-
ing data is derived from the DP warps, performance of our
model must be measured relative to the DP performance.
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While our framework offers similar performance to DP
in relatively simple curves, its architectural simplicity lim-
its its flexibility and performance on difficult curves. For
example, figure 10 (b) depicts a curve where DP succeeds
but DL fails to match every bump correctly. Future work

El (71 '7)

Apple Car Cow Cup Dog Horse Pear Tomato

Shape

Figure 9. Average £, loss on test data for shapes.

can aim to enforce positive monotonicity in the predicted
warps as in [10]. However, more complicated architectures
should be explored. In particular, the convolution filter size
should be examined and chosen so as to span the dimension
of the curve and be large enough to capture variations in the
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Figure 10. (a) A two-bump example where both DP and DL fail to match bumps. (b) A four-bump example where DP successfully matches

all bumps but DL fails to match the third.

curve throughout its entire domain.

When trained on the two-dimensional shape data, we see
that the performance is comparable to DP for simple shapes.
In figure 7 we see that DL is able to perform alignments
similar to DP in both the cup and pear shapes. For more
complicated shapes like dogs and horses, detailed artifacts
such as legs, tails, and ears can be matched reasonably well
but performance is not as strong as in the DP case. This,
again, may be attributed to the simplicity of the network
and may possibly improve under a more complex network.

6. Acknowledgments

This research was partially supported by NIH National
Institute on Alcohol Abuse and Alcoholism awards K25-
AA024192 and RO1-AA026834.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 265-283, 2016. 6

[2] Shantanu H Joshi, Ryan P Cabeen, Anand A Joshi, Bo Sun,
Ivo Dinov, Katherine L Narr, Arthur W Toga, and Roger P
Woods. Diffeomorphic sulcal shape analysis on the cortex.
IEEE Transactions on Medical Imaging, 31(6):1195-1212,
2012. 1

[3] Shantanu H Joshi, E. Klassen, A. Srivastava, and 1. Jermyn.
A novel representation for Riemannian analysis of elastic
curves in R™. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1-7,2007. 1, 2

[4] Shantanu H Joshi, E. Klassen, A. Srivastava, and 1. Jermyn.
Removing shape-preserving transformations in square-root



(]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

elastic (SRE) framework for shape analysis of curves. In En-
ergy Minimization Methods in Computer Vision and Pattern
Recognition (EMMCVPR), pages 387-398, 2007. 1, 2

Shantanu H Joshi, Katherine L Narr, Owen R Philips,
Keith H Nuechterlein, Robert F Asarnow, Arthur W Toga,
and Roger P Woods. Statistical shape analysis of the corpus
callosum in schizophrenia. Neurolmage, 64:547-559, 2013.
1

Ieva Kazlauskaite, Carl Henrik Ek, and Neill Campbell.
Gaussian process latent variable alignment learning. In Pro-
ceedings of Machine Learning Research, volume 89, pages
748-757,2019. 2

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

David S Lee, Joana Loureiro, Katherine L Narr, Roger P
Woods, and Shantanu H Joshi. Elastic registration of single
subject task based fMRI signals. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, pages 154—162. Springer, 2018. 1

Bastian Leibe and Bernt Schiele. Analyzing appearance and
contour based methods for object categorization. In /IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 409-415, 2003. 2, 4

Suhas Lohit, Qiao Wang, and Pavan Turaga. Temporal trans-
former networks: Joint learning of invariant and discrimina-
tive time warping. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 12426-12435, 2019. 2, 3, 6,
7

Jeeheh Oh, Maggie Makar, Christopher Fusco, Robert Mc-
Caffrey, Krishna Rao, Erin E Ryan, Laraine Washer, Lau-
ren R West, Vincent B Young, John Guttag, et al. A general-
izable, data-driven approach to predict daily risk of clostrid-
ium difficile infection at two large academic health centers.
Infection Control & Hospital Epidemiology, 39(4):425-433,
2018. 1

Jeeheh Oh, Jiaxuan Wang, and Jenna Wiens. Learning to ex-
ploit invariances in clinical time-series data using sequence
transformer networks. In Proceedings of the 3rd Machine
Learning for Healthcare Conference, volume 85, pages 332—
347,2018. 2,6

Hiroaki Sakoe and Seibi Chiba. Dynamic programming al-
gorithm optimization for spoken word recognition. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
26(1):43-49, 1978. 1

Anuj Srivastava, Eric Klassen, Shantanu H. Joshi, and Ian H.
Jermyn. Shape analysis of elastic curves in Euclidean spaces.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 33:1415-1428, 2011. 1,2

D. W. Thompson. On Growth and Form. Cambridge Univer-
sity Press, 1943. 1

George Trigeorgis, Mihalis A Nicolaou, Bjorn W Schuller,
and Stefanos Zafeiriou. Deep canonical time warping for
simultaneous alignment and representation learning of se-
quences. [EEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 40(5):1128-1138, 2017. 2

[17] Xiao Yang, Roland Kwitt, Martin Styner, and Marc Nietham-

mer. Quicksilver: Fast predictive image registration—a deep
learning approach. Neurolmage, 158:378-396, 2017. 1



