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Abstract

Rate-invariant or reparameterization-invariant match-

ing between functions and shapes of curves, respectively,

is an important problem in computer vision and medical

imaging. Often, the computational cost of matching using

approaches such as dynamic time warping or dynamic pro-

gramming is prohibitive for large datasets. Here, we pro-

pose a deep neural-network-based approach for learning

the warping functions from training data consisting of a

large number of optimal matches, and use it to predict op-

timal diffeomorphic warping functions. Results show pre-

diction performance on a synthetic dataset of bump func-

tions and two-dimensional curves from the ETH-80 dataset

as well as a significant reduction in computational cost.

1. Introduction

A key ingredient in rate or parameterization-invariant

matching of shapes of one-dimensional functions or curves

is a cost function (either an L1 or an L2 norm) that includes

a nonlinear one-one differentiable function with a differ-

entiable inverse (diffeomorphism) that controls the rate of

change of one function (shape) with respect to the other.

This transformation can be conveniently described by a

group action if an appropriate representation or mapping

of shapes or functions is defined, or by a direct non-linear

transformation of the coordinates of the curves or graphs

of functions. In both cases, the transformation results in a

composition of a shape with a diffeomorphic warping func-

tion. While the full problem of shape analysis for curves

also involves an invariant matching over a set of transla-

tions, scalings, and rotations, the main computation for both

curves and one-dimensional functions requires an optimiza-

tion over a set of diffeomorphic warping functions. There

have been several algorithms proposed to solve this opti-

mization problem. A classical, widely-used algorithm is dy-

namic time warping (DTW), which is amenable to a global

solution using dynamic programming [13]. This algorithm

has a computational complexity of O(T 2) for T samples or

points along the shape. In this paper, instead of solving the

dynamic programming (DP) problem explicitly, we outline

a deep learning (DL) framework for predicting the warping

functions by learning from pairwise matches from a training

dataset.

1.1. Motivation

Our motivation for learning to predict reparameteriza-

tions is multifold.

Computational cost: Direct computation of alignment, ei-

ther exclusively using dynamic time warping or by optimiz-

ing a cost function to find geodesics as in [3, 4, 14], in-

curs a computational cost. This cost is negligible for small-

sized functional or curve-shape datasets with sizes on the

order of a few thousands. However, for an order increase

of tenfold, hundredfold, or larger (data sizes > 100K or

> 1 million), the computational cost becomes prohibitive.

In real-world applications, such data arise from biological

shapes [2, 5], clinical time-series data of heart rates [11], or

functional magnetic resonance imaging signals (fMRI) [8].

Thus, we suggest that a prediction or an evaluation-type of

an approach has the potential to yield sizable cost savings

as compared to a direct computation-type of an approach.

In spirit, this motivation is similar to the idea proposed by

Yang et al. who predict the momentum-parameterization of

diffeomorphisms using a deep learning approach to achieve

a speedup in image registration [17].

Shape learning and classification: As proposed by Thomp-

son [15], the task of comparing the deformations of the ob-

jects, rather than a precise definition of the object itself,

often yields more interesting information. The temporal

warps or spatial reparameterizations (diffeomorphisms) can

be analyzed under a statistical learning framework includ-

ing tangent-space principal component analysis or linear

discriminant analysis. Under a deep-learning framework for

warping functions, one would not only have the predicted

warping function, but also the weights associated with the

underlying model training from the population. Thus the



goal of shape learning or shape understanding may poten-

tially benefit from having more information about the pop-

ulation. We also note that Lohit et al. [10] aims to achieve

this by jointly learning the time warping functions associ-

ated with temporal human activity. There, the approach is

classification-focused and is trained to give the best perfor-

mance with respect to classification.

Novel descriptors: Finally, the output of the intermediate

layers can serve as a rich feature descriptor for the shape

of the population. This can be achieved by following the

process of feature extraction and obtaining the projection

of a novel shape as a mapping of the intermediate layers

of the neural network, or by modeling the ensembles of the

activation layer for a population level shape descriptor.

1.2. Background and related work

Several ideas have been proposed for learning-based pre-

diction of the warping functions. Here, we outline them in

brief. Kazlauskaite et al. proposed a method for automati-

cally learning functional alignments based on a probabilis-

tic model built on non-parametric priors [6]. Another idea,

deep canonical time warping (DCTW) for learning warp-

ing functions (for multiple time-series) uses deep learning

to achieve simultaneous temporal alignment and maximal

correlation of time-series in a common subspace [16]. The

work by Oh et al. [12] uses a sequence transformer net-

work to learn linear transformations along the temporal axis

(stretch, compress, flip and/or shift the signal) to identify

and account for invariances in clinical time-series data. A

more recent approach by Lohit et al. [10] uses a temporal

transformer network (TTN) to learn warping functions in

the context of classification. Their network performs learn-

ing as well as class-aware discriminative alignment jointly

for time-series classification including action trajectories by

reducing the intra-class variability and also increasing the

inter-class separation. Notably, in their framework the pre-

diction of the warping functions is achieved without an ex-

plicit template for the class.

1.3. Contributions

The contributions of this paper are as follows. We pro-

pose a deep learning based framework for predicting dif-

feomorphic warps giving rise to invariant matching of one-

dimensional functions and two-dimensional curves. The

network architecture is simple and consists of a convolu-

tional layer followed by three dense layers. We propose

a choice of three loss functions that measure discrepan-

cies between i) warping functions, ii) linear combination of

the coordinates (graphs in case of functions) and warping

functions, and a iii) linear combination of the shape rep-

resentations and warping functions, and demonstrate that

the latter yields the best performance. We train the network

on warping functions obtained using dynamic programming

and show prediction results for a large set (∼500K) of data

for synthetic bump functions and two-dimensional curves

from the ETH-80 dataset [9].

Our architecture differs from [10] in the following ways:

i) we permit negative inputs into the fully connected lay-

ers by using leaky reLU activation functions with parame-

ter 0.1, ii) we train our network directly on the shapes and

warping functions to minimize loss functions that penalize

shape matching differences as opposed to minimizing loss

functions that penalize classification errors, and iii) we do

not enforce a positive monotonicity in the network output

and instead try to learn this constraint.

Additionally, different from the approach in [10], we

achieve reparameterization-invariant matching for pairs of

curves by integrating loss functions that aim to find the

shortest distance between points in a Hilbert sphere.

This paper is organized as follows. Section 2 outlines

the preliminaries for the shape representation and matching

problem. Section 3 outlines the deep learning architecture

including the choice of loss functions, followed by results

in section 4 and discussion in section 5.

2. Shape representation preliminaries

Throughout this paper, we will consider a parameterized

representation for two-dimensional curves and functions.

We will let p denote a parameterized curve such that

p : D ≡ [0, 2π] → R
2. In this paper we will only consider

those ps that are differentiable and their first derivative is

in L2(D,Rn). For a one-dimensional function, we assume

that p : D → R with a slight abuse of notation. Though

the following discussion is for two-dimensional curves,

the theory holds for one-dimensional functions. For the

purpose of studying the shape of p, we will represent it

using the square-root velocity function (SRVF) [3, 4, 14]

defined as q : D → R
n, where q(t) = ṗ(t)/

√

‖ ˙p(t)‖. We

note that for every q ∈ L2(D,Rn) there exists a curve p
(unique up to a translation) such that the given q is the

SRVF function of that p. This curve is recoverable using

the equation: p(t) =
∫ t

0
q(s)‖q(s)‖ds.

To achieve invariance to scale, we re-scale all curves to

be of length 2π. This causes the SRVF functional repre-

sentation for these curves to be identified as elements of a

hypersphere in the Hilbert manifold L2(D,R2). In this pa-

per, we will use the notation Co to denote this hypersphere.

We impose a standard L2 metric on the tangent space

of this hypersphere as follows. Since Co is a sphere in

L2([0, 2π],Rn), its tangent space at a point q is given by:

Tq(Co) = {v ∈ L2([0, 2π],Rn)|〈v, q〉 = 0}. Here, 〈v, q〉
denotes the inner product in L2([0, 2π],Rn): 〈v, q〉 =
∫ 2π

0
(v(t).q(t))Rndt. In this paper, we deal with one-

dimensional functions (n = 1) and two-dimensional curves



(n = 2). This standard metric on L2([0, 2π],Rn) restricts

to one on Co and is used to compute geodesics between

shapes.

Representing a parameterized curve p(t) by its

SRVF function q(t), and imposing the constraint
∫

D
〈q(t), q(t)〉 dt = 2π, makes it invariant to trans-

lation and scaling. Further, the rotation and the re-

parameterization variability is accounted for as follows.

For two-dimensional curves, a rotation is an element of

SO(2), the special orthogonal group of 2 × 2 matrices,

and a re-parameterization is an element of Γ, the set of all

orientation-preserving diffeomorphisms of D. The rotation

and re-parameterization of a curve p are both denoted by

the actions of SO(2) and Γ on its SRVF. While the action

of SO(2) is denoted by multiplication: SO(n) × Co →
Co, (O, q(t)) = Oq(t), the action of Γ is derived as fol-

lows. For a γ ∈ Γ, the composition p ◦ γ denotes its re-

parameterization; the SRVF of the re-parameterized curve

is given by q(γ(t))

√

˙γ(t), where q is the SRVF of p. This

gives us the action Γ× Co → Co, (q, γ) = (q ◦ γ)√γ̇.

Next, we enable comparisons between functions by com-

puting the shortest path between them. Since the space Q
is a Hilbert sphere, the shortest path between two points

(shapes) q1 and q2 can be expressed analytically as,

χt(q1; v) = cos
(

t cos−1〈q1, q2〉
)

q1+ sin
(

t cos−1〈q1, q2〉
)

v,
(1)

where t ∈ [0, 2π] and the initial tangent vector v ∈ Tq1(Q)
is given by v = q2 − 〈q1, q2〉q1. Then the shortest distance

between the two shapes q1 and q2 in Q is given by

d(q1, q2) =

∫ 2π

0

√

〈χ̇t, χ̇t〉dt. (2)

The distance in Eqn. 2 can be made invariant by searching

over all reparaemterizations γ as

dγ(q1, q2) = min
γ

d(q1,
√

γ̇q2 ◦ γ). (3)

We use dynamic programming to minimize Eqn. 3 to

find the optimal reparameterization γDP as the minimizer

γDP = arg min
γ

d(q1,
√
γ̇q2 ◦ γ).

In the following discussion with a slight abuse of nota-

tion, we refer to the γDP obtained using dynamic program-

ming as γ without the subscript DP and will refer to the

predicted warping function using deep learning as γ̂. Next,

we outline the framework for learning this warping function

by considering a training dataset of pairwise matchings.

3. Deep Learning Architecture

In an effort to minimize training time, we constructed our

network to be relatively simple with sufficient complexity to

be applicable to varying datasets. Indeed, we use the same

architecture across various datasets as discussed further in

section 4.

Drawing inspiration from TTN [10], our network also

consists of a convolutional layer. However, this is then fol-

lowed by three dense layers as illustrated in Figure 1.

As presented, this network operates on two-dimensional

curves; that is, given p1 : D → R
2 and p2 : D → R

2, the

network aims to find the optimal diffeomorphism mapping

p2 to p1. The curves p1 and p2 are first downsampled by

selecting T evenly spaced points in the interval [0, 2π] and

then evaluating the curves at these points. As such, p1 and

p2 can be regarded as matrices each of size T × 2. With a

slight abuse of notation, we refer to these matrix represen-

tations of p1 and p2 as p1 and p2. Concatenating the two

matrices yields [p1, p2] ∈ R
T×4. This is what is then fed

through the network.

The input is first passed through a convolutional layer

with 32 filters of size 3× 3 and a unit stride. The output of

this layer is then fed through the standard reLU activation

function. After flattening this output, it is then fed through

two successive fully-connected layers of sizes 256 and 128,

respectively. Both of these layers have a leaky reLU activa-

tion function with parameter 0.1 and both are followed by

dropout layers with a drop probability of 0.25. The output

layer has T neurons and, to restrict the output to be in D,

the activation function is given by Ω(x) = 2πσ(x) where

σ(x) = 1

1+e−x
is the sigmoid function.

For p1, p2 : D → R, the network remains the same ex-

cept the convolution layer now has filters of size 2 × 2 and

the input to the network is [p1, p2] ∈ R
T×2.

In contrast to [10], we do not enforce a non-decreasing

output but rather try to learn it from the data. Moreover,

our network aims to reproduce warps obtained from DTW

rather than warps that yield the best classification results.

3.1. Choice of loss functions

Given discretized curves p1 and p2, our network outputs

γ̂, which is an estimate of the γ obtained by solving

γ = arg min
γ̄

||q1 −
√

˙̄γ(q2 ◦ γ̄)||22 (4)

where q1 and q2 are the SRVF representations of p1 and

p2, respectively.

Since we desire γ̂ to be as close to γ as possible, it is

natural to consider their squared ℓ2 difference as a measure

of similarity. As such, one possible loss function is

L1(γ, γ̂) = ||γ − γ̂||22. (5)

After warping p2, we expect the distance between p1 and

this warped p2 to be smaller than that of p1 and p2. As such,

we can also aim to minimize ||p1 − p2 ◦ γ̂||22 with respect to



Input Convolution Dense Dense Dense

T × 4 32 × 3 × 3 1 × 256 1 × 128 1 × T

Dropout Dropout

Figure 1. Deep neural architecture of the prediction network.

γ̂. However, this loss does not make use of the true value γ,

rendering the use of deep learning moot. As such, we can

simply consider a linear combination of this and L1:

L2(γ, γ̂) = a||p1 − p2 ◦ γ̂||22 + b||γ − γ̂||22. (6)

where a, b ∈ R>0.

Since the true γ is obtained by solving (4), it makes sense

to include this function in our loss. As such, the final loss

function we consider is again a linear combination of this

function and L1

L3(γ, γ̂) = a||q1 −
√

˙̂γ(q2 ◦ γ̂)||22 + b||γ − γ̂||22. (7)

Because we do not impose a nonnegativity constraint

on ˙̂γ, instead of considering loss (7), we will consider the

equivalent (8) for numerical stability

L3(γ, γ̂) = a||q1 −
(ṗ2 ◦ γ̂) ˙̂γ

√

|(ṗ2 ◦ γ̂) ˙̂γ|
||+ b||γ − γ̂||22. (8)

4. Results

4.1. Data Generation

We consider two separate applications of time warp-

ing: to one and two-dimensional curves. One-dimensional

curves were synthesized by appending sinusoidal waves of

varying phase and amplitudes. We refer to these curves as

bumps and characterize them by their number of peaks. Ex-

amples of one, two, three, and four-bump curves is given in

figure 2.

Figure 2. Examples of synthesized bumps.

Each curve was discretized to T = 300 points. Ampli-

tudes were sampled uniformly on the interval [0.15, 3] and

wave lengths were chosen to be a percentage of T chosen

uniformly on the interval [5, 10].

Two-dimensional curves were constructed by first modi-

fying the contours in the ETH-80 [9] dataset. In particular,

each contour was manually inspected and modified so that

the curve did not exhibit any holes. Figure 3 illustrates this

process on an example of a cow contour from the dataset.

This process yields closed curves in R
2 with no holes.

Since the dataset consists of PNG images, we first bi-

narize the image and then apply the Moore-Neighbor trac-

ing algorithm to extract the curve boundary. This process

gives a set of points in R
2. Using linear interpolation, the

curve is downsampled to T = 300 points so that the curve

is an element of R
300×2. This process is applied to each

of the modified ETH-80 curves, yielding 3280 curves be-

longing to one of eight evenly distributed classes: apple,

car, cow, cup, dog, horse, pear, and tomato. Within each



Figure 3. Hole removal from ETH-80 contour dataset.

class, each curve is enumerated according to its original file

name; afterwards, every possible image pair (i, j), j > i
is considered. Since each class has 410 curves, there are
410∗409

2
= 83845 such pairs. Across all 8 classes, this gives

a total of 670760 curve pairs.

For each curve pair (i, j), the optimal diffeomorphism

that warps curve j to curve i was computed using DTW.

With the curves and diffeomorphisms at hand, the data is

split into training/validation/testing in a 70/10/20 split, re-

spectively, for a total of 469532 training pairs.

In the one-dimensional case, for each bump curve we

generate 650000 random pairs so as to be consistent with

the size of the two-dimensional dataset. The optimal align-

ment diffeomorphism is then found using DTW for each

pair and the same training/validation/test split is applied.

This is repeated for one, two, three, and four-bump curves

so that we have 450000 training pairs for each bump class.

4.2. Loss function performance

Using the one-bump dataset, we trained the network us-

ing the L1,L2 and L3 losses and used a = 1 and b = 1

4

for L2 and L3. Figure 4 depicts the average value of the

L1 loss on the validation data when trained using each loss.

We see that the L3 loss gives outputs that are most simi-

lar, in the ℓ2 sense, to the desired output. Consequently, we

use the L3 loss to train our network on the remaining bump

datasets. The L3 loss also gives the best performance on the

two-dimensional dataset as depicted in figure 5.

4.3. Model performance

Figure 6 illustrates the performance of our network

trained on one, two, three, and four-bump datasets sepa-

rately using the L3 loss

The first row plots γ (in green), γ̂ (in red) and γI (in
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Figure 4. Average L1 loss on 1-d validation data.
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Figure 5. Average L1 loss on 2-d validation data.

blue) where γI(t) = t. The second row is a correspondence

plot between p1 and p2 as determined by γI . The third row

is a correspondence plot between p1 and p2 as determined

by γ and the fourth row is a correspondence plot between

p1 and p2 as determined by γ̂.

Similarly, figure 7 illustrates the performance of our net-

work when trained on the full 2d-dataset consisting of all

classes.

Figures 8 and 9 show the average error L1 for the one-

dimensional (bump) data and the two-dimensional curves

for different bump and curve types. It is observed that in

the case of bumps, the lowest error is obtained for the one-

bump case, whereas the highest error is obtained for the

three-bump case, with the two and three-bump cases giv-

ing similar errors. For curves, rotund shapes such as apples,

cups, pears, and tomatoes yielded lower errors compared

to shapes with articulated features such as cows, dogs, and

horses.

4.4. Implementation and computational cost

The network was trained with a batch size of 32 for 200

epochs using an Adam optimizer [7] with a learning rate of
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Figure 6. Performance for the one, two, three, and four-bump cases. Top: Warping functions from DP (γ) and DL (γ̂). Matching by an

identity warp (2nd row), DP γ (3rd row), and deep learning γ̂ (4th row).

Table 1. Time (in seconds) to obtain 100,000 warps on an

i7-7700K CPU @ 4.20GHz (dynamic programming) and two

NVIDIA GP102 TITAN Xp GPUs (deep learning).

Dynamic Programming Deep Learning
Bumps 45130.011 14.047
Shapes 5519.849 5.639

<latexit sha1_base64="J05c44gyjKr8g7b0dTfTz8l4Ufs="></latexit><latexit sha1_base64="J05c44gyjKr8g7b0dTfTz8l4Ufs="></latexit><latexit sha1_base64="J05c44gyjKr8g7b0dTfTz8l4Ufs="></latexit>

0.001, and exponential decay rates of 0.9 and 0.999 for the

first and second moment estimates, respectively.

Table 1 shows comparisons of computational costs be-

tween the dynamic programming approach and the deep

learning prediction approach. All experiments were per-

formed on an Intel i7-7700K CPU @ 4.20GHz. The ma-

chine was equipped with 2 TITAN Xp GPUs for deep

learning. The network was implemented and trained using

TensorFlow [1]. The dynamic programming was executed

on the same machine. It is observed that the deep learn-

ing warping prediction approach was approximately 3000

times faster for one-dimensional functions (bumps) and 900

times faster for two dimensional curves.

5. Discussion

We presented a deep learning approach for predict-

ing warping functions that achieve rate-invariant alignment

in the case of functions and reparameterization-invariant

matching for two-dimensional curves. While we listed

shape learning and novel shape representation as poten-

tial applications, in this paper, our primary motivation was

demonstrating reduced computational cost. The network ar-

chitecture was simple to construct and has similarities with

the approaches in [10] and [12]. We experimented with

three loss functions, the first of which only plenalized the

cost between warping functions. The second penalized the

cost between the coordinates of curves and functions, and

the third penalized the cost between their SRVFs; both of

these penalized the cost between warping functions as well.

We showed that the latter yielded the best results. While,

visually, the predicted warping, and consequently the ensu-

ing matching, appear close to each other, we also observed

cases where the predicted function failed to achieve an opti-

mal warping. We also noted that, occasionally, the dynamic

programming algorithm partially failed to achieve a good

match.

In the one-dimensional case, figure 6 suggests our net-

work is able to perform reasonably well in aligning curves

when the curves are relatively close to one another. Fig-

ure 10 (a) is an example where the alignment of the curves

would require significant stretching and we see that both the

DP and DL solutions fail to achieve this. Because the train-

ing data is derived from the DP warps, performance of our

model must be measured relative to the DP performance.
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Figure 7. Performance for 2D curves. Top: Warping functions from DP (γ) and DL (γ̂). Matching by an identity warp (2nd row), DP γ

(3rd row), and deep learning γ̂ (4th row).
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Figure 8. Average L1 loss on test data for all bumps.

While our framework offers similar performance to DP

in relatively simple curves, its architectural simplicity lim-

its its flexibility and performance on difficult curves. For

example, figure 10 (b) depicts a curve where DP succeeds

but DL fails to match every bump correctly. Future work

Apple Car Cow Cup Dog Horse Pear Tomato
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Figure 9. Average L1 loss on test data for shapes.

can aim to enforce positive monotonicity in the predicted

warps as in [10]. However, more complicated architectures

should be explored. In particular, the convolution filter size

should be examined and chosen so as to span the dimension

of the curve and be large enough to capture variations in the
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Figure 10. (a) A two-bump example where both DP and DL fail to match bumps. (b) A four-bump example where DP successfully matches

all bumps but DL fails to match the third.

curve throughout its entire domain.

When trained on the two-dimensional shape data, we see

that the performance is comparable to DP for simple shapes.

In figure 7 we see that DL is able to perform alignments

similar to DP in both the cup and pear shapes. For more

complicated shapes like dogs and horses, detailed artifacts

such as legs, tails, and ears can be matched reasonably well

but performance is not as strong as in the DP case. This,

again, may be attributed to the simplicity of the network

and may possibly improve under a more complex network.
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