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Abstract

In this paper, we propose a metric learning method for

image set recognition using subspace representation. The

subspace representation is effective for image set recogni-

tion where each image set is compactly represented by a

subspace in a high dimensional vector space. In this frame-

work, the similarity between two given image sets is mea-

sured by the canonical angles between the two correspond-

ing subspaces. Many types of methods utilizing the concept

of canonical angles have been developed and studied ex-

tensively. However, there still remains large potential in

improving the ability to measure canonical angles. Our

key idea is to learn a general scalar product space (met-

ric space) that produces more valid canonical angles be-

tween two subspaces. To realize this idea, we first introduce

an A-based scalar product instead of the standard scalar

product, where A is a symmetric positive definite matrix and

the canonical angles between two subspaces are measured

through the A-based scalar product. We learn a discrimi-

native metric space by optimizing metric A in terms of the

Fisher ratio from local Fisher discriminant analysis. Be-

sides, we introduce a mechanism to automatically reduce

the dimension of the metric space by imposing a low-rank

constraint on metric A. The effectiveness of the proposed

methods is validated through extensive classification exper-

iments on three real-world datasets.

1. Introduction

Image set recognition has become a fundamental ap-

proach for object recognition in the computer vision field,

since it can work robustly against various variations, such

as change of illumination condition or viewpoint [4, 13,

16, 18, 23, 27, 28, 33, 43, 42, 44, 47, 48]. An im-

age set is usually represented by a model, such as a co-

variance matrix [20, 43], affine/convex hull [4], and sub-

space [13, 14, 15, 16, 23, 47], to simplify the problem

of calculating the similarity between image sets to that of

the distance between two models. Although various practi-

cal methods using each model have been proposed, we fo-

cus on the subspace representation, as it has a wide range

of applications, and its effectiveness has been reported by

many different studies from the theoretical and experimen-

tal side [3, 10, 11, 12, 19, 21, 32, 36, 39, 40, 47, 49].

In subspace-based methods, each image set is repre-

sented by a subspace in high dimensional vector space,

where the subspace is generated by applying principal com-

ponent analysis (PCA) to a set of images. Then, classifi-

cation is performed by comparing input and reference sub-

spaces. As fixed dimensional subspaces compose a Grass-

mann manifold, various classification methods utilizing the

geometry of this manifold have been developed and studied

extensively [13, 16, 19]. These Grassmann-based methods

have achieved considerable results by designing a method

to efficiently utilize similarity (or dissimilarity) defined by

canonical angles [2, 17] between two subspaces measured

in the vector space.

In these methods, canonical angles are calculated in a

metric vector space with a simple scalar product, i.e., Eu-

clidean space. Although this calculation is simple and easy

to implement, there is still large room for the improvement

of the representation ability in which an identity matrix is

naively used as the metric matrix. To enhance the repre-

sentation ability of canonical angles, we introduce a gen-

eralized concept of canonical angles with a scalar product

space (also called a metric space) based on A-based scalar

product [24]. In our metric space, the canonical angles be-

tween two subspaces are measured through a scalar product

defined by a symmetric positive definite matrix A.

Then, we propose a method for learning a valid metric

vector space for more discriminative canonical angles be-

tween two given subspaces by searching for a suitable A.

The conceptual diagram of the proposed methods is shown

in Fig. 1. This learning method is equivalent to the defor-

mation problem of the metric vector space, while fixing all

the class subspaces. In this sense, the proposed method can

be regarded as a kind of dual problem of learning subspace
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Figure 1: Conceptual diagram of the proposed metric learning method. The similarity between two subspaces S1 and S2 is calculated by the

canonical angles {θi} in At -based scalar product space (metric space). The metric space is updated step by step through the optimization

of the metric At , using Riemann conjugate gradient (RCG) method such that the different category subspaces are more separated while the

same subspaces are more close, with reference to the local relationship between subspaces. The rank of At corresponds to a dimension of

t-th metric space. In the optimization, the low-rank constraint on At has the effect of sequentially reducing the dimension of the metric

space.

method [30], where the class subspaces are moved in re-

verse, while fixing the metric vector space.

Our idea of deforming a metric vector space is simple,

yet effective. However, the optimization of the metric ma-

trix A is not trivial, since A is required to be a symmetric

positive definite matrix. This means that we need to solve

an optimization problem on a Riemann manifold consist-

ing of symmetric positive definite matrices. We solve our

optimization problem by the Riemann conjugate gradient

method (RCG) [1, 7]. Since RCG optimizes A by using the

Euclidean gradient of the objective function, we first com-

pute the gradient of the objective function, including the

computation of canonical angles with respect to A. Then,

with this gradient, a metric space is sequentially updated by

the RCG to provide efficient canonical angles for classifica-

tion.

With the above technique, we construct a metric learn-

ing method, called A-based Metric Learning for Subspace

representation (AMLS), by formulating the optimization

problem of finding A such that it minimizes the cost func-

tion designed based on local Fisher discriminant analysis

(LFDA) [37, 38]. LFDA can efficiently incorporate local

information of data and outperforms traditional feature ex-

traction methods in classification. We embed local discrim-

inative information into A under the framework of LFDA.

A few studies have proposed reliable metric learning

methods using subspace representation [19, 49]. The pro-

posed methods is essentially different from these methods

in what is the object to be learned. The proposed method

focuses on the metric space, in which class subspaces exist.

We try to adjust the space itself as mentioned previously. In

contrast, the conventional methods focus on each class sub-

space and rotate them by some orthogonal transformation.

Furthermore, our idea on learning a metric space leads us

to the following fact: the rank of A corresponds to the di-

mension of a metric space. This characteristic enables us to

reduce the dimension d of the metric space sequentially by

decreasing the rank of A0 in optimization steps. We impose

a low-rank constraint on A by adding a term of trace norm

regularization to the cost function. This constraint induces

sparseness on the singular values of d × d matrix A0. As a

result, several singular values are set to zero so that only d ′

singular values are non-zero. This means that the original

d-dimensional metric space has shrunk to a d ′-dimensional

metric space, according to the rank of A0, although the di-

mension of the metric space still appears to remain d. To

extract the actual d ′ metric space, we perform the dimen-

sion reduction from d to d ′ by applying PCA to a set of

learning data in the A0-based metric space. After that, we

project the learning data onto the new d ′ metric space. A

new metric d ′ × d ′ matrix A1 is optimized for the projected

learning data in the same way mentioned above. The same

set of steps can be sequentially repeated in the optimization

process. Besides, our dimension reduction based on sparse-

ness provides a more discriminative space, as demonstrated

in the experiment section. Although the process in this idea



may seem complicated, it is simple and scalable compared

to previous dimension reduction methods.

The main contributions of this paper are as follow:

1. Introducing the generalized concept of canonical an-

gles based on a metric space for subspace-based image

set classification.

2. Deriving the gradient of the similarity computation us-

ing the generalized canonical angles, and then propos-

ing a learning method, called A-based metric learning

method for subspace representation (AMLS), for gen-

erating a discriminant metric space.

3. Incorporating the low-rank constraint on A into AMLS

for sequential dimension reduction of metric space.

4. Demonstrating the fundamental performance of

AMLS in tasks of image set based recognition using

public databases, ETH-80, YTC, and UCF.

The paper is organized as follows. In Section 2, we de-

scribe the concept of the canonical angles in an A-based

scalar product. In Section 3, we describe the proposed met-

ric learning method, and discuss with the relationship be-

tween the proposed methods and previous methods. In Sec-

tion 4, we present the details of the automatic dimension re-

duction method. In Section 5, we demonstrate the effective-

ness of the proposed methods through face recognition and

action recognition experiments using videos and an object

recognition experiment using multi-view images. Section 6

concludes the paper.

2. Preliminaries

In this section, we provide the concepts of subspace rep-

resentation and canonical angles and its natural generaliza-

tion, canonical angles in an A-based inner product, which

are the necessary fundamental techniques for constructing

our method.

2.1. Subspace representation and canonical angles

Let X ∈ Rd×n be an image set, where the image set has n

images, each image is expressed as a d dimensional vector.

The image set can be compactly and accurately represented

by a low dimensional subspace. The orthonormal basis vec-

tors S ∈ Rd×m of the m dimensional subspace can be ob-

tained as eigenvectors corresponding to m largest eigenval-

ues of the matrix XXT.

One of the benefits of adopting the subspace representa-

tion is its matching flexibility, which is facilitated by the use

of the canonical angles. Besides, a massive amount of data

can be compared with low computational cost.

Given two m dimensional subspaces S1 and S2 in d-

dimensional vector space, the canonical angles {0 ≤

θ1, · · · , θm ≤ π

2
} between S1 and S2 are recursively defined

as follows [2, 17]:

cos θi = max
u∈S1

max
v∈S2

uT
i vi, (1)

s.t . ‖ui ‖2 = ‖vi ‖2 = 1, uT
i uj = vT

i vj = 0, i , j,

where ui and vi are the canonical vectors producing the i-th

smallest canonical angle θi between S1 and S2. The j-th

canonical angle θ j is the smallest angle in the orthogonal

direction to the canonical angles {θk}
j−1

k=1
. A conventional

similarity applying the canonical angles is defined as fol-

lows [13].

fp(S1,S2) =

m
∑

i=1

cos2 θi . (2)

This similarity can be easily obtained as ‖ST
1
S2‖

2
F

without

calculating individual angles [13].

2.2. Canonical angles with an A­based scalar prod­
uct

The canonical angles described in the previous section

are measured in a space equipped with the standard Eu-

clidean scalar product. These angles can be generalized by

introducing an A-based scalar product, i.e., scalar product

is calculated on the metric space defined by the symmetric

positive-definite matrix A ∈ Rd×d [24].

Let (x,y)A = xTAy be an A-based scalar product, and

‖x‖A =

√

(x,x)A be the corresponding vector norm. Given

two subspaces S1, S2, the canonical angles in the A-based

scalar product between them are defined as follows:

cos θi = max
u∈S1

max
v∈S2

(ui,vi)A, (3)

s.t. ‖ui ‖A = ‖vi ‖A = 1, (ui,uj)A = (vi,vj)A = 0, i , j .

The corresponding similarity fA and dissimilarity dA are de-

fined as follows:

fA(S1,S2) =

m
∑

i=1

cos2 θi = ‖ŜT
1 AŜ2‖

2
F , (4)

dA(S1,S2) =

m
∑

i=1

sin2 θi =

m
∑

i=1

(1 − cos2 θi),

= m − ‖ŜT
1 AŜ2‖

2
F = m − fA(S1,S2), (5)

where the orthonormal basis S1, S2 of each subspace are

converted to A-orthonormal basis Ŝ1, Ŝ2, i.e., ŜT
1
AŜ1 =

ŜT
2
AŜ2 = I to preserve the orthonormality of a subspace

basis under the A-based metric by the following equation.

Ŝi = SiUiΣ
−1/2

i
, (6)



where the columns of Ui are the eigenvectors, and the diag-

onal elements of Σi are the eigenvalues of the matrix ST
i
ASi .

If A is the identity matrix, the above definition corresponds

to the conventional canonical angles in the Euclidean scalar

product.

Inspired by the above formulation, we propose a met-

ric learning method based on this new scalar product space

(also called metric space). To demonstrate its capabilities,

we build a high-performance classification method for im-

age sets in the next section.

3. A-based metric learning for subspace repre-

sentation

In this section, we describe the details of the proposed A-

based metric learning for subspace representation (AMLS).

First, we formulate the optimization problem of A in order

to learn a suitable metric space for calculating the canonical

angles. Then, we derive the optimization method based on

Riemann conjugate method with the gradient of the similar-

ity, provided in the Eq. 4.

3.1. Problem formulation

Given N image sets {Xi ∈ Rd×ni }N
i=1

, where each im-

age set Xi = [xi
1
, . . . ,xini ] has ni images, and each image is

represented by a d−dimensional feature vector xi
j
, our ob-

jective is to classify Xi . We first generate subspaces {Si}
N
i=1

corresponding to each image set. Then, we learn the metric

A by minimizing a discriminative cost function.

To design the cost function, we utilize the idea of local

Fisher discriminant analysis (LFDA) [37, 38]. LFDA can

work even if each class has a multimodal distribution by

incorporating local relationships between data. First, we

define two terms: the sum of the local similarity Jb between

subspaces of different categories, and the sum of the local

dissimilarity Jw between subspaces of the same category as

follows:

Jb(A) =
1

kN

N
∑

i=1

∑

j∈Ni

k

fA(Si,Sj), (7)

Jw(A) =
1

kN

N
∑

i=1

∑

j∈P i

k

d2
A(Si,Si)

=

1

kN

N
∑

i=1

∑

j∈P i

k

m − fA(Si,Si), (8)

where, N i
k

is an index set of k-neighbor subspaces with

the i-th subspace in different categories from the i-th sub-

space, and Pi
k

is an index set of k-neighbor subspaces with

the i-th subspace in the same category from the i-th sub-

space. Finally, we define the discriminative cost function as

follows:

J(A) = Jb(A) + Jw(A) + λ(1 − ‖A‖2
F )

2, (9)

where, the last term is the regularization to prevent the norm

of A from becoming too large, and λ(≥ 0) is the weight

parameter of the regularization. As the cost function de-

creases, we can obtain a more suitable metric space for clas-

sification.

In the next subsection, we describe the optimization

method for the cost function with respect to A.

3.2. Optimization

To minimize the cost function, we utilize the Riemann

conjugate gradient method (RCG), since the metric A is on

the manifold of symmetric positive definite matrices. The

RCG updates A by searching a suitable matrix along the

geodesic of the direction to the Riemann gradient of the cost

function. The Riemann gradient is, intuitively, the closest

vector to the Euclidean gradient that is also tangent to the

manifold, in this case of symmetric positive definite matri-

ces. Therefore, we need to show the Euclidean gradient of

the cost function.

To this end, since the function has the terms of the sim-

ilarity fA, in order to easily obtain the gradient, we first re-

formulate the similarity (Eq. 4) as follows:

fA(Si,Sj) = ‖ŜT
i AŜj ‖

2
F = tr(ŜT

j AŜiŜ
T
i AŜj)

= tr(Ŝj Ŝ
T
j AŜiŜ

T
i A)

= tr(SjUjΣ
−1/2

j
Σ
−1/2

j
UT

j S
T
j ASiUiΣ

−1/2

i
Σ
−1/2

i
UT
i ST

i A)

= tr(ST
i ASj(S

T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1). (10)

In the above equation, we can use the cyclic property of the

matrix trace, Eq. 6 and UiΣ
−1
i

UT
i
= (ST

i
ASi)

−1. This allows

us to obtain the gradient ∇A fA(Si,Si) of the similarity with

respect to A as follows:

∇A fA(Si,Si) = ∇Atr(ST
i ASj(S

T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1)

= Si(S
T
i ASi)

−1ST
i ASj(S

T
j ASj)

−1ST
j

+ Sj(S
T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1ST
i

− Sj(S
T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1ST
i ASj(S

T
j ASj)

−1ST
j

− Si(S
T
i ASi)

−1ST
i ASj(S

T
j ASj)

−1ST
j ASi(S

T
i ASi)

−1ST
i .

(11)

With this gradient ∇A fA, we can obtain the Euclidean



gradient of the cost function as follows:

∇AJ(A) =
1

kN

N
∑

i=1

∑

j∈Ni

k

∇A fA(Si,Sj)

−
1

kN

N
∑

i=1

∑

j∈P i

k

∇A fA(Si,Sj)

− λ(1 − ‖A‖2
F )A. (12)

A can be updated by the RCG with this Euclidean gradient,

until the maximum number of iterations is reached.

The image-set classification can be executed by the near-

est neighbor strategy by using the similarity (Eq. 4) by the

optimized A.

4. Dimension reduction of a metric space

In this section, we describe the details of the proposed

method of sequentially reducing the dimension of the origi-

nal metric space. The method consists of two steps, as men-

tioned in Sec. 1. First, we outline the algorithm of the opti-

mization with a low-rank constraint. Next, we show how to

apply principal component analysis (PCA) to our A-based

metric space to reduce its dimensionality.

4.1. Optimization with Low rank constraint

Our idea is based on the fact that the rank of metric A in-

dicates the dimension of a metric space, as mentioned pre-

viously. This suggests that we can realize the dimension

reduction effectively by decreasing the rank of a metric ma-

trix A. We impose a low-rank constraint on A by adding a

term of trace norm regularization to our cost function J(A).

The cost function is then modified as follows:

Jlr (A) = J(A) + η‖A‖∗, (13)

where ‖A‖∗ indicates the trace norm of A, and η(> 0) is the

weight parameter of the regularization.

To minimize the above mentioned cost function, Jlr (A),

we utilize the proximal gradient method (PGM) [5, 6, 26].

This method is built as a combination of two processes: a

regularization operation and the traditional gradient-based

method without the trace norm regularization. In this ex-

periment, we consider a combination of an operation for

the trace norm regularization and the Riemann conjugate

gradient (RCG) method for optimizing J(A) described in

the previous section. The first operation proxtr
η

is defined as

follows [8]:

proxtr
η
(A) = Umax(Σ − ηI, 0)UT, (14)

where the columns of U are the eigenvectors A, the Σ is a di-

agonal matrix whose diagonal elements are the eigenvalues

Algorithm 1: Algorithm of the proposed metric

learning method.

Input: N image sets {Xi ∈ R
d×ni }N

i=1
, class labels

{li}
N
i=1

and weight parameters λ,η, subspace

dimension m, the number of neighborhood

subspaces k, and the number of maximum

iterations T

Randomly initialize A0 ∈ Rd×d .

V0 = I // Matrix for dimension

reduction

Generate m-dimensional subspace Si for each image

set Xi .

for t = 1, . . . , T do
Compute the gradient ∇At−1

J(At−1) by Eq. 12.

At = RCG(At−1, ∇At−1
J(At−1) ) // Update

A by RCG step

At = proxtr
η
(At ), (Eq. 14) // Low-rank

constraint

if Rank of At is reduced then
Calculate V by Eq. 18

Vt = VTVt−1

At = VTAtV // Dimension

reduction

for i = 1 . . . N do

X̂i = VtXi

Generate m-dimensional subspace Si

from X̂i

end

else
Vt = Vt−1

end

end

return AT and VT

of A, I is the identity matrix, and max is the element-wise

max operation. In PGM, the operation proxtr
η

is applied to

A after each step of the RCG to minimize Jlr (A).

After the rank has decreased to d ′ by this optimization,

we move to the next process of PCA-based dimension re-

duction.

4.2. Dimension reduction based on A­based PCA

The dimension of the metric space still appears to re-

main d, after the rank of A is reduced to d ′ in the previous

subsection. This means that we need to extract the actual

d ′-dimensional metric space. To this end, we apply PCA

to a set of learning data, where PCA is required to be per-

formed in the updated metric space based on the optimized

metric A in the previous section.

In this subsection, we explain the technical details of

how to obtain a transformation matrix V ∈ Rd×d
′

that maps



data from the original d-dimensional metric space to the

d ′(= the reduced rank of A)-dimensional metric space.

First of all, we describe how to perform PCA in the A-

based metric space. Given N image sets {Xi ∈ R
d×ni }N

i=1
,

where each image set Xi = [xi
1
, . . . ,xini ] has ni images, and

each image is represented by a d-dimensional vector xi
j
. As

well known, PCA is a method for maximizing the scalar

product between image vectors {xi
j
} and a principal com-

ponent vector w. We define the objective function of PCA

in the A-based metric space as follows:

arg max
w

∑

i, j

(w,xij)
2
A =

∑

i, j

(wTAxij)
2,

s.t. ‖w‖2
A = 1. (15)

The above optimization problem can be rewritten by the La-

grange multipliers method as follows:

arg max
w

∑

i, j

(wTAx
j

i
)2 + α(wTAw − 1)2. (16)

The differential of the Eq. 16 yields the following equa-

tion.

ARAw − βAw

= ARv − βv, (17)

where v = Aw and R =
∑

i, j(x
i
j
)(xiT

j
). By assuming that

Eq. 17 equals 0, the transformation matrix V ∈ Rd×d
′
can be

obtained as a matrix whose columns are the d ′(= rank(A))

eigenvectors corresponding to the d ′ largest eigenvalues of

the following equation:

ARV = βV. (18)

With this matrix V, we extract a new metric A1 of the

actual d ′-dimensional metric space as VTAV. Each image

vector is projected onto this new metric space as VTxi
j
. Af-

ter that, new subspaces {Si} are generated from the pro-

jected vectors {VTxi
j
}j .

AMLS with the Low-rank constraint is called AMLSL.

This algorithm is summarized in Algorithm 1. If η = 0, the

algorithm corresponds to AMLS explained in the Sec. 3.

5. Evaluation experiments

In this section, we demonstrate the effectiveness of the

proposed methods through extensive experiments on three

tasks: video-based face recognition, multi-view image-

based object recognition, and action recognition. For each

task, we used YouTube Celebrity dataset [22], ETH-80

dataset [25], and UCF sports dataset [31, 35], respectively.

5.1. Experimental settings

The ETH-80 dataset consists of eight different cate-

gories, captured from 41 viewpoints, and there are 10 ob-

jects for each category. Five objects were randomly sam-

pled from each category and used as a training data, and the

remaining five objects were used as a testing data. As an

input image set, we used 41 multi-view images for each

object. We resized each image to 32 × 32 pixels and

used a 1024-dimensional feature vector whose element is

a pixel intensity of the corresponding image. We evaluated

the classification performance of each method in terms of

the average accuracy of ten trials using randomly divided

datasets.

The YTC dataset [22] contains 1910 videos of 47 peo-

ple. Face recognition using this dataset is still challenging

since all of the face images are low-resolution and face im-

ages of the same person have extreme variations, such as

change of face direction and emotion. We used a set of face

images extracted from a video by the Viola and Jones de-

tection algorithm [41], as an image set. All the extracted

face images were resized to 20 × 20 pixels. After convert-

ing each image to grayscale, we applied a histogram equal-

ization contrast adjustment method as a preprocessing. We

used a 400-dimensional feature vector whose element is a

pixel intensity of the corresponding image. We used three

videos per each person randomly selected as training data,

and six videos per each person randomly selected as test

data. We evaluated the classification performance of each

method in terms of the average accuracy of five trials using

randomly divided datasets.

The UCF sports dataset contains 150 sequences of sub-

jects practicing sports, with ten classes, namely: diving,

golf swing, kicking, lifting, horse riding, running, skate-

boarding, swing-bench, swing-side, and walking. The ac-

tion bounding box has been extracted, using annotations

provided. Then, we resized the extracted images to 38 ×

24 pixels and converted them to grayscale images. We

used a 912-dimensional feature vector whose element is a

pixel intensity of each image. We evaluated the classifica-

tion performance of each method by a leave-one-out cross-

validation scheme (LOOCV), a standard experiment setting

for this data, i.e., 150 repetitions of training, with one video

as testing and the remaining 149 videos as training data.

The proposed methods have five parameters: the max-

imum number of optimization steps, weight parameters λ

and η for corresponding regularization, subspace dimen-

sion, and the number of neighbor subspaces k. The maxi-

mum numbers of optimization steps were fixed to 100, 500,

and 50 for ETH-80, YTC and UCF datasets, respectively.

For all experiments, λ was fixed to 1e-3. For the proposed

method with the low-rank constraint, AMLSL, η was fixed

at 1e-4. The subspace dimension was tuned at the range

from 10 to 30 with the increments of 10 by the grid search



(a) ETH-80 (b) YTC (c) UCF

Figure 2: The curves of the cost function J(A) and rank of A (the dimension of a metric space) on three datasets. The horizontal axis means

the number of iterations of the optimization method. The blue and black solid lines are values of the cost function on AMLS and AMLSL

respectively, and the black break lines indicate the rank of A.

algorithm on the training data. The number of neighbors k

was tuned at the range from 2 to 10 with the increments of

2 by the same strategy.

5.2. Comparison methods

To examine the effectiveness of the proposed meth-

ods, we compared them with various methods: classi-

fication methods based on models other than subspace:

affine hull based method (AHISD) [4] and covariance based

metric learning methods, Log-Euclidean Metric Learning

(LEML) [20] and Riemann Manifold Metric Learning on

Symmetric Positive Definite manifold (RMML-SPD) [49].

For comparison with subspace based classification

method, we compared with traditional methods: Discrim-

inative Canonical Correlations (DCC) [23], Grassmann

Discriminant Analysis (GDA) [13], Graph-Embedding

GDA (GGDA)[16], and and state-of-the-art metric learn-

ing method: Projection Metric Learning (PML) [19], and

RMML on Grassmann manifold (RMML-GM) [49].

The parameters, other than the subspace dimension, of

the above methods were tuned at the suggested range by the

original papers under our experimental settings using the

grid-search algorithm on the training data. The subspace

dimension was tuned at the range from 10 to 30 with the

increments 10 by the same strategy.

5.3. Results and discussion

We first discuss the characteristic of the proposed meth-

ods by using the results shown in Fig. 2. Figure 2 shows

transitions of the cost function J(A) (Eq. 9) and the rank of

A (the dimension of a metric space) on the three datasets.

Since the cost values decrease as the number of iterations

of the optimization method increases, the basic ability of

the proposed optimization method using the differential

(Eq. 12) was validated. The low-rank constraint did not con-

tribute to the improvement of the cost value unfortunately,

as the cost values of AMLSL are larger than AMLS. How-

ever, it was confirmed that the optimization step automat-

ically learns the dimension of the metric space. This may

suppress the effect of overfitting in the testing phase. The

more detailed discussion is in the later with the results of

classification.

Table 1 shows the experimental results including those

from various conventional methods. Overall, subspace-

based methods show superior or the same results compared

with the other models under our settings. The effectiveness

of the proposed methods can be seen as it achieved better

results compared with state of the art subspace-based met-

ric learning methods, such as PML and RMML-GM, which

learn classification methods based on canonical angles in

the standard metric space. This supports the effectiveness

of our key idea; to learn efficient metric space for calculat-

ing canonical angles.

AMLSL showed the superior or same results to AMLS,

although its cost values are larger, as shown in Fig. 2. This

suggests that by applying dimension reduction automati-

cally, AMLSL can avoid overfitting, and efficiently extract

essential information for the classification.

6. Conclusion

In this paper, we proposed A-based Metric Learning for

Subspace representation (AMLS). We further extended the

idea of AMLS by adding the Low-rank constraint. This en-

hanced AMLSL is a powerful method with a function of

dimension reduction and high discriminative ability. The

core ideas behind the proposed methods are 1) measuring



Table 1: Experimental results (recognition rate (%), standard de-

viation) of the three tasks using the public datasets.

ETH-80 YTC UCF

AHISD [4] 70.25±4.78 56.31±4.61 53.33

LEML [20] 89.75±2.91 40.92±1.84 64.76

RMML-SPD [49] 83.75±4.90 39.57±4.45 53.33

DCC [23] 93.00±3.07 51.70±3.88 59.33

GDA [13] 92.50±4.25 45.74±7.27 70.00

GGDA [16] 93.75±4.75 47.45±8.06 47.33

PML [19] 93.75±3.17 54.82±4.63 72.67

RMML-GM [49] 90.25±4.16 54.96±4.96 59.33

AMLS 95.28±3.21 59.29±2.72 71.33

AMLSL 95.25±2.82 59.85±3.53 74.00

the canonical angles in a metric space equipped with met-

ric A, a symmetric positive definite matrix, and 2) designing

suitable metric space for calculating canonical angles by op-

timizing metric matrix A in terms of the local relationship

among subspaces. We formulated the optimization method

of A based on the Riemann conjugate gradient method. To

this end, we have rewritten the subspace similarity on a met-

ric space and then derived the gradient of it. We verified

the effectiveness of the proposed methods through the ex-

tensive classification experiments using the public datasets,

ETH-80, TYC, and UCF.

To the best of our knowledge, this work is the first pur-

suit of designing a metric space for measuring canonical an-

gles based on A-based scalar product. As this approach is

fundamentally different from conventional methods, which

are designed to utilize standard canonical angles efficiently,

we think that our methods can offer various possible future

directions, e.g., the combination of the proposed method

with the kernel-based subspace learning method [13, 16],

or to incorporate the success of the metric learning for vec-

tor data [9, 29, 34, 46, 45].
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