
PI-Net: A Deep Learning Approach to Extract Topological Persistence Images

Anirudh Som1,2, Hongjun Choi1,2, Karthikeyan Natesan Ramamurthy3, Matthew P. Buman4,

Pavan Turaga1,2

1School of Arts, Media and Engineering, Arizona State University
2School of Electrical, Computer and Energy Engineering, Arizona State University

3IBM Research
4College of Health Solutions, Arizona State University

asom2@asu.edu, hchoi71@asu.edu, knatesa@us.ibm.com, mbuman@asu.edu, pturaga@asu.edu

Abstract

Topological features such as persistence diagrams and

their functional approximations like persistence images

(PIs) have been showing substantial promise for machine

learning and computer vision applications. This is greatly

attributed to the robustness topological representations pro-

vide against different types of physical nuisance variables

seen in real-world data, such as view-point, illumination,

and more. However, key bottlenecks to their large scale

adoption are computational expenditure and difficulty in-

corporating them in a differentiable architecture. We take

an important step in this paper to mitigate these bottle-

necks by proposing a novel one-step approach to gener-

ate PIs directly from the input data. We design two sep-

arate convolutional neural network architectures, one de-

signed to take in multi-variate time series signals as in-

put and another that accepts multi-channel images as in-

put. We call these networks Signal PI-Net and Image PI-

Net respectively. To the best of our knowledge, we are

the first to propose the use of deep learning for comput-

ing topological features directly from data. We explore the

use of the proposed PI-Net architectures on two applica-

tions: human activity recognition using tri-axial accelerom-

eter sensor data and image classification. We demonstrate

the ease of fusion of PIs in supervised deep learning ar-

chitectures and speed up of several orders of magnitude

for extracting PIs from data. Our code is available at

https://github.com/anirudhsom/PI-Net.

1. Introduction

Deep learning over the past decade has had tremen-

dous impact in computer vision, natural language process-

This work was supported in part by NIH R01GM135927 and NSF CA-

REER 1452163. Arizona State University’s institutional review board ap-

proved all study materials and procedures (protocol number 1304009121).

Figure 1. Illustration of the proposed PI-Net model to directly

compute persistence images from input data. Traditional analytic

methods (illustrated in the top half of the figure) consist of a se-

quence of steps that are computationally expensive.

ing, machine learning, and healthcare. Among other ap-

proaches, convolutional neural networks (CNNs) in par-

ticular have received great attention and interest from the

computer vision community. This is attributed to the fact

that they are able to exploit the local temporal and spa-

tial correlations that exist in 1-dimensional (1D) sequen-

tial time-series signals, 2-dimensional (2D) data like im-

ages, 3-dimensional (3D) data like videos, and 3D objects.

In this paper, we refer to these type of data as input data.

CNNs also have far less learnable parameters than their

fully-connected counterparts, making them less prone to

over-fitting and have shown state-of-the-art results in ap-

plications like image classification, object detection, scene

recognition, fine-grained categorization and action recogni-

tion [27, 20, 54, 55, 56]. Apart from being good at learning

mappings between the input and corresponding class labels,

deep learning frameworks are also efficient in discovering

mappings between the input data and other output feature

representations [49, 51, 30, 16, 13].

While methods for learning features from scratch and

mapping image data to desired outputs via neural networks

have matured significantly, relatively less attention has been

paid to invariance to nuisance low-level physical factors like

sensor noise. Topological data analysis (TDA) methods are

popularly used to characterize the shape of n-dimensional

point cloud data using representations such as persistent di-

agrams (PDs) that are robust to certain types of variations

1

in the data [14]. TDA methods have also been successfully

applied to different computer vision problems and have

shown the ability to incorporate different invariances of in-

terest to the computer vision community [28, 12, 44]. The

shape of the data is quantified by properties such as con-

nected components, cycles, high-dimensional holes, level-

sets and monotonic regions of functions defined on the data

[14]. Topological properties are those invariants that do not

change under smooth deformations like stretching, bending

and rotation, but without tearing or gluing surfaces. These

attractive traits of TDA have renewed interested in this

area for answering various fundamental questions, includ-

ing those dealing with interpretation, generalization, model

selection, stability, and convergence [19, 6, 37, 35, 18, 17].

A lot of work has gone into utilizing topological repre-

sentations efficiently in large-scale machine learning [3, 5,

38, 33, 36, 1, 44]. However, bottlenecks such as compu-

tational load involved in discovering topological invariants

as well as a lack of a differentiable architecture remain. In

this paper we propose simple deep learning architectures to

learn approximate mappings between data and their topo-

logical feature representations.The gist of our idea is illus-

trated in Figure 1 and the main contributions are listed be-

low.

Contributions:

1. We propose a novel differentiable neural network ar-

chitecture called PI-Net, to extract topological repre-

sentations. In this paper we focus on persistence im-

ages (PIs) as the desired topological feature.

2. We provide two simple CNN-based architectures

called Signal PI-Net that takes in multi-variate 1D se-

quential data and Image PI-Net that takes in multi-

channel 2D image data.

3. We explore transfer learning strategies to train the pro-

posed PI-Net model on a source dataset and use it on a

different target dataset, with or without fine-tuning.

4. Through our experiments on human activity recogni-

tion using accelerometer sensor data and image classi-

fication on standard image datasets, we show the effec-

tiveness of the generated approximations for PIs and

compare their performance to PIs generated using an-

alytic TDA methods. We also investigate the benefits

of concatenating PIs with features learnt using deep

learning methods.

5. We also evaluate the robustness of classification mod-

els to Gaussian noise, with or without fusion with PI

representations in image classification tasks.

The rest of the paper is outlined as follows: Section 2 dis-

cusses related work. Section 3 provides the necessary back-

ground on TDA, PIs and CNNs. In Section 4 we describe

the proposed PI-Net frameworks in detail and in Section 5

we describe the experimental results. Section 6 concludes

the paper.

2. Related Work

Although the formal beginnings of topology is already

a few centuries old dating back to Euler, algebraic topol-

ogy has seen a revival in the past decade with the advent of

computational tools and software [39, 2, 4]. Arguably the

most popular topological summary is the persistence dia-

gram (PD), which is a multi-set of points in a 2D plane that

quantifies the birth and death times of topological features

such as k-dimensional holes or sub-level sets of a function

defined on a point cloud [15]. This simple summary has

resulted in the adoption of topological methods for various

applications [34, 47, 8, 11, 10, 23, 42, 48, 31]. However,

TDA methods suffer from two major limitations. First, it

is computationally very taxing to extract PDs. The com-

putational load increases both with the dimensionality and

with the number of samples in the data being analyzed. The

second obstacle is that a PD is a multi-set of points, mak-

ing it impossible to use machine learning or deep learning

frameworks directly on the space of PDs. Efforts have been

made to tackle the second issue by attempting to map PDs

to spaces that are more favorable for machine learning tools

[3, 5, 38, 33, 36, 1, 44]. For further reading, [43] surveys

recent topological representations and their associated met-

rics. To alleviate the first problem, in this paper we propose

a simple one-step differentiable architecture called PI-Net

to compute the desired topological feature representation,

specifically persistence images. To the best of our knowl-

edge, we are the first to propose the use of deep learning for

computing PIs directly from data.

Our motivation to use deep learning stems from its suc-

cessful use to learn mappings between input data and differ-

ent feature representations [49, 51, 30, 16, 13]. However,

deep learning and TDA did cross paths before but not in

the same context as what we propose in this paper. TDA

methods have been used to study the topology [19, 6], al-

gorithmic complexity [37], behavior [18] and selection [35]

of deep learning models. Efforts have also been made to

use topological feature representations either as inputs or

fused with features learned using neural network models

[12, 24, 7]. Later in Section 5, we show experimental results

on fusing generated PIs with deep learning frameworks for

action recognition and image classification.

3. Background

Persistence Diagrams: Consider a graph G = {V, E} con-

structed from data projected onto a high-dimensional point-

cloud space. Here, V is the set of |V| nodes and E denotes

the neighborhood relations defined between the samples.

Topological properties of the graph can be estimated by first

constructing a simplicial complex S over G. S is defined as

S = (G,Σ), with Σ being a family of non-empty level sets

of G, with each element σ ∈ Σ is a simplex [15]. This

Figure 2. Illustration of a PD and its weighted PI for three points

with same birth-time but different life-time. Due to the weighting

function points with higher life-time appear more brighter.

falls under the realm of persistent homology where we are

interested in summarizing the k-dimensional holes present

in the data. The simplices are constructed using the the ǫ-

neighborhood rule [15]. It is also possible to quantify the

topology induced by a function g defined on the vertices

of a graph G by studying the topology of its sub-level or

super-level sets. Since g : V → R, this is referred to as

scalar field topology. In either case, PDs provide a sim-

ple way to summarize the birth vs death time information

of the topological feature of interest. In this paper we use

persistent homology to compute ground-truth PDs for im-

ages and scalar field topology to compute ground-truth PDs

for time-series signals. In a PD the birth-time b refers to

the scale at which the feature was formed and death-time d

refers to the scale at which it ceases to exist. The difference

between d and b gives us the life-time or persistence and is

denoted by l = |d − b|. Each PD is a multi-set of points

(b, d) in R
2. Since d ≥ b, only one-half of the space in

the PD is actually utilized. Points in the PD that lie close

to the diagonal represent noise and can be easily discarded

by simple thresholding. Plotting the birth-time vs life-time

information allows us to utilize the entire 2D space of a PD

as shown in Figure 2. Interested readers can refer to the

following papers to learn more about the properties of the

space of PDs [14, 15].

Persistence Images: A PI is a finite-dimensional vector

representation of a PD [1] and can be computed through

the following series of steps. First we map the PD to an

integrable function ρ : R → R
2 called a persistence sur-

face. The persistence surface ρ is defined as a weighted

sum of Gaussian functions that are centered at each point in

the PD. Next, a discretization of a sub-domain of the persis-

tence surface is done which results in a grid. Finally, the PI

is obtained by integrating the persistence surface over each

grid box, giving us a matrix of pixel values. An interesting

aspect when computing PIs is the broad range of weight-

ing functions to chose from, to weight the Gaussian func-

tions. Typically, points of high persistence or lifetime are

perceived to be more important than points of low persis-

tence. In such cases one may select the weighting function

to be non-decreasing with respect to the persistence value of

each point in the PD. Adams et al. also talk about the stabil-

ity of persistence images with respect to the 1-Wasserstein

distance between PDs [1]. Figure 2 illustrates an example

of a PD and its PI where the points are weighted by their

life-time.

Convolutional Neural Networks: CNNs were inspired

from the hierarchical organization of the human visual cor-

tex [21] and consist of many intricately interconnected lay-

ers of neuron structures serving as the basic units to learn,

extract both low-level and high-level features from images.

CNNs are particularly more attractive and powerful com-

pared to their connected counterparts because CNNs are

able to exploit the spatial correlations present in natural

images and each convolutional layer has far less trainable

parameters than a fully-connected layer. Several sophis-

ticated CNN architectures have been proposed in the last

decade, for example AlexNet [27], VGG [41], GoogleNet

[46], ResNet [22], DenseNet [25], etc. Some of these de-

signs are known to surpass humans for object recognition

tasks [40]. Apart from discovering features from scratch

for classification tasks, CNNs are also popular for learning

mappings between input and other feature representations

[49, 51, 30, 16, 13]. This motivates us to design simple

CNN models for the task of learning mappings between the

data and their PI representations. We would like to direct in-

terested readers to the following survey paper to know more

about different CNN architectures [29, 45].

Learning Strategies: Here we will briefly talk about the

two learning strategies namely: Supervised Learning and

Transfer Learning. We employ these strategies to train the

proposed PI-Net model. Supervised Learning is concerned

with learning complex mappings from X to Y when many

pairs of (x, y) are given as training data, with x ∈ X being

the input data and y ∈ Y being the corresponding label or

feature representation. In a classification setting Y corre-

sponds to a fixed set of labels. In a regression setting, the

output Y is either a real number or a set of real numbers. In

this paper our problem falls under the regression category as

we try to learn a mapping between the input data and its PI.

Transfer Learning is a design methodology that involves us-

ing the learned weights of a pre-trained model that is trained

on a source dataset Ds for the source task Ts, to initialize

the weights of another model that is fine-tuned using a tar-

get dataset Dt for the target task Tt [52]. This allows us

to leverage the source dataset that the model was initially

trained on without having to train the model from scratch.

The is useful in cases where the target dataset has a lot less

data samples compared to the source dataset. In Section 4

we show how transfer learning is employed in our proposed

framework when the target training data is limited.

Figure 3. Illustration of Signal PI-Net for computing PIs directly from multi-variate time-series signals.

Figure 4. Illustration of Image PI-Net for computing PIs directly from multi-channel image data.

4. PI-Net Framework

In this section we first describe the steps to generate

ground-truth PIs and later discuss the proposed Signal PI-

Net and Image PI-Net configurations.

4.1. Generating Ground­truth Persistence Images

Data Pre-processing: For uni-variate or multi-variate time-

series signals, we consider only fixed-frame signals, i.e. sig-

nals with fixed number of time-steps, and zero-center them.

We standardize the training and test sets such that they have

unit variance along each time-step. For images we enforce

the pixel values to range between [0, 1].
Persistence Images for Time-series Data: We use the

Scikit-TDA python library [39] and use the Ripser pack-

age for computing PDs. As mentioned earlier, we com-

pute level-set filtration PDs for time-series signals. Scalar

field topology offers a simple way to summarize the differ-

ent peaks and troughs present in the signal. For example

a local minima gives birth to a topological feature (more

accurately a 0-dimensional homology group feature) which

dies at its local maxima. We compute PDs for each of the

x, y, z signals in the accelerometer sample. For better use

of the 2D space in the PD we consider birth-time vs life-

time information. For computing PIs we used the Persim

package in the Scikit-TDA toolbox. In all our experiments

we set the grid size of the generated PIs to 50×50 and fit

a Gaussian kernel function on each point in the PD. We

weight each Gaussian kernel by the life-time of the point.

For all time-series datasets we set the standard deviation of

the Gaussian kernel to 0.25 and set the birth-time range to

[-10, 10]. Once computed we normalize each PI by dividing

by its maximum intensity value. This forces the values in

the PI to also lie between [0,1].

Persistence Images for Multi-channel Image Data: Here

too we use the Scikit-TDA library for computing PDs and

PIs. We represent each image channel as a 3D point cloud

with the three coordinates representing the x-coordinate, y-

coordinate and intensity value of each pixel in the image.

For example, an image with c channels will result in c 3D

point clouds. The x and y coordinate information is also

normalized to be within [0, 1]. Finally, we compute the 1-

dimensional persistent homology PDs for each channel in

the image using the process described in Section 3. For all

image datasets in our experiments we discard points in the

PD with life-time less than 0.02. For computing PIs we set

the grid size of the generated PIs to 50×50 and fit a Gaus-

sian kernel function on each point in the PD. The Gaussian

kernel is weighted by the life-time of the point. Other pa-

rameters needed to compute PIs like birth-time range and

standard-deviation of the Gaussian kernel were set to differ-

ent values specific to each dataset. We consider the follow-

ing three datasets in our experiments: CIFAR10 [26], CI-

FAR100 [26] and SVHN [32]. For CIFAR10 and CIFAR100

we set birth-time range and standard-deviation to [0, 0.3]
and 0.01. For SVHN we set the same parameters to [0, 0.2]
and 0.005 respectively. Finally, each of the c PIs gener-

ated for a c-channel image is further normalized to lie in the

range [0, 1].

4.2. Network Architecture

Both PI-Net architectures were designed using Keras

with TensorFlow back-end [9].

Signal PI-Net: The input to the network is a b × t × n

dimensional time-series signal, where b is the batch-size, t

refers to the number of time-steps or frame size. For a uni-

variate signal n = 1 and for a multi-variate signal n > 1.

For our experiments in section 5, n is 3 and t is either 250
or 500. After the input layer, the encoder block consists

of four 1D convolution layers. Except the final convolu-

tion layer, all other convolution layers are followed by batch

normalization, ReLU activation and Max-pooling. The final

convolution layer is followed by batch normalization, ReLU

Tall male hard-surface walk
Tall female hard-surface walk

Tall male hard-surface run
Tall female hard-surface run

Run 1mile on at track

Seated - fold/stack laundry

Stand - dget with hands
1min brush teeth/hair

Drive car
Hard surface walk

Hard surface walk - hand in pocket
Hard surface walk - carry 8lb object
Hard surface walk - hold cellphone
Hard surface walk - hold co ee cup
Carpet with high heels/dress shoes

Walk on grass - barefoot
Walk on uneven dirt

Walk up-hill with heels/dress shoes
Walk down-hill with heels/dress shoes

Walk up-stairs 5 oors
Walk down-stairs 5 oors

Treadmill 3mph (5% grade)
Treadmill 4mph (0% grade)
Treadmill 5mph (0% grade)
Treadmill 6mph (0% grade)
Treadmill 6mph (5% grade)

Treadmill 1mph (0% grade)
Treadmill 2mph (0% grade)
Treadmill 3mph (0% grade)

0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Samples

GENEac v Dataset

Figure 5. Distribution of activity classes in the GENEactiv dataset

for time-step length = 250.

activation and Global-average-pooling. The number of con-

volution filters is set to 128, 256, 512 and 1024 respectively.

However, the convolution kernel size is same for all layers

and is set to 3 with stride set to 1. We use appropriate zero

padding to keep the output shape of the convolution layer

unchanged. For all Max-pool layers, we set the kernel size

to 3 and stride to 2. After the encoder block, we pass the

global-average-pooled output into a final output dense layer

of size 2500× n. The output of the dense layer is subjected

to ReLU activation and reshaped to size 50× 50× n.

Image PI-Net: The input to this network is a b×h×w× c

dimensional image, where b, h, w, c is the batch-size, the

image height, width and number of channels respectively.

Image PI-Net follows the same architecture as Signal PI-

Net for the encoder block. However, we now use 2D con-

volution layers instead. Also, for all the convolution layers

the number of filters and kernel size was set to 128 and 3

respectively. We use appropriate zero padding to keep the

output shape of the convolution layer unchanged. For all

Max-pool layers, we set the kernel size to 3 and stride to 2.

We pass the output of the encoder block into a latent vari-

able layer which consists of a dense layer of size 2500. The

output of the latent variable layer is reshaped to 50 × 50
and is passed into the decoder block. The decoder block

consists of one 2D deconvolution layer with kernel size set

to 50, stride set to 1, number of filters to c. The output of

the deconvolution layer is also zero-padded such that the

height and width of the output remain unchanged. The de-

convolution layer is followed by a final batch normalization

and Sigmoid activation. The shape of the output we get is

50× 50× c.

Walk forward

Walk le
Walk right

Walk up-stairs

Walk down-stairs
Run forward
Jumping up

Si ng

Standing
Sleeping

Elevator up

Elevator down

0 20 40 60 80 100 120 140 160

Number of Samples

USC-HAD Dataset

Figure 6. Distribution of activity classes in the USC-HAD dataset

for time-step length = 250.

5. Experiments

This section can be broadly divided into four parts. First

we show results for human activity recognition by using PIs

alone and PIs in fusion with different deep learning mod-

els on two accelerometer sensor datasets: GENEactiv [50]

and USC-HAD [53]. Second, we show image classification

results with and without fusing PIs with a DenseNet [25]

classifier on the following image datasets: CIFAR10 [26]

and SVHN [32]. Third, we show how the generated PIs

together with the image classification model can help im-

prove robustness to Gaussian noise. Finally, we show im-

provements in computation time for the task of extracting

PIs from image databases using Image PI-Net.

5.1. Action Recognition using Accelerometer Data

Dataset Description: The GENEactiv dataset consists of

29 different human-activity classes from 152 subjects [50].

The data was collected at a sampling rate of 100Hz using

the GENEactiv sensor, a light-weight, waterproof, wrist-

worn tri-axial accelerometer. Interested readers can refer

to the following paper to learn about the data collection

protocol [50]. The USC-HAD dataset consists of 12 dif-

ferent human-activity classes from 14 subjects [53]. Data

was collected using a tri-axial MotionNode accelerometer

sensor at a sampling rate of 100Hz. The sensor was placed

at the front right hip on the body. Both datasets were down-

sampled to 50Hz and fixed-length non-overlapping frames

were extracted. Figures 5 and 6 show the distribution of the

different activity classes in each dataset, with each frame

having a duration of 5 seconds or 250 time-steps. For the

GENEactiv dataset we extracted frames with time-steps =

250 and 500, and used approximately 75% of the frames

for training and the rest as the test set. USC-HAD being a

significantly smaller dataset, we only extracted frames with

time-step = 250 and used frames from the first 8 subjects for

training and the remaining 6 subjects as the test set.

Training Signal PI-Net: The Signal PI-Net model was

trained using just the training set of the GENEactiv dataset.

The batch-size was set to 128 and the model was trained for

a 1000 epochs. The learning rate for the first 300 epochs,

PI-Net Train Loss Test Loss

Signal PI-Net

Time-steps = 250
0.00159 0.00158

Signal PI-Net

Time-steps = 500
0.00187 0.00187

CIFAR10 Image PI-Net 1.99793 2.06193

CIFAR10 Image PI-Net FA 2.02095 2.04441

CIFAR10 Image PI-Net FS 0.51734 0.52560

SVHN Image PI-Net 1.53533 1.51732

SVHN Image PI-Net FA 1.57923 1.54195

SVHN Image PI-Net FS 0.41519 0.40955

Table 1. Final train and test loss values after training the different

Signal PI-Net and Image PI-Net models.
.

next 300 epochs and final 400 epochs was set to 10−3, 10−4

and 10−5 respectively. Adam optimizer was used and the

Mean-Squared-Error loss function was used to quantify the

deviation of the generated PIs from the ground-truth PIs.

Final training and test loss values are tabulated in Table 1.

Data Characterization and Classification: For charac-

terizing the time-series signals, we consider three differ-

ent feature representations: (1) A 19-dimensional feature

vector consisting of different statistics calculated over each

10-second frame [50]; (2) Features learnt from scratch us-

ing multi-layer-perceptron (MLP) models and 1D CNNs;

(3) Persistence Images generated using the traditional fil-

tration technique and the proposed Signal PI-Net model.

The 19-dimensional feature vector includes mean, variance,

root-mean-square value of the raw accelerations on each of

X , Y and Z axes, pearson correlation coefficients between

X-Y , Y -Z and X-Z time series, difference between max-

imum and minimum accelerations on each axis denoted by

dx, dy, dz, and
√

dx2 + dy2,
√

dy2 + dz2,
√
dx2 + dz2,

√

dx2 + dy2 + dz2. From here on out we will refer to this

19-dimensional statistical feature as SF.

The MLP classifier contains 8 dense layers, with each

layer having 128 units and ReLU activation. To avoid over-

fitting, each dense layer is followed by a dropout layer with

a dropout rate of 0.2 and a batch-normalization layer. The

output layer is another dense layer with Softmax activation

and with number of units equal to the number of classes.

The 1D CNN classifier consists of 10 CNN layers with

number of filters set to 32, kernel size to 3, stride to 1

and the output is zero-padded. Each CNN layer is followed

by batch-normalization, ReLU activation and max-pooling

layers. For max-pool layers we set the filter size to 3, the

stride was set to 1 for every odd layer and 2 for every even

layer. For the final CNN layer we use a global-average-

pooling layer instead of a max-pool layer. Here too, the

output layer consists of a dense layer with softmax activa-

tion and number of units equal to number of target classes.

We used the trained Signal PI-Net model to extract PIs

for the test set of the GENEactiv dataset. We also use the

same model to compute PIs for both the training and test

sets of the USC-HAD dataset. The different classification

Method
GENEactiv USC-HAD

Time-steps = 250 Time-steps = 500 Time-steps = 250

MLP - PI 46.45±0.32 49.67±0.63 43.21±0.66

MLP - Signal PI-Net 49.47±0.69 53.69±1.08 48.15±0.67

MLP - SF 41.70±0.41 42.01±0.42 35.68±0.11

MLP - SF + PI 48.57±0.37 49.82±0.62 44.31±0.36

MLP - SF + Signal PI-Net 50.66±0.78 54.44±0.80 48.97±0.30

1D CNN 53.56±0.31 54.97±1.35 54.58±0.64

1D CNN + PI 54.28±0.23 56.38±0.23 54.64±0.62

1D CNN + Signal PI-Net 54.41±0.21 56.41±0.22 57.82±0.78

Table 2. Weighted F1 score classification results for the GENEac-

tiv and USC-HAD datasets. The mean ± std values were calcu-

lated over five runs.

methods are listed in Table 2. The PIs obtained using tradi-

tional analytic methods or using the proposed Signal PI-Net

model were fused with the MLP and 1D CNN classifica-

tion models differently. For instance, MLP - PI and MLP

- Signal PI-Net use the MLP classifier to learn features di-

rectly from the computed PIs (The PIs were vectorized and

passed as inputs). MLP - SF uses the MLP classifier with

the 19-dimensional statistical feature as input. In MLP -

SF+PI and MLP - SF+Signal PI-Net we first concatenate

the SF and PI representations before passing them as input

to the MLP model. However, for 1D CNN + PI and 1D

CNN + Signal PI-Net we use a slightly different approach.

Using Principal Component Analysis (PCA) we first reduce

the vectorized PI representation (7500-dimensional) to a 32-

dimensional feature vector. This was done to reduce the

number of additional parameters that would result from the

concatenation of the PI feature representations to the 1D

CNN model. The 32-dimensional PI representation is then

concatenated to the output of the global-average-pool layer

in the 1D-CNN model.

The weighted F1 score classification results for GENE-

activ and USC-HAD is shown in Table 2. For each method

we report the mean ± std result over 5 runs. We observe

similar results under the different time-step settings in GE-

NEactiv and also across the two datasets. PIs computed

analytically or using Signal PI-Net perform better than SF.

Fusing PIs with SF helps significantly improve the classifi-

cation performance. 1D CNN is a more powerful classifier

than MLP, which is made clearly evident from the tabulated

results. Fusing PIs with features learnt using 1D CNNs

helps marginally improve the overall classification result.

5.2. Image Classification

Dataset Description: We consider the following three

datasets in our experiments: CIFAR10 [26], CIFAR100 [26]

and SVHN [32]. CIFAR10 and CIFAR100 each contain

50000 images for training and 10000 images for testing,

whereas SVHN has 73257 images for training and 26032

images for testing. For classification experiments we only

show results for CIFAR10 and SVHN. Both datasets have

10 different label categories. Also, the height, width and

number of channels for each image is equal to 32, 32 and 3

respectively.

Figure 7. Illustration of the modified base model where we con-

catenate PI feature with features learnt using the base classification

network.

Training Image PI-Net: We develop two kinds of Image

PI-Net models based on the datasets we chose as source and

target datasets: (1) In the first kind we set the source and

target datasets to be same, i.e. we train the Image PI-Net

model using the CIFAR10 or SVHN dataset. (2) For the sec-

ond type, we use the CIFAR100 dataset as the source dataset

and the target dataset is either CIFAR10 or SVHN. Simply

put, we employ transfer learning by first training the Im-

age PI-Net model using CIFAR100 and later use the target

dataset to fine-tune the Image PI-Net model. For the second

case, we further explore two variations: (2a) Fine-tune the

model using all samples from the training set of the target

dataset; (2b) fine-tune using just a subset i.e. 500 images

per class in the training set of the target dataset, to simulate

the scenario of having limited training data. We will refer

to these variants as Image PI-Net Fine-tune All (Image PI-

Net FA) and Image PI-Net Fine-tune Subset (Image PI-Net

FS) respectively. We explored the above variants to show

the use of the proposed Image PI-Net model under different

scenarios. We set the batch-size to 32. We train the ba-

sic Image PI-Net model for 415 epochs and set the learning

rate for the first 15 epochs, next 200 epochs and final 200

epochs to 10−3, 10−5 and 10−6 respectively. For Image PI-

Net FA and Image PI-Net FS we first load the weights from

the CIFAR100 pre-trained model and fine-tune the weights

for 200 epochs with a learning rate of 10−6. We use the

Adam optimizer and the Binary Cross-Entropy loss function

to compile the models. The training and test loss values are

tabulated in Table 1.

Data Characterization and Classification: For image

classification we use DenseNet [25] as our base classifi-

cation model. PIs alone are not as powerful as features

learnt using deep learning frameworks for image classifi-

cation. However, past research works have shown topolog-

ical features to carry complementary information that can

be exploited to improve the overall performance of a ma-

chine learning model [12, 28, 44]. We too show results us-

ing DenseNet in conjunction with PIs that are generated us-

ing traditional filtration techniques and using the proposed

Image PI-Net model. Figure 7 illustrates how we pass the

computed PIs as a secondary input to the base classification

network. Our DenseNet model has the following specifica-

tions: depth = 16, number of dense blocks = 4, number of

Method
CIFAR10 SVHN

Mean±SD p-Value Mean±SD p-Value

DenseNet 83.80±0.12 - 95.65±0.00 -

DenseNet + PI 84.37±0.21 0.0153 95.86±0.01 <0.0001

DenseNet + Image PI-Net 84.82±0.19 0.0160 95.95±0.08 0.0038

DenseNet + Image PI-Net FA 84.69±0.38 0.0195 95.84±0.06 0.0063

DenseNet + Image PI-Net FS 84.59±0.17 0.0032 95.95±0.07 0.0020

Table 3. Image classification accuracy results for CIFAR10 and

SVHN datasets, with the mean ± std values calculated over three

runs. P -value is calculated with respect to the base DenseNet

model.

convolution filters = 16, growth rate = 12, dropout rate =

0.2 and weight decay = 10−4. We pass the generated PIs

through a single 2D convolution layer with 32 filters. This

is followed by a global-average-pool layer which results in

a 32-dimensional feature vector. This feature vector is con-

catenated with the output of the global-average-pool layer

(penultimate layer) of the DenseNet model.

The classification results are averaged over three runs

and are tabulated in Table 3. We see that fusing PI feature

helps improve the overall classification result for the base

model on both datasets. PIs generated using the traditional

filtration method and the proposed Image PI-Net framework

achieve similar results. Also, Image PI-Net FS being trained

on just 500 samples per class, achieves a classification result

that is comparable to the other Image PI-Net variants. This

is useful in cases where there is limited training data for the

target task. To check the significance of the different fusion

cases we calculate the P -value for each case with respect

to just the DenseNet model. P -value is the area of the two-

sided t-distribution that falls outside ±t. We consistently

observe a P -value of less than 0.05 across all fusion cases.

While we only observe marginal improvement in terms of

classification accuracy, the advantage of using PI-Net with

the base classification model is made apparent in the next

section.

5.3. Robustness to Gaussian Noise in Images

While data augmentation can help neural networks learn

different transforms, TDA methods have the ability to en-

code different invariances by default. This could help re-

duce if not completely remove the need for different data

variations during the training process. Here we evaluate the

robustness of the different DenseNet classification models

when the test-set images are subjected to Gaussian noise.

Note, the classification models were trained using the origi-

nal training-set images and no data-augmentation was done

during the training process. All images were first normal-

ized to lie between [0, 1]. For both datasets we apply a

zero-mean Gaussian noise and vary the standard deviation

to the following levels: 0.02, 0.04, 0.06, 0.08. After apply-

ing Gaussian noise we clip the pixel values in the image to

lie between [0, 1]. We refer to the four increasing severity

levels of Gaussian noise as Level 1, Level 2, Level 3, Level

4 or in short L1, L2, L3, L4.

Figure 8. Percentage point drop in the classification performance on CIFAR10 (top) and SVHN (bottom) as the Gaussian noise severity

increases. The percentage drop is calculated with respect to the classification performance of the DenseNet model in the absence of any

Gaussian noise. Without noise, the DenseNet classification performance for 500 Test Samples and All Test Samples for CIFAR10 is

82.93% and 83.80%, and for SVHN is 96.06% and 95.65%. While the performance of all models drop as degradation increases, the drop

of topological fusion models is less compared to just the DenseNet model. Note, the y-axis is scaled different for each dataset.

Since computing PDs and PIs using traditional analytic

methods is computationally expensive, we were not able to

evaluate the DenseNet + PI case on all test images. To give

some perspective, computing PIs for each severity level on

the test-set would take about 10 hours and 24 hours for CI-

FAR10 and SVHN respectively. More information about the

computational complexity is discussed in Section 5.4. To

compare all methods we randomly select 500 images from

the test set and compare the classification performance. Fig-

ure 8 shows the percentage change in the classification per-

formance with respect to the DenseNet method in the ab-

sence of any Gaussian noise. The effect of Gaussian noise

is different for each dataset due to which the y-axis is scaled

differently. From the bar-plots we see that the overall clas-

sification performance decreases as the severity level in-

creases. However, the percentage decrease for DenseNet

+ PI and the different DenseNet + Image PI-Net variants

is less compared to DenseNet alone. Fusing PIs with the

DenseNet model helps incorporate robustness to different

Gaussian noise. We see similar trends between the 500 Test

Samples and All Test Samples cases.

5.4. Computation Time to Generate PIs

We used the NVIDIA GeForce GTX Titan Xp graphic

card with 12GB memory to train and evaluate all deep learn-

ing models. All other tasks were carried out on a stan-

dard Intel i7 CPU using Python with a working memory

of 32GB. We use the Scikit-TDA software to compute PDs

and PIs [39]. Table 4 shows the average time taken to ex-

tract PI for one image by conventional TDA methods us-

ing one CPU and the proposed PI-Net framework on both

a CPU and a GPU. The average is computed over all train-

ing images in each dataset. Using the Image PI-Net model

on a GPU, we see an effective speed up of three orders of

magnitude in the computation time. Also, Image PI-Net im-

plemented on a CPU is still faster than the analytic method

by an order of magnitude. Using a GPU we also check the

time taken to compute PIs when the entire training set is

passed into Image PI-Net as a single batch. It took about

Method

Time (10−3 seconds)

CIFAR10

(50000 images)

SVHN

(73257 images)

Conventional TDA - CPU 3567.29±867.74 3433.06±622.21

PI-Net - CPU 125.45±5.30 125.49±5.34

PI-Net - GPU 2.52±0.02 2.19±0.02

Table 4. Comparison of the average time taken to compute PIs for

one image using conventional TDA tools and the proposed PI-Net

model. The time reported is averaged over all images present in

the training set of each dataset.

.

9.77±0.08 seconds for CIFAR10 and 12.93±0.05 seconds

for SVHN. This is a fraction of the time compared to the

time it takes using conventional TDA tools. So far it had

been impossible to compute PIs at real-time using conven-

tional TDA approaches. However, the proposed framework

allows us to easily compute PIs in real-time thereby opening

doors to new real-time applications for TDA.

6. Conclusion and Future Work

In this paper we took the first step in using deep learn-

ing to extract topological feature representations. We de-

veloped a simple, effective and differentiable architecture

called to extract PIs directly from time-series and image

data. PI-Net has a significantly lower computational com-

plexity compared to using conventional topological tools.

We show improvements in classification performance on

two accelerometer and two image datasets. Despite observ-

ing marginal improvement in image classification accuracy,

the benefit of using PI-Net with the base classification net-

work is made apparent through the robustness to Gaussian

noise experiment.

For future work we would like to explore more sophisti-

cated deep learning architectures that can allow us to learn

mappings between higher dimensional data and their cor-

responding topological feature representations. We would

also like to see how deep learning can be further used to

generate other kinds of topological representations and test

their robustness to different image deformations like con-

trast, blur and affine transformations.

References

[1] Henry Adams, Tegan Emerson, Michael Kirby, Rachel

Neville, Chris Peterson, Patrick Shipman, Sofya Chepush-

tanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier.

Persistence images: A stable vector representation of per-

sistent homology. Journal of Machine Learning Research,

18(8):1–35, 2017.

[2] Henry Adams, Andrew Tausz, and Mikael Vejdemo-

Johansson. Javaplex: A research software package for per-

sistent (co) homology. In International Congress on Mathe-

matical Software, pages 129–136. Springer, 2014.

[3] Rushil Anirudh, Vinay Venkataraman, Karthikeyan Nate-

san Ramamurthy, and Pavan Turaga. A riemannian frame-

work for statistical analysis of topological persistence dia-

grams. In The IEEE Conference on Computer Vision and

Pattern Recognition Workshops, pages 68–76, 2016.

[4] Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Dis-

tributed computation of persistent homology. In Proceedings

of the Workshop on Algorithm, Engineering and experiments,

pages 31–38. SIAM, 2014.

[5] Peter Bubenik. Statistical topological data analysis using

persistence landscapes. The Journal of Machine Learning

Research, 16(1):77–102, 2015.

[6] Peter Bubenik and John Holcomb. Statistical inferences from

the topology of complex networks. Technical report, Cleve-

land State University, Cleveland, United States, 2016.

[7] Zixuan Cang and Guo-Wei Wei. Topologynet: Topology

based deep convolutional and multi-task neural networks for

biomolecular property predictions. PLoS Computational Bi-

ology, 13(7), 2017.

[8] Harish Chintakunta, Thanos Gentimis, Rocio Gonzalez-

Diaz, Maria-Jose Jimenez, and Hamid Krim. An entropy-

based persistence barcode. Pattern Recognition, 48(2):391–

401, 2015.

[9] François Chollet et al. Keras. https://keras.io, 2015.

[10] Moo K Chung, Peter Bubenik, and Peter T Kim. Persistence

diagrams of cortical surface data. In International Confer-

ence on Information Processing in Medical Imaging, pages

386–397. Springer, 2009.

[11] Yuri Dabaghian, Facundo Mémoli, Loren Frank, and Gunnar

Carlsson. A topological paradigm for hippocampal spatial

map formation using persistent homology. PLoS Computa-

tional Biology, 8(8):1–14, 2012.

[12] Tamal Krishna Dey, Sayan Mandal, and William Varcho. Im-

proved Image Classification using Topological Persistence.

In Vision, Modeling & Visualization. The Eurographics As-

sociation, 2017.

[13] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Learning a deep convolutional network for image

super-resolution. In European Conference on Computer Vi-

sion, pages 184–199. Springer, 2014.

[14] Herbert Edelsbrunner and John Harer. Computational topol-

ogy: an introduction. American Mathematical Society, 2010.

[15] Herbert Edelsbrunner, David Letscher, and Afra Zomoro-

dian. Topological persistence and simplification. Discrete

& Computational Geometry, 28(4):511–533, 2002.

[16] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in Neural Information Processing Sys-

tems, pages 2366–2374, 2014.

[17] Massimo Ferri. Why topology for machine learning and

knowledge extraction? Machine Learning and Knowledge

Extraction, 1(1):115–120, 2018.

[18] Maxime Gabella, Nitya Afambo, Stefania Ebli, and Gard

Spreemann. Topology of learning in artificial neural net-

works. arXiv preprint arXiv:1902.08160, 2019.

[19] Rickard Brüel Gabrielsson and Gunnar Carlsson. Exposition

and interpretation of the topology of neural networks. arXiv

preprint arXiv:1810.03234, 2018.

[20] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

580–587, 2014.

[21] Kalanit Grill-Spector and Rafael Malach. The human visual

cortex. Annu. Rev. Neurosci., 27:649–677, 2004.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[23] Kyle Heath, Natasha Gelfand, Maks Ovsjanikov, Mridul

Aanjaneya, and Leonidas J Guibas. Image webs: Computing

and exploiting connectivity in image collections. In IEEE

Conference on Computer Vision and Pattern Recognition,

2010.

[24] Christoph Hofer, Roland Kwitt, Marc Niethammer, and An-

dreas Uhl. Deep learning with topological signatures. In

Advances in Neural Information Processing Systems, pages

1634–1644. 2017.

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on Computer

Vision and Pattern Recognition, pages 4700–4708, 2017.

[26] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012.

[28] Chunyuan Li, Maks Ovsjanikov, and Frederic Chazal.

Persistence-based structural recognition. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

1995–2002, 2014.

[29] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng,

Yurong Liu, and Fuad E Alsaadi. A survey of deep neural

network architectures and their applications. Neurocomput-

ing, 234:11–26, 2017.

[30] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3431–3440, 2015.

[31] Afra Nawar, Farhan Rahman, Narayanan Krishnamurthi,

Anirudh Som, and Pavan Turaga. Topological descriptors

for parkinson’s disease classification and regression analy-

sis. arXiv preprint arXiv:2004.07384, 2020.

[32] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. 2011.

[33] Deepti Pachauri, Chris Hinrichs, Moo K Chung, Sterling C

Johnson, and Vikas Singh. Topology-based kernels with ap-

plication to inference problems in alzheimer’s disease. IEEE

transactions on Medical Imaging, 30(10):1760–1770, 2011.

[34] Jose A Perea and John Harer. Sliding windows and persis-

tence: An application of topological methods to signal analy-

sis. Foundations of Computational Mathematics, 15(3):799–

838, 2015.

[35] Karthikeyan Natesan Ramamurthy, Kush Varshney, and Kr-

ishnan Mody. Topological data analysis of decision bound-

aries with application to model selection. In Proceedings of

the International Conference on Machine Learning, pages

5351–5360, 2019.

[36] Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland

Kwitt. A stable multi-scale kernel for topological machine

learning. In IEEE Conference on Computer Vision and Pat-

tern Recognition, 2015.

[37] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael

Moor, Max Horn, Thomas Gumbsch, and Karsten Borg-

wardt. Neural persistence: A complexity measure for deep

neural networks using algebraic topology. In International

Conference on Learning Representations, 2019.

[38] David Rouse, Adam Watkins, David Porter, John Harer, Paul

Bendich, Nate Strawn, Elizabeth Munch, Jonathan DeSena,

Jesse Clarke, Jeffrey Gilbert, et al. Feature-aided multiple

hypothesis tracking using topological and statistical behavior

classifiers. In SPIE Defense+Security, 2015.

[39] Nathaniel Saul and Chris Tralie. Scikit-TDA: Topologi-

cal data analysis for python. https://doi.org/10.

5281/zenodo.2533369, 2019.

[40] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,

Laurent Sifre, George Van Den Driessche, Julian Schrit-

twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural

networks and tree search. nature, 529(7587):484, 2016.

[41] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[42] Gurjeet Singh, Facundo Memoli, Tigran Ishkhanov,

Guillermo Sapiro, Gunnar Carlsson, and Dario L Ringach.

Topological analysis of population activity in visual cortex.

Journal of Vision, 2008.

[43] Anirudh Som, Karthikeyan Natesan Ramamurthy, and Pavan

Turaga. Geometric metrics for topological representations.

Handbook of Variational Methods for Nonlinear Geometric

Data, page 415.

[44] Anirudh Som, Kowshik Thopalli, Karthikeyan Natesan Ra-

mamurthy, Vinay Venkataraman, Ankita Shukla, and Pavan

Turaga. Perturbation robust representations of topological

persistence diagrams. In Proceedings of the European Con-

ference on Computer Vision, pages 617–635, 2018.

[45] Suraj Srinivas, Ravi Kiran Sarvadevabhatla, Konda Reddy

Mopuri, Nikita Prabhu, Srinivas SS Kruthiventi, and

R Venkatesh Babu. A taxonomy of deep convolutional neu-

ral nets for computer vision. Frontiers in Robotics and AI,

2:36, 2016.

[46] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1–9, 2015.

[47] Christopher J Tralie and Jose A Perea. (quasi) periodicity

quantification in video data, using topology. SIAM Journal

on Imaging Sciences, 11(2):1049–1077, 2018.

[48] Vinay Venkataraman, Karthikeyan Natesan Ramamurthy,

and Pavan Turaga. Persistent homology of attractors for ac-

tion recognition. In IEEE International Conference on Image

Processing, pages 4150–4154. IEEE, 2016.

[49] Jacob Walker, Abhinav Gupta, and Martial Hebert. Dense

optical flow prediction from a static image. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 2443–2451, 2015.

[50] Qiao Wang, Suhas Lohit, Meynard John Toledo, Matthew P

Buman, and Pavan Turaga. A statistical estimation frame-

work for energy expenditure of physical activities from a

wrist-worn accelerometer. In Annual International Confer-

ence of the IEEE Engineering in Medicine and Biology So-

ciety, pages 2631–2635. IEEE, 2016.

[51] Xiaolong Wang, David Fouhey, and Abhinav Gupta. Design-

ing deep networks for surface normal estimation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 539–547, 2015.

[52] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

How transferable are features in deep neural networks? In

Advances in Neural Information Processing Systems, pages

3320–3328, 2014.

[53] Mi Zhang and Alexander A Sawchuk. USC-HAD: a daily ac-

tivity dataset for ubiquitous activity recognition using wear-

able sensors. In Proceedings of the ACM Conference on

Ubiquitous Computing, pages 1036–1043. ACM, 2012.

[54] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Dar-

rell. Part-based R-CNNs for fine-grained category detection.

In European Conference on Computer Vision, pages 834–

849. Springer, 2014.

[55] Ning Zhang, Manohar Paluri, Marc’Aurelio Ranzato, Trevor

Darrell, and Lubomir Bourdev. Panda: Pose aligned net-

works for deep attribute modeling. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1637–1644, 2014.

[56] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-

ralba, and Aude Oliva. Learning deep features for scene

recognition using places database. In Advances in Neural

Information Processing Systems, pages 487–495, 2014.

