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Abstract

Topological features such as persistence diagrams and
their functional approximations like persistence images
(PIs) have been showing substantial promise for machine
learning and computer vision applications. This is greatly
attributed to the robustness topological representations pro-
vide against different types of physical nuisance variables
seen in real-world data, such as view-point, illumination,
and more. However, key bottlenecks to their large scale
adoption are computational expenditure and difficulty in-
corporating them in a differentiable architecture. We take
an important step in this paper to mitigate these bottle-
necks by proposing a novel one-step approach to gener-
ate Pls directly from the input data. We design two sep-
arate convolutional neural network architectures, one de-
signed to take in multi-variate time series signals as in-
put and another that accepts multi-channel images as in-
put. We call these networks Signal PI-Net and Image PI-
Net respectively. To the best of our knowledge, we are
the first to propose the use of deep learning for comput-
ing topological features directly from data. We explore the
use of the proposed PI-Net architectures on two applica-
tions: human activity recognition using tri-axial accelerom-
eter sensor data and image classification. We demonstrate
the ease of fusion of Pls in supervised deep learning ar-
chitectures and speed up of several orders of magnitude
for extracting Pls from data. Our code is available at
https://github.com/anirudhsom/PI—-Net.

1. Introduction

Deep learning over the past decade has had tremen-
dous impact in computer vision, natural language process-
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Figure 1. Illustration of the proposed PI-Net model to directly
compute persistence images from input data. Traditional analytic
methods (illustrated in the top half of the figure) consist of a se-
quence of steps that are computationally expensive.

ing, machine learning, and healthcare. Among other ap-
proaches, convolutional neural networks (CNNs) in par-
ticular have received great attention and interest from the
computer vision community. This is attributed to the fact
that they are able to exploit the local temporal and spa-
tial correlations that exist in 1-dimensional (1D) sequen-
tial time-series signals, 2-dimensional (2D) data like im-
ages, 3-dimensional (3D) data like videos, and 3D objects.
In this paper, we refer to these type of data as input data.
CNNs also have far less learnable parameters than their
fully-connected counterparts, making them less prone to
over-fitting and have shown state-of-the-art results in ap-
plications like image classification, object detection, scene
recognition, fine-grained categorization and action recogni-
tion [27, 20, 54, 55, 56]. Apart from being good at learning
mappings between the input and corresponding class labels,
deep learning frameworks are also efficient in discovering
mappings between the input data and other output feature
representations [49, 51, 30, 16, 13].

While methods for learning features from scratch and
mapping image data to desired outputs via neural networks
have matured significantly, relatively less attention has been
paid to invariance to nuisance low-level physical factors like
sensor noise. Topological data analysis (TDA) methods are
popularly used to characterize the shape of n-dimensional
point cloud data using representations such as persistent di-
agrams (PDs) that are robust to certain types of variations



in the data [14]. TDA methods have also been successfully
applied to different computer vision problems and have
shown the ability to incorporate different invariances of in-
terest to the computer vision community [28, 12, 44]. The
shape of the data is quantified by properties such as con-
nected components, cycles, high-dimensional holes, level-
sets and monotonic regions of functions defined on the data
[14]. Topological properties are those invariants that do not
change under smooth deformations like stretching, bending
and rotation, but without tearing or gluing surfaces. These
attractive traits of TDA have renewed interested in this
area for answering various fundamental questions, includ-
ing those dealing with interpretation, generalization, model
selection, stability, and convergence [19, 6, 37, 35, 18, 17].
A lot of work has gone into utilizing topological repre-
sentations efficiently in large-scale machine learning [3, 5,
38, 33, 36, 1, 44]. However, bottlenecks such as compu-
tational load involved in discovering topological invariants
as well as a lack of a differentiable architecture remain. In
this paper we propose simple deep learning architectures to
learn approximate mappings between data and their topo-
logical feature representations.The gist of our idea is illus-
trated in Figure 1 and the main contributions are listed be-
low.
Contributions:

1. We propose a novel differentiable neural network ar-
chitecture called PI-Net, to extract topological repre-
sentations. In this paper we focus on persistence im-
ages (PIs) as the desired topological feature.

2. We provide two simple CNN-based architectures
called Signal PI-Net that takes in multi-variate 1D se-
quential data and Image PI-Net that takes in multi-
channel 2D image data.

3. We explore transfer learning strategies to train the pro-
posed PI-Net model on a source dataset and use it on a
different target dataset, with or without fine-tuning.

4. Through our experiments on human activity recogni-
tion using accelerometer sensor data and image classi-
fication on standard image datasets, we show the effec-
tiveness of the generated approximations for PIs and
compare their performance to PIs generated using an-
alytic TDA methods. We also investigate the benefits
of concatenating PIs with features learnt using deep
learning methods.

5. We also evaluate the robustness of classification mod-
els to Gaussian noise, with or without fusion with PI
representations in image classification tasks.

The rest of the paper is outlined as follows: Section 2 dis-
cusses related work. Section 3 provides the necessary back-
ground on TDA, PIs and CNNs. In Section 4 we describe
the proposed PI-Net frameworks in detail and in Section 5
we describe the experimental results. Section 6 concludes
the paper.

2. Related Work

Although the formal beginnings of topology is already
a few centuries old dating back to Euler, algebraic topol-
ogy has seen a revival in the past decade with the advent of
computational tools and software [39, 2, 4]. Arguably the
most popular topological summary is the persistence dia-
gram (PD), which is a multi-set of points in a 2D plane that
quantifies the birth and death times of topological features
such as k-dimensional holes or sub-level sets of a function
defined on a point cloud [15]. This simple summary has
resulted in the adoption of topological methods for various
applications [34, 47, 8, 11, 10, 23, 42, 48, 31]. However,
TDA methods suffer from two major limitations. First, it
is computationally very taxing to extract PDs. The com-
putational load increases both with the dimensionality and
with the number of samples in the data being analyzed. The
second obstacle is that a PD is a multi-set of points, mak-
ing it impossible to use machine learning or deep learning
frameworks directly on the space of PDs. Efforts have been
made to tackle the second issue by attempting to map PDs
to spaces that are more favorable for machine learning tools
[3, 5, 38, 33, 36, 1, 44]. For further reading, [43] surveys
recent topological representations and their associated met-
rics. To alleviate the first problem, in this paper we propose
a simple one-step differentiable architecture called PI-Net
to compute the desired topological feature representation,
specifically persistence images. To the best of our knowl-
edge, we are the first to propose the use of deep learning for
computing PIs directly from data.

Our motivation to use deep learning stems from its suc-
cessful use to learn mappings between input data and differ-
ent feature representations [49, 51, 30, 16, 13]. However,
deep learning and TDA did cross paths before but not in
the same context as what we propose in this paper. TDA
methods have been used to study the topology [19, 6], al-
gorithmic complexity [37], behavior [18] and selection [35]
of deep learning models. Efforts have also been made to
use topological feature representations either as inputs or
fused with features learned using neural network models
[12,24,7]. Later in Section 5, we show experimental results
on fusing generated PIs with deep learning frameworks for
action recognition and image classification.

3. Background

Persistence Diagrams: Consider a graph G = {V, £} con-
structed from data projected onto a high-dimensional point-
cloud space. Here, V is the set of |V| nodes and £ denotes
the neighborhood relations defined between the samples.
Topological properties of the graph can be estimated by first
constructing a simplicial complex S over G. S is defined as
S = (G,Y), with ¥ being a family of non-empty level sets
of G, with each element ¢ € ¥ is a simplex [15]. This
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Figure 2. Illustration of a PD and its weighted PI for three points
with same birth-time but different life-time. Due to the weighting
function points with higher life-time appear more brighter.

falls under the realm of persistent homology where we are
interested in summarizing the k-dimensional holes present
in the data. The simplices are constructed using the the e-
neighborhood rule [15]. It is also possible to quantify the
topology induced by a function g defined on the vertices
of a graph G by studying the topology of its sub-level or
super-level sets. Since g : V — R, this is referred to as
scalar field topology. In either case, PDs provide a sim-
ple way to summarize the birth vs death time information
of the topological feature of interest. In this paper we use
persistent homology to compute ground-truth PDs for im-
ages and scalar field topology to compute ground-truth PDs
for time-series signals. In a PD the birth-time b refers to
the scale at which the feature was formed and death-time d
refers to the scale at which it ceases to exist. The difference
between d and b gives us the life-time or persistence and is
denoted by | = |d — b|. Each PD is a multi-set of points
(b,d) in R2, Since d > b, only one-half of the space in
the PD is actually utilized. Points in the PD that lie close
to the diagonal represent noise and can be easily discarded
by simple thresholding. Plotting the birth-time vs life-time
information allows us to utilize the entire 2D space of a PD
as shown in Figure 2. Interested readers can refer to the
following papers to learn more about the properties of the
space of PDs [14, 15].

Persistence Images: A PI is a finite-dimensional vector
representation of a PD [1] and can be computed through
the following series of steps. First we map the PD to an
integrable function p : R — R? called a persistence sur-
face. The persistence surface p is defined as a weighted
sum of Gaussian functions that are centered at each point in
the PD. Next, a discretization of a sub-domain of the persis-
tence surface is done which results in a grid. Finally, the PI
is obtained by integrating the persistence surface over each
grid box, giving us a matrix of pixel values. An interesting
aspect when computing PIs is the broad range of weight-
ing functions to chose from, to weight the Gaussian func-
tions. Typically, points of high persistence or lifetime are
perceived to be more important than points of low persis-
tence. In such cases one may select the weighting function
to be non-decreasing with respect to the persistence value of

each point in the PD. Adams et al. also talk about the stabil-
ity of persistence images with respect to the 1-Wasserstein
distance between PDs [1]. Figure 2 illustrates an example
of a PD and its PI where the points are weighted by their
life-time.

Convolutional Neural Networks: CNNs were inspired
from the hierarchical organization of the human visual cor-
tex [21] and consist of many intricately interconnected lay-
ers of neuron structures serving as the basic units to learn,
extract both low-level and high-level features from images.
CNNs are particularly more attractive and powerful com-
pared to their connected counterparts because CNNs are
able to exploit the spatial correlations present in natural
images and each convolutional layer has far less trainable
parameters than a fully-connected layer. Several sophis-
ticated CNN architectures have been proposed in the last
decade, for example AlexNet [27], VGG [41], GoogleNet
[46], ResNet [22], DenseNet [25], etc. Some of these de-
signs are known to surpass humans for object recognition
tasks [40]. Apart from discovering features from scratch
for classification tasks, CNNs are also popular for learning
mappings between input and other feature representations
[49, 51, 30, 16, 13]. This motivates us to design simple
CNN models for the task of learning mappings between the
data and their PI representations. We would like to direct in-
terested readers to the following survey paper to know more
about different CNN architectures [29, 45].

Learning Strategies: Here we will briefly talk about the
two learning strategies namely: Supervised Learning and
Transfer Learning. We employ these strategies to train the
proposed PI-Net model. Supervised Learning is concerned
with learning complex mappings from X to Y when many
pairs of (z,y) are given as training data, with x € X being
the input data and y € Y being the corresponding label or
feature representation. In a classification setting Y corre-
sponds to a fixed set of labels. In a regression setting, the
output Y is either a real number or a set of real numbers. In
this paper our problem falls under the regression category as
we try to learn a mapping between the input data and its PL.
Transfer Learning is a design methodology that involves us-
ing the learned weights of a pre-trained model that is trained
on a source dataset D, for the source task 7, to initialize
the weights of another model that is fine-tuned using a tar-
get dataset D, for the target task 7; [52]. This allows us
to leverage the source dataset that the model was initially
trained on without having to train the model from scratch.
The is useful in cases where the target dataset has a lot less
data samples compared to the source dataset. In Section 4
we show how transfer learning is employed in our proposed
framework when the target training data is limited.
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Figure 3. Illustration of Signal PI-Net for computing PIs directly from multi-variate time-series signals.
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Figure 4. Illustration of Image PI-Net for computing PIs directly from multi-channel image data.

4. PI-Net Framework

In this section we first describe the steps to generate
ground-truth PIs and later discuss the proposed Signal PI-
Net and Image PI-Net configurations.

4.1. Generating Ground-truth Persistence Images

Data Pre-processing: For uni-variate or multi-variate time-
series signals, we consider only fixed-frame signals, i.e. sig-
nals with fixed number of time-steps, and zero-center them.
We standardize the training and test sets such that they have
unit variance along each time-step. For images we enforce
the pixel values to range between [0, 1].

Persistence Images for Time-series Data: We use the
Scikit-TDA python library [39] and use the Ripser pack-
age for computing PDs. As mentioned earlier, we com-
pute level-set filtration PDs for time-series signals. Scalar
field topology offers a simple way to summarize the differ-
ent peaks and troughs present in the signal. For example
a local minima gives birth to a topological feature (more
accurately a 0-dimensional homology group feature) which
dies at its local maxima. We compute PDs for each of the
x,y, z signals in the accelerometer sample. For better use
of the 2D space in the PD we consider birth-time vs life-
time information. For computing PIs we used the Persim
package in the Scikit-TDA toolbox. In all our experiments
we set the grid size of the generated PIs to 50x50 and fit
a Gaussian kernel function on each point in the PD. We
weight each Gaussian kernel by the life-time of the point.
For all time-series datasets we set the standard deviation of
the Gaussian kernel to 0.25 and set the birth-time range to
[-10, 10]. Once computed we normalize each PI by dividing
by its maximum intensity value. This forces the values in
the PI to also lie between [0,1].

Persistence Images for Multi-channel Image Data: Here
too we use the Scikit-TDA library for computing PDs and
PIs. We represent each image channel as a 3D point cloud

with the three coordinates representing the x-coordinate, y-
coordinate and intensity value of each pixel in the image.
For example, an image with ¢ channels will result in ¢ 3D
point clouds. The x and y coordinate information is also
normalized to be within [0, 1]. Finally, we compute the 1-
dimensional persistent homology PDs for each channel in
the image using the process described in Section 3. For all
image datasets in our experiments we discard points in the
PD with life-time less than 0.02. For computing PIs we set
the grid size of the generated PIs to 50x50 and fit a Gaus-
sian kernel function on each point in the PD. The Gaussian
kernel is weighted by the life-time of the point. Other pa-
rameters needed to compute Pls like birth-time range and
standard-deviation of the Gaussian kernel were set to differ-
ent values specific to each dataset. We consider the follow-
ing three datasets in our experiments: CIFARIO [26], CI-
FAR100 [26] and SVHN [32]. For CIFARI0 and CIFAR100
we set birth-time range and standard-deviation to [0, 0.3]
and 0.01. For SVHN we set the same parameters to [0, 0.2]
and 0.005 respectively. Finally, each of the ¢ PIs gener-
ated for a c-channel image is further normalized to lie in the
range [0, 1].

4.2. Network Architecture

Both PI-Net architectures were designed using Keras
with TensorFlow back-end [9].
Signal PI-Net: The input to the network isa b X ¢t X n
dimensional time-series signal, where b is the batch-size, ¢
refers to the number of time-steps or frame size. For a uni-
variate signal n = 1 and for a multi-variate signal n > 1.
For our experiments in section 5, n is 3 and ¢ is either 250
or 500. After the input layer, the encoder block consists
of four 1D convolution layers. Except the final convolu-
tion layer, all other convolution layers are followed by batch
normalization, ReLU activation and Max-pooling. The final
convolution layer is followed by batch normalization, ReLU
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Figure 5. Distribution of activity classes in the GENEactiv dataset
for time-step length = 250.

activation and Global-average-pooling. The number of con-
volution filters is set to 128, 256, 512 and 1024 respectively.
However, the convolution kernel size is same for all layers
and is set to 3 with stride set to 1. We use appropriate zero
padding to keep the output shape of the convolution layer
unchanged. For all Max-pool layers, we set the kernel size
to 3 and stride to 2. After the encoder block, we pass the
global-average-pooled output into a final output dense layer
of size 2500 x n. The output of the dense layer is subjected
to ReLU activation and reshaped to size 50 x 50 x n.

Image PI-Net: The input to this networkisad x h X w X ¢
dimensional image, where b, h, w, c is the batch-size, the
image height, width and number of channels respectively.
Image PI-Net follows the same architecture as Signal PI-
Net for the encoder block. However, we now use 2D con-
volution layers instead. Also, for all the convolution layers
the number of filters and kernel size was set to 128 and 3
respectively. We use appropriate zero padding to keep the
output shape of the convolution layer unchanged. For all
Max-pool layers, we set the kernel size to 3 and stride to 2.
We pass the output of the encoder block into a latent vari-
able layer which consists of a dense layer of size 2500. The
output of the latent variable layer is reshaped to 50 x 50
and is passed into the decoder block. The decoder block
consists of one 2D deconvolution layer with kernel size set
to 50, stride set to 1, number of filters to c. The output of
the deconvolution layer is also zero-padded such that the
height and width of the output remain unchanged. The de-
convolution layer is followed by a final batch normalization
and Sigmoid activation. The shape of the output we get is
50 x 50 x c.
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Figure 6. Distribution of activity classes in the USC-HAD dataset
for time-step length = 250.

5. Experiments

This section can be broadly divided into four parts. First
we show results for human activity recognition by using Pls
alone and PIs in fusion with different deep learning mod-
els on two accelerometer sensor datasets: GENEactiv [50]
and USC-HAD [53]. Second, we show image classification
results with and without fusing PIs with a DenseNet [25]
classifier on the following image datasets: CIFARI0 [26]
and SVHN [32]. Third, we show how the generated PIs
together with the image classification model can help im-
prove robustness to Gaussian noise. Finally, we show im-
provements in computation time for the task of extracting
PIs from image databases using Image PI-Net.

5.1. Action Recognition using Accelerometer Data

Dataset Description: The GENEactiv dataset consists of
29 different human-activity classes from 152 subjects [50].
The data was collected at a sampling rate of 100Hz using
the GENEactiv sensor, a light-weight, waterproof, wrist-
worn tri-axial accelerometer. Interested readers can refer
to the following paper to learn about the data collection
protocol [50]. The USC-HAD dataset consists of 12 dif-
ferent human-activity classes from 14 subjects [53]. Data
was collected using a tri-axial MotionNode accelerometer
sensor at a sampling rate of 100Hz. The sensor was placed
at the front right hip on the body. Both datasets were down-
sampled to 50Hz and fixed-length non-overlapping frames
were extracted. Figures 5 and 6 show the distribution of the
different activity classes in each dataset, with each frame
having a duration of 5 seconds or 250 time-steps. For the
GENEactiv dataset we extracted frames with time-steps =
250 and 500, and used approximately 75% of the frames
for training and the rest as the test set. USC-HAD being a
significantly smaller dataset, we only extracted frames with
time-step = 250 and used frames from the first 8 subjects for
training and the remaining 6 subjects as the test set.

Training Signal PI-Net: The Signal PI-Net model was
trained using just the training set of the GENEactiv dataset.
The batch-size was set to 128 and the model was trained for
a 1000 epochs. The learning rate for the first 300 epochs,



PI-Net Train Loss | Test Loss

Signal PI-Net
Time-steps = 250 0.00159 0.00158

Signal PI-Net
Time-steps = 500 0.00187 0.00187
CIFAR10 Image PI-Net 1.99793 2.06193
CIFAR10 Image PI-Net FA 2.02095 2.04441
CIFAR10 Image PI-Net FS 0.51734 0.52560
SVHN Image PI-Net 1.53533 1.51732
SVHN Image PI-Net FA 1.57923 1.54195
SVHN Image PI-Net FS 0.41519 0.40955

Table 1. Final train and test loss values after training the different
Signal PI-Net and Image PI-Net models.

next 300 epochs and final 400 epochs was set to 1073, 10~
and 1077 respectively. Adam optimizer was used and the
Mean-Squared-Error loss function was used to quantify the
deviation of the generated PIs from the ground-truth PlIs.
Final training and test loss values are tabulated in Table 1.

Data Characterization and Classification: For charac-
terizing the time-series signals, we consider three differ-
ent feature representations: (1) A 19-dimensional feature
vector consisting of different statistics calculated over each
10-second frame [50]; (2) Features learnt from scratch us-
ing multi-layer-perceptron (MLP) models and 1D CNNs;
(3) Persistence Images generated using the traditional fil-
tration technique and the proposed Signal PI-Net model.
The 19-dimensional feature vector includes mean, variance,
root-mean-square value of the raw accelerations on each of
X, Y and Z axes, pearson correlation coefficients between
X-Y,Y-Z and X-Z time series, difference between max-
imum and minimum accelerations on each axis denoted by
dx,dy,dz, and \/dx2 + dy?, \/dy2 + dz2, Vdz2? + dz2,

dx? + dy? + dz2. From here on out we will refer to this
19-dimensional statistical feature as SF.

The MLP classifier contains 8 dense layers, with each
layer having 128 units and ReLU activation. To avoid over-
fitting, each dense layer is followed by a dropout layer with
a dropout rate of 0.2 and a batch-normalization layer. The
output layer is another dense layer with Softmax activation
and with number of units equal to the number of classes.
The 1D CNN classifier consists of 10 CNN layers with
number of filters set to 32, kernel size to 3, stride to 1
and the output is zero-padded. Each CNN layer is followed
by batch-normalization, ReL.U activation and max-pooling
layers. For max-pool layers we set the filter size to 3, the
stride was set to 1 for every odd layer and 2 for every even
layer. For the final CNN layer we use a global-average-
pooling layer instead of a max-pool layer. Here too, the
output layer consists of a dense layer with softmax activa-
tion and number of units equal to number of target classes.

We used the trained Signal PI-Net model to extract PIs
for the test set of the GENEactiv dataset. We also use the
same model to compute PIs for both the training and test
sets of the USC-HAD dataset. The different classification

GENEactiv USC-HAD
Method Time-steps = 250 | Time-steps = 500 | Time-steps = 250
MLP - PI 16.45+032 49.67+0.63 4321066
MLP - Signal PI-Net 49.47+0.69 53.69+1.08 48.15:£0.67
MLP - SF 41701041 42012042 35.68%0.11
MLP - SF + PI 48574037 49.82+0.62 4431036
MLP - SF + Signal PL-Net | 50.66-0.78 54.440.80 48.97£0.30
D CNN 53.562031 54975135 54.5820.64
1D CNN + PL 54.28+0.23 56.38+£0.23 54.6420.62
1D CNN + Signal PI-Net 54.41+0.21 56.41+0.22 57.82+0.78

Table 2. Weighted F1 score classification results for the GENEac-
tiv and USC-HAD datasets. The mean =+ std values were calcu-
lated over five runs.

methods are listed in Table 2. The PIs obtained using tradi-
tional analytic methods or using the proposed Signal PI-Net
model were fused with the MLP and 1D CNN classifica-
tion models differently. For instance, MLP - Pl and MLP
- Signal PI-Net use the MLP classifier to learn features di-
rectly from the computed PIs (The PIs were vectorized and
passed as inputs). MLP - SF uses the MLP classifier with
the 19-dimensional statistical feature as input. In MLP -
SF+PI and MLP - SF+Signal PI-Net we first concatenate
the SF and PI representations before passing them as input
to the MLP model. However, for /D CNN + PI and 1D
CNN + Signal PI-Net we use a slightly different approach.
Using Principal Component Analysis (PCA) we first reduce
the vectorized PI representation (7500-dimensional) to a 32-
dimensional feature vector. This was done to reduce the
number of additional parameters that would result from the
concatenation of the PI feature representations to the 1D
CNN model. The 32-dimensional PI representation is then
concatenated to the output of the global-average-pool layer
in the /D-CNN model.

The weighted F1 score classification results for GENE-
activ and USC-HAD is shown in Table 2. For each method
we report the mean =+ std result over 5 runs. We observe
similar results under the different time-step settings in GE-
NEactiv and also across the two datasets. PIs computed
analytically or using Signal PI-Net perform better than SF.
Fusing PIs with SF helps significantly improve the classifi-
cation performance. 1D CNN is a more powerful classifier
than MLP, which is made clearly evident from the tabulated
results. Fusing PIs with features learnt using 1D CNNs
helps marginally improve the overall classification result.

5.2. Image Classification

Dataset Description: We consider the following three
datasets in our experiments: CIFARIO [26], CIFAR100 [26]
and SVHN [32]. CIFARIO and CIFARIOO each contain
50000 images for training and 10000 images for testing,
whereas SVHN has 73257 images for training and 26032
images for testing. For classification experiments we only
show results for CIFARIO and SVHN. Both datasets have
10 different label categories. Also, the height, width and
number of channels for each image is equal to 32, 32 and 3
respectively.
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Figure 7. Illustration of the modified base model where we con-
catenate PI feature with features learnt using the base classification
network.

Training Image PI-Net: We develop two kinds of Image
PI-Net models based on the datasets we chose as source and
target datasets: (1) In the first kind we set the source and
target datasets to be same, i.e. we train the Image PI-Net
model using the CIFAR10 or SVHN dataset. (2) For the sec-
ond type, we use the CIFAR100 dataset as the source dataset
and the target dataset is either CIFARI0 or SVHN. Simply
put, we employ transfer learning by first training the Im-
age PI-Net model using CIFARI00 and later use the target
dataset to fine-tune the Image PI-Net model. For the second
case, we further explore two variations: (2a) Fine-tune the
model using all samples from the training set of the target
dataset; (2b) fine-tune using just a subset i.e. 500 images
per class in the training set of the target dataset, to simulate
the scenario of having limited training data. We will refer
to these variants as Image PI-Net Fine-tune All (Image PI-
Net FA) and Image PI-Net Fine-tune Subset (Image PI-Net
FS) respectively. We explored the above variants to show
the use of the proposed Image PI-Net model under different
scenarios. We set the batch-size to 32. We train the ba-
sic Image PI-Net model for 415 epochs and set the learning
rate for the first 15 epochs, next 200 epochs and final 200
epochs to 1073, 10~° and 10~° respectively. For Image PI-
Net FA and Image PI-Net FS we first load the weights from
the CIFARI100 pre-trained model and fine-tune the weights
for 200 epochs with a learning rate of 107%. We use the
Adam optimizer and the Binary Cross-Entropy loss function
to compile the models. The training and test loss values are
tabulated in Table 1.

Data Characterization and Classification: For image
classification we use DenseNet [25] as our base classifi-
cation model. PIs alone are not as powerful as features
learnt using deep learning frameworks for image classifi-
cation. However, past research works have shown topolog-
ical features to carry complementary information that can
be exploited to improve the overall performance of a ma-
chine learning model [12, 28, 44]. We too show results us-
ing DenseNet in conjunction with PIs that are generated us-
ing traditional filtration techniques and using the proposed
Image PI-Net model. Figure 7 illustrates how we pass the
computed PIs as a secondary input to the base classification
network. Our DenseNet model has the following specifica-
tions: depth = 16, number of dense blocks = 4, number of

CIFAR10 SVHN

Method Mean+SD | p-Value | Mean+SD | p-Value
DenseNet 83.80+0.12 - 95.65+0.00 -
DenseNet + PI 84.37+0.21 | 0.0153 | 95.86+0.01 | <0.0001

DenseNet + Image PI-Net 84.82:+0.19 | 0.0160 | 95.95+0.08 | 0.0038
DenseNet + Image PI-Net FA | 84.69+0.38 | 0.0195 | 95.84+0.06 | 0.0063
DenseNet + Image PI-Net FS | 84.59+0.17 | 0.0032 | 95.95+0.07 | 0.0020

Table 3. Image classification accuracy results for CIFAR10 and
SVHN datasets, with the mean =+ std values calculated over three
runs. P-value is calculated with respect to the base DenseNet
model.

convolution filters = 16, growth rate = 12, dropout rate =
0.2 and weight decay = 10~*. We pass the generated Pls
through a single 2D convolution layer with 32 filters. This
is followed by a global-average-pool layer which results in
a 32-dimensional feature vector. This feature vector is con-
catenated with the output of the global-average-pool layer
(penultimate layer) of the DenseNet model.

The classification results are averaged over three runs
and are tabulated in Table 3. We see that fusing PI feature
helps improve the overall classification result for the base
model on both datasets. PIs generated using the traditional
filtration method and the proposed Image PI-Net framework
achieve similar results. Also, Image PI-Net F'S being trained
on just 500 samples per class, achieves a classification result
that is comparable to the other Image PI-Net variants. This
is useful in cases where there is limited training data for the
target task. To check the significance of the different fusion
cases we calculate the P-value for each case with respect
to just the DenseNet model. P-value is the area of the two-
sided t-distribution that falls outside +t. We consistently
observe a P-value of less than 0.05 across all fusion cases.
While we only observe marginal improvement in terms of
classification accuracy, the advantage of using PI-Net with
the base classification model is made apparent in the next
section.

5.3. Robustness to Gaussian Noise in Images

While data augmentation can help neural networks learn
different transforms, TDA methods have the ability to en-
code different invariances by default. This could help re-
duce if not completely remove the need for different data
variations during the training process. Here we evaluate the
robustness of the different DenseNet classification models
when the test-set images are subjected to Gaussian noise.
Note, the classification models were trained using the origi-
nal training-set images and no data-augmentation was done
during the training process. All images were first normal-
ized to lie between [0,1]. For both datasets we apply a
zero-mean Gaussian noise and vary the standard deviation
to the following levels: 0.02,0.04,0.06,0.08. After apply-
ing Gaussian noise we clip the pixel values in the image to
lie between [0, 1]. We refer to the four increasing severity
levels of Gaussian noise as Level 1, Level 2, Level 3, Level
4 orin short L1, L2, L3, L4.
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Figure 8. Percentage point drop in the classification performance on CIFAR10 (top) and SVHN (bottom) as the Gaussian noise severity
increases. The percentage drop is calculated with respect to the classification performance of the DenseNet model in the absence of any
Gaussian noise. Without noise, the DenseNet classification performance for 500 Test Samples and All Test Samples for CIFAR10 is
82.93% and 83.80%, and for SVHN is 96.06% and 95.65%. While the performance of all models drop as degradation increases, the drop
of topological fusion models is less compared to just the DenseNet model. Note, the y-axis is scaled different for each dataset.

Since computing PDs and PIs using traditional analytic
methods is computationally expensive, we were not able to
evaluate the DenseNet + PI case on all test images. To give
some perspective, computing PIs for each severity level on
the test-set would take about 10 hours and 24 hours for CI-
FARI10 and SVHN respectively. More information about the
computational complexity is discussed in Section 5.4. To
compare all methods we randomly select 500 images from
the test set and compare the classification performance. Fig-
ure 8 shows the percentage change in the classification per-
formance with respect to the DenseNet method in the ab-
sence of any Gaussian noise. The effect of Gaussian noise
is different for each dataset due to which the y-axis is scaled
differently. From the bar-plots we see that the overall clas-
sification performance decreases as the severity level in-
creases. However, the percentage decrease for DenseNet
+ PI and the different DenseNet + Image PI-Net variants
is less compared to DenseNet alone. Fusing Pls with the
DenseNet model helps incorporate robustness to different
Gaussian noise. We see similar trends between the 500 Test
Samples and All Test Samples cases.

5.4. Computation Time to Generate PIs

We used the NVIDIA GeForce GTX Titan Xp graphic
card with 12GB memory to train and evaluate all deep learn-
ing models. All other tasks were carried out on a stan-
dard Intel i7 CPU using Python with a working memory
of 32GB. We use the Scikit-TDA software to compute PDs
and PIs [39]. Table 4 shows the average time taken to ex-
tract PI for one image by conventional TDA methods us-
ing one CPU and the proposed PI-Net framework on both
a CPU and a GPU. The average is computed over all train-
ing images in each dataset. Using the Image PI-Net model
on a GPU, we see an effective speed up of three orders of
magnitude in the computation time. Also, Image PI-Net im-
plemented on a CPU is still faster than the analytic method
by an order of magnitude. Using a GPU we also check the
time taken to compute PIs when the entire training set is
passed into Image PI-Net as a single batch. It took about

Time (10~3 seconds)
Method CIFAR10 SVHN
(50000 images) (73257 images)
Conventional TDA - CPU | 3567.29+867.74 | 3433.064+622.21
PI-Net - CPU 125.45+5.30 125.49+5.34
PI-Net - GPU 2.52+0.02 2.19+0.02

Table 4. Comparison of the average time taken to compute PIs for
one image using conventional TDA tools and the proposed PI-Net
model. The time reported is averaged over all images present in
the training set of each dataset.

9.7740.08 seconds for CIFARI0 and 12.9340.05 seconds
for SVHN. This is a fraction of the time compared to the
time it takes using conventional TDA tools. So far it had
been impossible to compute PIs at real-time using conven-
tional TDA approaches. However, the proposed framework
allows us to easily compute PIs in real-time thereby opening
doors to new real-time applications for TDA.

6. Conclusion and Future Work

In this paper we took the first step in using deep learn-
ing to extract topological feature representations. We de-
veloped a simple, effective and differentiable architecture
called to extract PIs directly from time-series and image
data. PI-Net has a significantly lower computational com-
plexity compared to using conventional topological tools.
We show improvements in classification performance on
two accelerometer and two image datasets. Despite observ-
ing marginal improvement in image classification accuracy,
the benefit of using PI-Net with the base classification net-
work is made apparent through the robustness to Gaussian
noise experiment.

For future work we would like to explore more sophisti-
cated deep learning architectures that can allow us to learn
mappings between higher dimensional data and their cor-
responding topological feature representations. We would
also like to see how deep learning can be further used to
generate other kinds of topological representations and test
their robustness to different image deformations like con-
trast, blur and affine transformations.
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