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Abstract

In this paper, we propose a method to map data from a

Grassmann manifold to a vector space while maximizing

discrimination capability for classification. Subspaces are a

practical and robust representation for image set recognition.

However, as they exist on a Grassmann manifold, machine

learning tools constructed on Euclidean geometry cannot be

promptly utilized. Recently, methods to construct end-to-end

learnable models for subspaces are starting to be explored,

but they require multiple matrix decompositions and can

be hard to compute and extend. Therefore we introduce

a layer to map Grassmann manifold-valued data to vector

space, in such a way that it can be seamlessly used as a layer

along with other powerful tools defined on Euclidean space.

The key idea of our method is to formulate the manifold

logarithmic map (log) as a learnable model, where we seek

to learn a tangency point that minimizes a loss function with

respect to the data. The log effectively transforms a manifold

point into a tangent vector. This log model can be learned

with Riemannian stochastic gradient descent on the target

manifold. We demonstrate the effectiveness of our proposed

method on the applications of hand shape recognition, face

identification and facial emotion recognition.

1. Introduction

In this paper, we propose a method to map data from a

Grassmann manifold to a vector space while maximizing

discrimination capability for classification. The Grassmann

manifold represents the set of subspaces of a vector space,

and as such, is a significant foundation for various types

of machine learning tools using subspace representation. It

has been well known as a practical and robust representa-

tion, especially for image set recognition. Despite its use-

fulness, most standard machine learning methods cannot be

promptly utilized on the Grassmann manifold, since they

are constructed on Euclidean space. Moreover, it is hard

to directly link the Grassmann manifold to deep neural net-

work architectures. To fill this serious gap and exploit both

the compact representation of Grassmann manifold and the

handiness of Euclidean space, we propose a method named

Grassmann log model to connect those two representations.

The key idea of our method is to formulate the mani-

fold logarithmic map (log) as an end-to-end learnable model

working as an interface between the Grassmann manifold

and Euclidean space. It can be seamlessly followed by dis-

criminative tools defined on Euclidean space, to provide a

discriminative representation for subspaces so that Euclidean

methods can perform classification well. Also, the proposed

model can be learned in an end-to-end manner, being em-

bedded as a single module in larger network systems.

The motivation of proposing this method is three-fold:

1) a subspace is a robust representation and has become a

central research topic in computer vision, being applied to

numerous problems such as image set recognition [6, 36,

18, 33, 10, 38], fine-grained classification [42] and action

recognition [32, 35, 25]. 2) The image set recognition, where

the goal is to model a set of input images and classify it,

has been shown to provide significant recognition stability,

but the set representation in the deep learning framework

remains largely unexplored. On the other hand, 3) there is an

abundance of well-established network layers and other end-

to-end processing, which work in Euclidean space, e.g. fully-

connected, batch normalization dropout layers, activation

functions. We would like to connect the useful subspace

representation to these Euclidean tools.

In the Grassmann manifold, one of the most popu-

lar methods that works by mapping manifold data to

a vector space is the Grassmann discriminant analysis

(GDA) [11]. GDA along with its extensions, e.g. Grassman-

nian Graph-Embedding GDA (GGDA) [12] and enhanced

GDA (eGDA) [34] employ a Grassmann kernel to map sub-
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Figure 1: Conceptual diagram of the proposed Grassmann log model. A subspace χ is computed by PCA, represented by an

orthogonal basis matrix. Our proposed interface is to log map χ into a tangent vector h; then Euclidean network modules are

applied. The first equation indicates a fully-connected layer, where W and b denote the weights and bias, respectively. The

second equation indicates a batch normalization where E and σ denote expectation and variance, ǫ, γ are batch normalization

hyperparameters, and f is a non-linear activation function.

spaces onto vectors in a reproducing kernel Hilbert space

(RKHS), where then kernel discriminant analysis is per-

formed. However, these methods are limited as they use

vectors in RKHS defined by the kernel function, without

learning a manifold-aware discriminant mechanism. Addi-

tionally, the dimension of the Grassmann kernel is directly

dependent on the number of samples in the dictionary, which

could possibly lead to an insufficiently small space to repre-

sent data, or lead to a curse of dimensionality.

Considering end-to-end methods, one could develop a

simple method of concatenating a subspace basis vectors

and then using Euclidean layers such as a fully-connected

layer directly. However, such an approach cannot learn sta-

bly, since this maneuver would break the inherent subspace

structure, impairing its capabilities. Additionally, a cross-

entropy loss would not converge in this setting. Therefore, an

interface is necessary to learn the Euclidean layers properly.

Our proposed Grassmann log model then contains two

main stages, which can be seen in Fig. 1: 1) a mapping from

manifold to vector space, and then 2) Euclidean network

modules such as fully connected layers. More concretely,

given a manifold data point χ as input data, the log maps a

manifold data point into a tangent vector h in a tangent space

parameterized by a tangency point κ. Then h is transformed

through Euclidean layers and the cross-entropy loss func-

tion is applied. To obtain a discriminant interface between

manifold and vector data, we learn both the tangent space

representation and the discriminant Euclidean layers in an

end-to-end manner. The log model is a general framework

that can be learned with Riemannian stochastic gradient de-

scent [4] on any Riemannian manifold with a defined closed-

form log map. In the Grassmannian case, the parameter κ

is learned as a point constrained to the Grassmann mani-

fold, and the Euclidean layers are learned in conventional

Euclidean space. In the following, we refer to tangency point

as "anchor point" with emphasis on this point.

Most classification problems have a complex distribution

with a wide variance where a single tangent vector may yield

a suboptimal representation. Therefore, we extend the log

model to learn more than one anchor point, obtaining a set

of tangent vectors that are concatenated to output a single

feature vector. From a geometry viewpoint, this idea can

be interpreted as a wider atlas of tangent spaces, covering

a broader neighborhood of the manifold and diminishing

distortion. From the perspective of computer vision, this idea

is similar to that of popular image descriptors that combine

multiple residual vectors, such as Fisher vectors [30, 29],

VLAD [3], and super-vector coding [43], and the log model

can be seen as a kind of extension of these ideas to represent

an image set rather than just a single image.

Through experiments, we demonstrate that learning a tan-

gent space is important for finding a discriminative map, by

making a comprehensive comparison of a learned log model

against a fixed tangent space at the manifold data’s Karcher

mean. We demonstrate the flexibility and scalability of our

Grassmann log model as an interface between deep network

layers involving subspace data, by also evaluating the log

model as a middle stage within larger networks containing

convolution layers, and Resnet blocks along with PCA. We

show the effectiveness of both in artificial subspace data and

in real data for the applications of face identification, facial

expression and hand shape recognition.

2. Theoretical Background

In this section, we review the operations we can perform

on the Grassmann manifold. The following notation is used:

lowercase plain letters for scalars, lowercase/uppercase plain

letters for functions, lowercase bold for vectors, uppercase



bold for matrices, lowercase bold Greek letters for Grass-

mann manifold points and calligraphic letters for manifolds.

2.1. Grassmann Manifold
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Figure 2: Conceptual diagram of the log model learning a

tangent space for a binary class problem. The log is used to

map point χ to vector ht in the tangent space (in red). Then,

a loss function can be applied and the gradient with respect

to the anchor point (tangency point) κt can be used to move

towards a more optimal position κt+1 which defines a new

tangent space (in blue).

The Grassmann manifold G(d,m) is defined as the set of

m-dimensional linear subspaces of Rd. It is an m(d−m)-
dimensional compact manifold and can be written as a quo-

tient space of orthogonal groups G(d,m) = O(d)/O(m)×
O(d−m), where O(m) is the group of m×m orthonormal

matrices.

A point χ in G(d,m), i.e., a m-dimensional subspace of

R
d, can be represented extrinsically by an orthogonal basis

matrix X ∈ S(d,m), where the columns of the matrix form

a basis such that χ is the set of all their linear combinations.

S(d,m) denotes the manifold of tall orthogonal matrices,

called compact Stiefel manifold.

2.2. Tangent spaces

A tangent space TκG at κ ∈ G(d,m) can be seen intu-

itively as a subspace of Rd×m, since TκG can be derived

as a horizontal space. Given a point K ∈ S(d,m), such

that span(K) = κ, a horizontal space H is a subspace of

the tangent space TKS (a copy of Rd×m) which contains

the directions of infinitesimal variation of K that modify its

span. In this work we always work with orthogonal bases

for subspaces, so it is intuitive to imagine a tangent space

from the derivative of the orthogonal property K⊤K = I ,

given by K⊤K̇ + K̇⊤K = 0. Any tangent vector K̇ to

a subspace κ must satisfy this constraint for some K that

spans κ.

2.3. Exponential and Logarithmic maps

The exponential map Exp : G × TG × R → G can

be used to calculate an specific point on a geodesic γ(t),
given a point γ(0), a direction γ̇(t) and a length t. It is

denoted by γ(t) = Expκ H , meaning the point γ(t) in

the geodesic emanating from κ = γ(0) in the direction of

H = t γ̇(0)
‖γ̇(0)‖ ∈ TκG.

The inverse of the exponential map is the logarithmic map

(or log map) Log : G × G → TG , denoted by H = Logκ χ.

Given two points on the manifold χ and κ, one wants to

find the tangent vector H at κ pointing towards χ. Note

that Logχ κ 6= Logκ χ. In other words, the log outputs a

tangent vector to the shortest path curve between κ and χ.

3. Proposed Grassmann Log model

In this section, we describe the algorithm to the proposed

Grassmann Log model. First, we define the Log layer more

generally and then introduce its numerical algorithm. Next,

we extend it to work with multiple tangent spaces.

3.1. Basic Idea

Our learning problem is defined as follows: given training

subspaces {χi}
N
i=1 ∈ G paired with respective labels ci, we

want to learn a model that maps them to vectors hi in Eu-

clidean space, so that the class distributions are separable. In

the following discussion, we consider a minibatch {χi}
n
i=1,

as is common in neural networks, but the whole process can

be repeated iteratively to use all N training subspaces. When

convenient, we omit the i index, and explain the process for

a single instance i.e. χ.

Our key idea is to cast the log map Logκ χ as a learnable

model by 1) defining the anchor point κ as a parameter and

χ as input, and 2) seeking an anchor point κ such that a

tangent vector Logκ χ of the manifold data point χ can be

as discriminant as possible in the tangent space.

3.2. Learning the Log layer

The learning process of the log module is given as fol-

lows. Figure 2 shows the conceptual diagram of learning the

tangent space with the anchor κt on a binary classification,

where t is indexing the update iteration. The whole learning

process consists of forward and backward passes. At the iter-

ation t = 0, we initialize our anchor parameter as a random

manifold point.

3.2.1 Forward pass

The forward pass is processed as follows: we map a point χ

into a vector ht by:

ht = vec(Logκt χ). (1)

As the Grassmann manifold is a matrix manifold, we

utilize the vectorization of matrices vec to turn the tangent

vectors from matrix to simple vectors, such that ht ∈ R
dm.

This does not affect the distance structure. The equation

above corresponds to the log map projecting a point χ on

the manifold to vector ht in the red tangent space as shown



in the first figure in Fig.2. After the proposed log layer,

Euclidean modules and a discriminative loss function, here

abstracted as a loss function L(hi, ci) : R
dm → R can be

applied to the tangent vectors.

3.2.2 Backward pass

Then, the backward pass is processed as follows: the Eu-

clidean gradient ∇htL with respect to the tangent vectors

is computed, and then the log layer gradient is computed

through the backpropagation algorithm. We write the chain

gradient including the log as:

∇κtL(χi, ci,κ
t) = ∇htL

d

dκt
(Logκt χi), (2)

where d
dκt (Logκt χi) represents the derivative of the log

map.

Given the gradient ∇κtL, we perform the update of

the anchor κt by Riemannian stochastic gradient descent

(RSGD) [5, 4]. This manifold aware update enforces the

updated point κt+1 to be a member of the Grassmann mani-

fold, i.e., avoiding the parameter to leave the manifold. The

RSGD update consists of two steps: 1) transforming the Eu-

clidean gradient ∇κtL to a Riemannian gradient gradκt L,

that is, the closest vector to ∇κtL that is also tangent to the

manifold at κt. Then 2) updating the anchor point by:

κt+1 = Expκt −λ∇κtL. (3)

Here, λ is a learning rate.

The above update equation is illustrated in the second

part of Figure 2. The exponential map can be seen as a

line walk towards the opposite direction to the Riemannian

gradient (direction of descent), landing on a more optimal

point κt+1 (in blue). This new anchor point defines a new

tangent space, which should be more optimal in the sense

that the corresponding log map yields tangent vectors with

higher class separability as shown in the last figure. This

iterative process is repeated until either a maximum number

of iterations is achieved, or the gradient becomes too small,

that is, the separability cannot be improved much further.

3.3. Numerical algorithm

In the previous section, we have established the frame-

work in general while abstracting the computations. In this

section, we describe the equations used in this framework to

compute the exp and log maps in matrix form. Then, we and

derive the log backward updates.

To compute the Grassmann exponential map, we utilize

the following extrinsic function derived by [1], written in

terms of orthonormal matrix representation. Recall our an-

chor parameter κ is a subspace, so given its basis matrix

K ∈ R
d×m, and given a tangent vector H ∈ R

d×m:

ExpK λH = orth(KQ(cosΣλ)Q⊤ + J(sinΣλ)Q⊤),
(4)

where JΣQ⊤ = H is the compact singular value decom-

position (SVD) of the tangent vector H . Note that H is

written in upper case as it is a matrix; yet it is still is a vec-

tor in the sense that is a member of a tangent vector space.

Here, J ,K,Q and ExpK λH are orthogonal matrices, and

Σ is a diagonal matrix. λ is the geodesic parameter, and

can be seen as a step value to control the magnitude of the

movement towards the direction H .

As for the log map, in this work, given two basis matrices

X and K for input subspace χ and anchor κ, we utilize the

following three equations to calculate the log map [2]:

B = (K⊤X)−1(K⊤ −K⊤XX⊤), (5)

WΘZ⊤ = B⊤, (6)

LogK X = H = W ∗ arctan(Θ∗)Z∗⊤, (7)

where W ∗,Θ∗,Z∗ represent the matrices with the first m
columns of W ,Θ and Z∗ respectively.

To perform learning by RSGD, we derived the expres-

sions of the derivative for the log on the Grassmann mani-

fold, using conventional techniques to operate differential

forms [27] and based on the derivative of SVD [37]. For

the detailed procedures, see the supplementary material. We

omit the iteration t for simplicity.

Given the gradient of all next layers after the log layer,

up to the loss Ḣ = ∇HL, we compute the gradients

with respect to the anchor K̇ = ∇κL and input subspace

Ẋ = ∇χL. K̇ is used to update the anchor according to

equation 3, and Ẋ is used if there are layers previous to the

log layer, to compute their respective backward steps.

We provide the update formulation for the Grassmann log

equations 5, 6 and 7 in Figure 3. Since the log is determined

from the composition of three functions, the chain rule can

be automatically used to compute the final gradients.

In Fig. 3, Ω is defined as a diagonal matrix where the

diagonal elements are Ωi = 1/(1 +Θ
∗
i ). ◦ represents the

Hadamard product, and I represents the identity matrix. F

is a matrix of the form:

Fij =

{

1/(arctan2(Θj)− arctan2(Θi)), i 6= j

0, i = j.
(8)

For the gradient of equation 7, the derivatives Ẇ ∗, Θ̇∗

and Ż∗ are m-leftmost matrices, so to continue back to the

square matrix gradients Ẇ , Θ̇ and Ż, we can fill in columns

of zeros (no gradient update in these variables) until the

matrices become square. In the gradient of equation 6, F

is similar to equation 8, but the non-diagonals are instead

defined as 1/(Θ2
j −Θ

2
i ). The most important part is in the

gradient of 5 (upper box with equations), we obtain two

update rules, one to backpropagate X in case a gradient-

based pre-processing needs it, and one to update the anchor

point K.
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Figure 3: Update equations of the Grassmann log module backward phase. The objective is to compute the gradient K̇ of the

anchor parameter K (in red) and the gradient Ẋ of input subspace X . K̇ is used to update the anchor according to the RSGD

update, and Ẋ is used if there are layers previous to the log layer, to compute their respective backward steps.

3.4. Extension to multiple tangent spaces
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Figure 4: Diagram of the log module consisting of multiple

tangent spaces.

We further extend the proposed log layer to learn multi-

ple tangent spaces at the same time, by defining the layer

parameters as a set of anchors {κq}
Q
q=1. We map the point

χ into a vector h in a space T as follows:

hq = vec(Logκq
χ) (9)

h = [h1, . . . ,hq, . . . ,hQ]. (10)

Here, the brackets denote the concatenation of vectors such

that the output feature vector h is in a T ⊆ R
dmQ. Optimiz-

ing for a discriminative space T can be seen as a search in a

product space of the Grassmann tangent bundle TG(d,m),

i.e. T =
∏Q

q=1 TqG(d,m). An example diagram for the

case of Q = 3 is shown in Fig. 4.

The basic intuition about introducing multiple tangent

spaces is to cover well a larger neighborhood of the mani-

fold. As it maps a non-flat manifold onto a Euclidean space,

there cannot be a single map that is perfectly distance pre-

serving between any two points of the manifold. In general,

the log map is a good approximation of the manifold in

a local neighborhood of κq and its representation power

decreases to points too far from it. However, we desire a

good representation for the data distribution rather than for

all points in the manifold. The core idea here is that each

anchor point κq is treated as an independent learnable param-

eter. By having several κq and learning them from a random

initialization without assumptions, we may find the tangent

spaces that produce discriminant vectors for the given data

samples. In the case Q = 1, the equations above reduce to

conventionally using the log once.

As described in Sec. 1, this extension of the log model is

similar to that of popular image descriptors such as Fisher

vectors [30, 29], VLAD [3], and super-vector coding [43].

A Fisher vector consists of the log-likelihood gradients of

data descriptors with respect to a Gaussian mixture. The log

model can be seen as a kind of extension of this idea of using

multiple tangent vectors, but to represent an image set rather

than just a single image.

4. Experiments

4.1. Experiments on Artificial Data

We have trained a Grassmann log model using 3D artifi-

cial data to visualize its mapped data and verify its effective-

ness in a very simple case, while obtaining some intuition

about its mechanism. The artificial data contains two classes

of points on the G(3, 1), that is, the lines on 3-space cross-

ing the origin. The data is represented by 3D vectors, and



(a) loss and Fisher ratio of the tangent vectors.

(b) anchor point/ Karcher mean similarity.

Figure 5: Plots of a log model trained for 10 thousand epochs

in artificial data: (a) the cross-entropy loss (in blue), and

the Fisher ratio between the tangent vectors, before they

have been projected on a discriminant space (in red). (b)

similarity between the anchor point and the Karcher mean at

each epoch. Note that the Karcher mean is fixed while the

anchor point moved.

each class is generated by a tangent Gaussian distribution as

developed in [39]. The model we utilised is composed of the

log with 1 anchor, and two fully-connected layers, one 3× 3
and another 3× 2.

We have trained this model for 1000 epochs and plotted

the anchor’s behavior.Figure 5a shows the cross-entropy loss

of the network and the Fisher ratio of the tangent vectors of

the log map, for each epoch during training.

Here, one can observe that while the loss is minimized,

the Fisher ratio of the tangent vectors raises, suggesting

the advantageous effects of using a learnable anchor point.

Therefore, the choice of a tangent space appears to contribute

to the data separability. Moreover, Figure 5b shows the

similarity between the data’s Karcher mean and the anchor

point for every epoch.

4.2. Experiments on Hand Shape Recognition

We conducted an experiment with the Tsukuba hand

shape dataset. This dataset contains 30 hand classes × 100

subjects, each of which contains 210 hand shape images,

consisting of 30 frames × 7 different viewpoints. For each

subject, we randomly created 6 sets with 5 frames from each

viewpoint, so that each subject has 6 image sets of 35 im-

ages. In summary, there are a total of 18000 image sets in

this dataset, each set containing image information from 7

Figure 6: tSNE visualizations of 2 classes of hand shapes.

The left plot denotes the tangent vectors at the Karcher mean,

while the right plot shows the tangent vectors at the log

model learned tangent space. It shows a representation of

the vectors as 2D points based on their euclidean distances.

It can be seen that the tangent vectors at the learned tangent

space provide a more discriminative representation.

camera viewpoints. In the experiments, all the images were

resized to 24 × 24 pixels. We compute the subspaces by

PCA and extract 6 components, so for the Log model the

input subspaces are on the G(576, 6).
The Grassmann log model used in this section is formed

by of a log map followed by 4 fully-connected (F.C) layers,

with batch normalization, dropout and number of anchor

points is 6.

4.2.1 Effectiveness of learning tangent spaces

First, to verify the effectiveness of learning a tangent space,

we trained two log models in the classification problem of

30 classes of hand shapes: one was trained normally, with

random initialization and iterative updating of the tangent

space according to the gradient. The other model was trained

while freezing the tangent space always at the Grassmann

Karcher mean of all training subspaces, a version we refer

to as Karcher log model.

After training, we have extracted the log map tangent

vectors, and measured their Fisher ratio (FR), i.e. the ratio

between the average inter-class and intra-class Euclidean

distances of the tangent vectors. The FR of the log model

was 0.0171, while the FR at the Karcher was 0.0159. The

FR is higher when we allow the model to learn the anchor

point, which indicates the choice of tangent space works

towards increasing separation capability of the subspace

data. To further exemplify this property, we have selected

two classes at random and plotted their distance structure

using tSNE [26], which can be seen in Fig. 6. The plot

shows a representation where each feature vector is shown

as a point. The left plot denotes the tangent vectors at the

Karcher mean, while the right plot shows the tangent vectors



at the log model learned tangent space. The log model

mapping seems to have made the samples more discriminant

simply by finding suitable tangent spaces to project the data.

Accuracy (%)

Karcher log model 70.65

Log model 81.90

Conv+log model 91.90

Resnet18+log model 99.40

Table 1: Results on the Tsukuba hand shape dataset.

As a second experiment, we evaluated the performance

of the proposed log model in the classification problem of

30 types of hand shapes and compared it to the Karcher log

model. We used the image sets of 70 subjects as training sets,

holding a subset of 15 subjects for validation. The remaining

30 subjects were used as testing sets.

Table 1 shows the results. The proposed Log model

equipped with several anchor points provided to be efficient

in modeling the complexity of the hand shapes, while the

Karcher log model achieved an inferior performance.

4.2.2 Scalability of the Log model

We evaluated the scalability in performance of the proposed

log model in the same hand shape classification problem,

extending the log model with two variants: the Conv+log

and Resnet18+log models.

Conv+log model refers to an architecture with 3 convo-

lutions layers with batch normalization and pooling, where

the convolutional filter size is 3, the number of filters of the

first layer is 8, while the second and third are set to 2. Each

layer has a zero-padding of 1 pixel and a pooling mask size

of 2. After the convolutions, we have PCA and a log map,

where the number of anchors of the log map is 2. After

that, we utilize 4 F.C blocks.The Conv+log architecture was

learned end-to-end including PCA, and entirely from scratch,

using only randomly initialized weights. The method named

Results on the CMU MoBo Results on the AFEW

Method Accuracy (%) Method Accuracy (%)

DCC[20] 88.89 ± 2.45 STM-ExpLet[22] 31.73

MMD[41] 92.50 ± 2.87 RSR-SPDML[13] 30.12

CHISD[7] 96.52 ± 1.18 DCC[20] 25.78

MMDML[24] 97.80 ± 1.00 GDA[11] 29.11

ADNT[14] 97.92 ± 0.73 GGDA[12] 29.45

PLRC[9] 93.74 ± 4.30 PML[17] 28.98

DRM[31] 98.33 ± 1.27 DeepO2P[19] 28.54

Resnet vote 98.61 ± 1.52 SPDNet[16] 34.23

Log model 98.19 ± 1.31 GrNet-1[18] 32.08

—— GrNet-2[18] 34.23

—— Log model 32.61

Table 2: Results on the CMU MoBo and AFEW datasets.

Figure 7: tSNE visualizations of 24 individuals of face im-

age sets of the CMU Mobo dataset. The left plot denotes

face image sets processed as subspaces. The plot shows

a representation of the subspaces relative distances based

on their similarities. The right plot shows mapped tangent

vectors (output of the log layer). The colors represent each

individual (each class). Visually, the tangent vectors provide

a more discriminative representation.

Resnet18+log model uses a Resnet18 network pre-trained on

ImageNet and fine-tuned on the hand shape data, similar to

the conventional methods. We replaced the final F.C. layer

of Resnet by a log model with PCA, log, and 4 F.C blocks,

and trained this architecture while freezing the weights of

the fine-tuned Resnet.

The results for these architectures can be seen in Table 1.

When the learning framework is equipped with a convolu-

tional layer, the log model achieves considerable accuracy

improvement, strengthening the concept that the proposed in-

terface is flexible enough to be incorporated in general neural

network architectures. Following this pattern, the resnet18

architecture also benefits from the proposed interface.

4.3. Experiment on Face Identification

We conducted an experiment on the CMU Mobo dataset,

consisting of footage videos of 25 people walking on a tread-

mill. This dataset was originally utilized for research on

human gait analysis, but recently it has been used to com-

pare the performance of image set based face classification

methods [31, 14, 7].

We first detected face region from each video frame by

the Viola and Jones detection algorithm [40]. A set of face

images extracted from one video was considered as an image

set. This dataset has four walking patterns (videos) of each

person, except for one person. We evaluated the classifica-

tion performance 10 times with the videos of 24 people with

all walking patterns. For the evaluation, one video randomly

selected from each person was used for training, while the

remaining three videos were used for testing.

In this experiment, the subspaces are generated from

CNN features vectors. As the feature extractor, we used

the ResNet-50 [15], which was fine-tuned to classify each

face image of training data. For the fine-tuning, we added



two fully connected (FC) layers after the last global average

pooling layer in the network. The first FC layer outputs

a 1024 dimension vector through the ReLU [28] function,

and the second layer outputs a 24 (the number of classes)

dimension vector through softmax function. We used the

cross-entropy loss and Adam optimizer [21]. Hyperparame-

ters of the optimizer were used as suggested by the original

paper. We repeated the training to 100 epochs. Then, we

extracted 1024 feature vectors by the first FC layer and for

each set we computed a subspace with PCA by extracting 10
components. Therefore, a subspace input to the log module

is on the G(1024, 10). We trained a Grassmann log model

consisting of a log map followed by 1 fully-connected (F.C)

layers, with number of anchor points 2.

First, we visualize the subspaces obtained through PCA

in Fig. 7 by using tSNE. The left plot shows a representation

where each subspace is a point, and subspace similarities

correspond to Euclidean distances on the plane. We also

visualized the log tangent vectors of our trained model in the

right plot. Since there are 2 anchor points, the dimension of

the Euclidean feature space (product of the tangent spaces)

is 2 × 1024 × 10. Each point corresponds to one tangent

vector, and their distances correspond to Euclidean distances

on the tangent spaces. The output vectors of the log model

exhibits compact clusters, while the ones on the Grassmann

manifold are visually more dispersed. Additionally, the log

model seems to discriminate data from different classes more

appropriately, suggesting that the tangent spaces learned by

the model provide a more suitable space for classification.

We have also evaluated the log model against various

manifold methods from previous works. Resnet vote [15] is

a baseline consisting of a Resnet50 fine-tuned to this dataset,

where each image of a set is classified independently and

a majority voting strategy is used to select a single class

prediction. Table 2 shows the results. The proposed model

overperforms the classic methods, and achieves a result on

par with various deep methods.

4.4. Experiments on Emotion Recognition

We utilize the Acted Facial Expression in Wild

(AFEW) [8] dataset. The dataset contains 1, 345 sequences

of facial expressions acted by 330 actors in close to real

world setting. We follow the experiment protocol established

by [22, 16] to present the results on the validation set. The

training videos are split into 1, 747 small subvideos augment-

ing the numbers of sets. For the evaluation, each facial frame

is normalised to an image of size 20×20. For representation,

following various works [23, 22, 18], we express the facial

expression sequences with a set of linear subspaces of dimen-

sion 10, which exist on a Grassmann manifold G(400, 10).
The Grassmann log model used in this section was composed

of a log map followed by 3 fully-connected (F.C) layers, with

batch normalization and dropout, in addition to a final F.C.

with softmax, with 4 anchor points.

We compare the proposed log model with a number of

methods for classification of manifold-valued data. Grass-

mann net (GrNet) [18], that proposes a block of manifold

layers for subspace data, is denoted by GrNet-1 for the archi-

tecture with 1 block and GrNet-2 for the one with 2 blocks.

The results can be seen in Table 2. The proposed method

achieved competitive results, even though it uses simple

Euclidean operations such as fully-connected layers and a

cross-entropy loss. First, it overperforms popular methods

such as GDA and GGDA, that have a similar purpose of map-

ping Grassmann manifold data into a vector representation.

This may be likely attributed to the fact that the log model

learns both the representation and the Euclidean discriminant

plane in an end-to-end manner, and the use of multiple F.C.

layers allow a higher level of non-linearity for separation.

In contrast, GDA uses a fixed kernel function and learns

the discriminant independently. Methods such as SPDNet

and GrNet are composed of many complex layers involving

SVD, QR decompositions, and Gram–Schmidt orthogonal-

ization and its derivatives are utilized as well. They increase

in complexity as the number of layers increase by repeat-

ing these operations, which are not easily scalable in GPUs.

In contrast, the proposed method offers competitive results

employing a smaller set of parameters, benefiting a broader

range of applications. By exploiting the tangent space prop-

erties, several practical advantages arise. For instance, the

proposed model is naturally parallelizable. Also, it presents

greater interpretability, providing a tool to understand its

decisions by using the tangent space.

5. Conclusion

We proposed in this paper the Grassmann log model to

map data from a Riemannian manifold to a vector space

while maximizing discrimination capability for classifica-

tion. The key idea is to formulate the Grassmann log map as

a learnable model in such a way that it approximates well the

manifold around the neighborhood of the data distribution.

The proposed log model can be learned with Riemannian

stochastic gradient descent; therefore it can be learned to-

gether with other powerful features such as cascaded convo-

lutional layers. We performed classification experiments on

multi-view hand shape recognition, face identification and

and facial expression classification. Future works include

the extension of this idea to other Riemannian manifolds;

and to other applications, such as the modeling of matrices

in signal processing and text modeling.
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