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Abstract

We define a new representation for immersed surfaces in

R
3 by combining the SRNF and the induced surface met-

ric. Using the L2 metric on the space of SRNFs and the

DeWitt metric on the space of surface metrics, we obtain a

3-parameter family of metrics that corresponds to the fam-

ily of “elastic metrics” proposed by Jermyn et al. in [19]

on the space of immersed surfaces. Similar to the original

SRNF representation this new representation results in an

extrinsic distance function on the space of immersed sur-

faces that is easy to compute as it is given by an explicit for-

mula. In addition to avoiding the degeneracy of the SRNF

it allows for a data-driven choice of the parameters of the

metric, while still providing for fast and accurate registra-

tion of surfaces.

1. Introduction

Shape analysis of surfaces plays an important role in

many applications such as anatomy, bioinformatics, com-

puter graphics, computer vision, and medical imaging [25,

2, 17, 18, 34]. The main goals in this area are to quan-

tify the difference between the shapes of two surfaces and

to conduct statistical analyses on the space of shapes. If,

as in this paper, we assume that our surfaces are given in

parametrized form, the main challenge is to remove the ef-

fects of shape-preserving transformations, which consist of

reparametrizations and/or rigid motions.

The problem of removing the effects of reparametriza-

tions can be thought of as a registration problem, i.e.,

finding the optimal point-correspondence between two sur-

faces. This problem is challenging because it is an op-

timization problem over the infinite-dimensional group of
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reparametrizations. In previous work, this problem was of-

ten solved by a 2-step process, in which the two surfaces

first were registered using one criterion, while deformations

and distances were then computed independently using a

different criterion [2, 6, 16, 29, 12, 18, 22]. However, be-

cause of the different sets of criteria, this approach can lead

to undesirable statistical biases and make the overall analy-

sis suboptimal [31].

Elastic shape analysis is an approach in which the deter-

mination of optimal point correspondences and optimal de-

formations is accomplished by a single criterion. The main

idea is to equip the space of parametrized surfaces with a

Riemannian metric that is invariant under the group of all

relevant shape-preserving transformations. This metric then

induces a metric on the quotient space (“shape space”) un-

der this group, and geodesics and distances on the shape

space are defined using this induced metric.

In recent years several metrics and frameworks [19, 27,

26, 3, 31, 35, 32, 33, 4, 5] have been introduced for the study

of elastic shape analysis. In [19], Jermyn et al. proposed a

family of metrics, called the “general elastic metric” for sur-

faces in R
3, which is a generalization of a previously stud-

ied family of elastic metrics on the space of curves [28].

It is defined as a weighted sum of three components that

measure changes in shearing, stretching and bending of the

surface. In the same paper [19], motivated by the SRVF

framework for comparing curves [31], Jermyn et al. intro-

duced the Square Root Normal Fields (SRNF) for compar-

ing shapes of surfaces. In this method, a map is defined

from the space of parametrized surfaces to an L2 space, and

the pullback of the L2 metric under this map is shown to be

one member of the family of general elastic metrics, albeit

a degenerate member, in which one of the three coefficients

vanishes. The SRNF framework has proven efficient and

successful in many applications [27, 20, 21, 24]. However,

the degeneracy creates serious problems; for example, there

exist pairs of surfaces with different shapes having exactly

the same SRNF (so their SRNF distance vanishes) [23]. In

fact, the SRNF map is neither injective nor surjective and



its image is not fully understood. In [27], appealing de-

formations of surfaces are produced by producing numeri-

cal approximations to the inverse of the SRNF map along

straight lines in the L2 space. Of course, geodesics in the

L2 image space are straight lines, but these straight lines

generally leave the image of the SRNF map and thus the

resulting deformations are not geodesics.

In [32], Su et al. proposed a 4-parameter family of met-

rics on the space of parametrized surfaces which has the

desired invariance properties. This 4-parameter family con-

tains the 3-parameter general elastic metrics as a special

case. Most of the metrics in this family are not degenerate

and geodesics and distances in shape space can be computed

numerically. The drawback of this method is that computa-

tionally it is not as fast as the SRNF representation.

Contributions of this article: The purpose of this arti-

cle is to introduce a new representation for surfaces by com-

bining the SRNF map with a direct consideration of the Rie-

mannian metric on the parametrized surface induced by its

immersion into R
3. By endowing the space of SRNFs with

the L2 metric and the space of metrics with the DeWitt met-

ric, the pullback of the product metric gives an open subset

of the 3-parameter family of the general elastic metrics. In

addition, there are explicit formulas for minimal geodesics

and for the geodesic distance function in the image space,

which make the matching of surfaces computationally ef-

ficient. This new representation is injective but not surjec-

tive. Thus our new method overcomes the degeneracy of the

SRNF-method, but similarly to the SRNF, the geodesics in

the image space do leave the image of the space of surfaces.

For this reason, the method given in this article does not pro-

vide a computation of actual geodesics with respect to this

family of metrics. The main uses of this article are (1) to

efficiently calculate a first-order approximation of geodesic

distance, and (2) to provide an effective method of register-

ing two surfaces, thereby yielding a good initialization for

the methods of [32].

Acknowledgements: The authors thank Stephen Pre-

ston for invaluable discussions on the formula for the

geodesic distance of the DeWitt metric and Hamid Laga for

providing the initial parametrizations of the boundary sur-

faces in Fig 4.

2. The Space of Shapes

For the purpose of this article we model all parametrized

surfaces as immersions from a two dimensional compact,

smooth manifold M with a possible boundary to R
3, i.e.,

smooth maps from M to R
3 with injective tangent map-

pings. Denote by Imm(M,R3) the space of immersions

and G the group of shape-preserving transformations. Then

the “shape space” of surfaces is a quotient space

S(M,R3) = Imm(M,R3)/G,

where G = Diff+(M) or G = Diff+(M) × SO(3) ⋉ R
3

depending on different applications. Here the group of

orientation-preserving diffeomorphisms Diff+(M) acts on

the space of immersions Imm(M,R3) by right composi-

tion (f, γ) 7→ f ◦ γ; the group of rigid motions, given by

the semidirect product SO(3)⋉R
3 of the group of rotations

SO(3) and the group of translations R
3, acts on the space

of immersions Imm(M,R3) according to ((R, v), f) 7→
Rf + v. Two surfaces will be considered to have the same

shape if they are in the same orbit under the action of the

group G.

The shape space S(M,R3) is not a smooth manifold but

only an orbifold [10]. However, we will ignore these sub-

tleties and assume that we are working away from the singu-

larities. To study the space of shapes, we will put a Rieman-

nian metric on the space of immersions Imm(M,R3) that is

invariant under the action of G. Then this Riemannian met-

ric on Imm(M,R3) induces a Riemannian metric on the

shape space S(M,R3) and makes it - via the geodesic dis-

tance function - into a metric space. It thus enables us to

calculate geodesics and geodesic distance and conduct sta-

tistical analysis on the shape space S(M,R3).
Denote by dImm the distance function with respect to the

Riemannian metric on Imm(M,R3). Let [f ] be the equiv-

alence class of f ∈ Imm(M,R3) under the action of G.

Then given two surfaces f1, f2 ∈ Imm(M,R3), the dis-

tance function on S(M,R3) is given by

dS([f1], [f2]) = inf
γ∈Diff+(M)

dImm(f1 ◦ γ, f2)

if G = Diff+(M) and

dS([f1], [f2]) = inf
γ∈Diff+(M)

R∈SO(3),v∈R
3

dImm(f1 ◦ γ,Rf2 + v)

if G = Diff+(M)× SO(3)⋉R
3. To calculate the distance

between two shapes, we will need to find an element in G
that realizes the infimum on the right side if it is realized, or

at least approximates it if the infimum is not realized.

2.1. The Elastic Metric on the Space of Surfaces

Jermyn et al. in [19] introduced a 3-parameter family of

metrics on the space of surfaces, which is invariant under

the action of the group of diffeomorphisms and the action

of the group of rigid motions. This 3-parameter family of

metrics is called the general elastic metric. To define this

family of metrics, we first introduce the (g, n) representa-

tion for surfaces. Let (u, v) be local coordinates on M . It

is well known, see e.g. [1], that (up to translation) each

surface f has a unique (g, n) representation, where g is the

Riemannian metric on M induced by f and n = fu×fv
|fu×fv|

is the unit normal vector field to the surface f . Using this

(g, n) representation, the general elastic metric is given as



follows:

G(g,n) ((δg, δn), (δg, δn)) (1)

=a

∫

M

tr
(
g−1δg0g

−1δg0
)
µg + b

∫

M

(
tr
(
g−1δg

))2
µg

+ c

∫

M

〈δn, δn〉R3µg,

where a, b, c ≥ 0 and µg is the induced volume form of

the surface f . The first term in formula (1) measures the

area-preserving change in metric, the second term measures

the change in area and the last term measures the change

of the normal direction. However, this 3-parameter family

of metrics was not used for comparing surfaces. Instead,

Jermyn et al. [19] proposed the Square Root Normal Field

(SRNF) representation of surfaces and used the L2 metric

on the space of SRNFs, which corresponds to a special case

of the general elastic metric, for shape analysis of surfaces.

We will give more detail about the SRNF representation in

Section 3.1.

3. A Simplifying Transformation

In this section we will introduce a new transformation

that will lead to efficient algorithms for the 3-parameter

family of elastic metrics (1); similarly to the SRNF-

representation, the new representation will provide a first-

order approximation of the geodesic distance with respect

to more general members of the family of elastic metrics

(instead of just the single degenerate case that is handled by

the SRNF). Before we propose the new representation, we

will describe the SRNF representation in more detail and

describe an important one-parameter family of metrics on

the space of all Riemannian metrics.

3.1. The SRNF Representation

The SRNF representation, proposed by Jermyn et al.

[19], is a map given by

Imm(M,R3) → C∞(M,R3) (2)

f(s) 7→
√
A(s) n(s),

where A(s) = |fu × fv| is the area measure induced by

f and n is the unit normal vector field to the surface f .

The motivation for this transformation is given by the ob-

servation that the pullback of the L2 metric on the target

space C∞(M,R3) is the general elastic metric (1) for a =
0, b = 1

16 , c = 1 on the space of immersions Imm(M,R3),
see [19]. The geodesic distance of the L2 (Riemannian)

metric on C∞(M,R3) is simply the L2 norm of the differ-

ence between the given two functions and thus this frame-

work presents an extremely efficient approximation of the

geodesic distance of the corresponding elastic metric on the

space of surfaces. Note that it is only an approximation

of the geodesic distance, since the linear path between two

SRNFs will, in general, leave the image of the SRNF map.

Thus the resulting distance should be viewed as an extrinsic

distance obtained by embedding the space of parametrized

surfaces in a linear space. Furthermore the pullback met-

ric consists only of the last two terms of the general elastic

metric (1), thus it is degenerate: in the recent paper [23] the

authors describe several examples of pairs of surfaces with

different geometric features for which the SRNF distance

vanishes.

3.2. The DeWitt Metric on the Space of Metrics

In this section we will describe the second main in-

gredient for the proposed transformation, a family of

reparametrization invariant Riemannian metrics on the

space of all Riemannian metrics, often referred to as DeWitt

or (for a special choice of constant) Ebin metric. A Rieman-

nian metric on M is a smooth, positive definite symmetric

(0, 2) tensor field on M . The space of all Riemannian met-

rics Met(M) is thus the set of all smooth, positive definite

symmetric (0, 2) tensor fields on M , which is an infinite di-

mensional manifold [14]. The tangent space at each point in

Met(M) is the space of all smooth, symmetric (0, 2) tensor

fields. In local coordinates, a metric g can be represented

as a field of 2× 2 positive definite symmetric matrices that

vary smoothly over M and every tangent vector at g can be

represented as a field of symmetric matrices.

The DeWitt (or Ebin) metric is a one parameter family

of metrics defined on the space of metrics Met(M). It has

been introduced in [13] and studied in detail in [15]. For

g ∈ Met(M) and δg ∈ Tg Met(M) this family of metrics

is defined as

Gλ
g (δg, δg) (3)

=

∫

M

(
tr
(
g−1δg0g

−1δg0
)
+ λ

(
tr(g−1δg)

)2)
µg,

where λ > 0, δg0 = δg − 1
2 tr(g

−1δg)g is called the trace-

less part of δg and µg is the volume form on M induced

by g. To understand better the geometric meaning of this

family of metrics we take a closer look at the purpose of

the two terms in the metric: using the variational formula

of the volume form of a Riemannian metric it is easy to see

that second term measures exactly the change in the volume

form, while the first term measures the change in the metric

within a family of metrics with the same volume form. This

family of metrics is a generalization of the Ebin metric [14],

which is given by the metric (3) for λ = 1
dim(M) =

1
2 .

In the following, we consider the action of the group of

diffeomorphisms Diff+(M) on Met(M) by pullbacks:

Met(M)×Diff+(M) → Met(M) (4)

(g, ϕ) 7→ ϕ∗g = dϕT g(ϕ)dϕ.



The following theorem shows the invariance under this ac-

tion of the family of metrics (3), which guarantees that the

metric is independent of choice of local coordinates on M .

The proof of this result follows immediately from Theo-

rem 5 in Appendix A and the transformation formula for

multi-dimensional integrals. (This theorem is also an imme-

diate consequence of DeWitt’s original paper on this metric

[13].)

Theorem 1. Let g ∈ Met(M) and δg ∈ Tg Met(M).
Then the DeWitt metric (3) is invariant under the action

(4) of the group of diffeomorphisms Diff+(M), i.e., let

ϕ ∈ Diff+(M) we have

Gλ
ϕ∗g(ϕ

∗δg, ϕ∗δg) = Gλ
g (δg, δg).

For most Riemannian metrics on infinite dimensional

manifolds, calculating geodesics and geodesic distance is

a challenging task that can usually only be solved approxi-

mately by (numerically) minimizing a discretized version of

the energy functional. The beauty of the DeWitt metrics (3)

lies in the observation that they are pointwise metrics, i.e.

they can be written as integrals of Riemannian metrics on

the space of positive definite, symmetric 2×2-matrices. By

the results of [9] this enables us to reduce the study to the

study of the corresponding metric on the space of positive

definite symmetric 2 × 2 matrices, We will present some

results of the induced geometry on the space of positive

definite symmetric matrices in Appendix A. These results

will allow us to obtain explicit formulas for geodesics on

the space Met(M), which are given for each x ∈ M by

the geodesic formula in Theorem 6 on the space of positive

definite symmetric matrices in Appendix A.

For the purpose of this article, we are mainly interested

in the formula for the induced geodesic distance. The space

of metrics Met(M) with respect to the geodesic distance of

the DeWitt metric is not metrically complete for any choice

of λ. However, following the analysis of Clarke [11] for

the Ebin metric, we can determine the metric completion of

Met(M) for any choice of λ, denoted in the following by

Met(M), which is given by M̃et(M)/ ∼. Here M̃et(M)
is the space of all semi-metrics on M , i.e., the space of all

measurable, positive semi-definite symmetric (0, 2) tensor

fields on M , and the equivalence relation ∼ is defined via

g1 ∼ g2 if the statement

g1(x) 6= g2(x) ⇐⇒ g1(x) and g2(x) both are degenerate

holds almost everywhere on M .

The following theorem, in which we present an explicit

formula for the distance function on the metric completion

Met(M), will be essential for the construction of our family

of transformations.

Theorem 2. Let g1, g2 ∈ Met(M). Then the square of the

geodesic distance for the family of metrics (3) is

dλ(g1, g2)
2 =

∫

M

dλ
Sym

(g1(x), g2(x))
2
dx, (5)

where

dλ
Sym

(g1(x), g2(x))
2

= 16λ
(
s21(x)− 2s1(x)s2(x) cos(θ(x)) + s22(x)

)
,

with

s1(x) =
4
√

det(g1(x)), s2(x) =
4
√
det(g2(x)),

θ(x) = min

{
π,

√
λ−1 tr(K2

0 (x))

4

}
,

K(x) =

{
0 if either g1(x) or g2(x) is degenerate

g1(x) log(g1(x)
−1g2(x)) else.

K0(x) = K(x)− tr(g−1
1 (x)K(x))g1(x).

Proof. This result is a generalization of the result given by

Clarke in [11] for the standard Ebin metric. The details of

this proof would exceed the page limits of this article; in-

stead, we refer the interested reader to [15] which contains

the most important ingredients and allows us to generalize

the results of Clarke.

3.3. The (g, q) Representation

In the following we will present a new family of trans-

formations by considering both the induced surface (Rie-

mannian) metric and the SRNF of the surface. Note that us-

ing the (g, n) representation, we could obtain the whole 3-

parameter family of the elastic metrics (1). However, there

exists no explicit formula for geodesics (geodesic distance

resp.) under this representation and thus this (g, n) repre-

sentation is not a good choice for our purposes.

Motivated by the results of the previous two subsections,

we consider the (g, q) representation for a surface, where g
is the metric induced by the surface and q is the SRNF of

the surface, i.e., we consider the map

Q : Imm(M,R3)/R3 → Met(M)× C∞(M,R3)

f 7→ (g, q),

where the R
3 being modded out by denotes the group of

translations, g = dfT df and q(s) =
√
A(s)n(s) with df

being the differential of f and A(s) and n(s) as in (2). It fol-

lows from the uniqueness (up to translations) of the (g, n)
representation [1] that the map Q is injective.

Let (g, q) ∈ Met(M) × C∞(M,R3) and (δg, δq) ∈
Tg Met(M) × TqC

∞(M,R3). In the following we will



define a 3-parameter family of Riemannian metrics on the

product space Met(M)× C∞(M,R3) as follows

Gα,β,λ

(g,q) ((δg, δq), (δg, δq)) = αGλ(δg, δg) + β〈δq, δq〉L2 ,
(6)

where α, β > 0, Gλ is the family of metrics on Met(M)
given by (3) and 〈·, ·〉L2 denotes the L2 inner product on

C∞(M,R3). The following theorem, which constitutes the

first of our main results, connects this family of new Rie-

mannian metrics to the general elastic metric:

Theorem 3. The pullback of the family of metrics (6) on the

space Imm(M,R3) under the map Q is the general elastic

metric as introduced in (1) with a = α, b = αλ + β
16 and

c = β.

Proof. Using that the pullback of the L2 metric gives the

general elastic metric for a = 0, b = 1
16 , c = 1, the proof of

this result is straightforward.

Note that we have thus constructed a transformation

for the 3-parameter family of elastic metrics (1) for all

choices of coefficients with a > 0, b > c
16 , c > 0. The

main reason for introducing this particular representation

will become clear in the next theorem, which will provide

us with a first order approximation of the geodesic dis-

tance on the space of immersions. Let dImm be the pull-

back via Q of the geodesic distance on the product space

Met(M) × C∞(M,R3). Then dImm is reparametrization

invariant. The following theorem provides an explicit for-

mula for it:

Theorem 4. Let f1, f2 ∈ Imm(M,R3) and

(g1, q1) = Q(f1), (g2, q2) = Q(f2).

Then the square of the distance dImm between f1 and f2 is

given by

dImm(f1, f2)
2 = αdλ(g1, g2)

2 + β ‖q1 − q2‖
2
L2 , (7)

where dλ is given by (5) and ‖·‖L2 denotes the L2 norm on

C∞(M,R3).

Note that the map Q is not surjective and the image of the

representation is not totally geodesic. Thus the geodesics in

the product space Met(M) × C∞(M,R3) will leave the

image of the space of immersions and the distance dImm

only gives an approximation to the geodesic distance be-

tween surfaces. Similar to the SRNF representation, there

is also no explicit formula for the inverse of this (g, q) rep-

resentation. However, an advantage of this new (g, q) rep-

resentation for shape analysis of surfaces is the fact that the

map Q is injective. Like the (g, n) representation, it yields

a family of non-degenerate elastic metrics. In addition, we

have explicit formulas for the minimal geodesics and the

geodesic distance function in the image space, which makes

the matching between two surfaces computationally effi-

cient.

4. Optimization Over Shape Preserving Trans-

formations

In this section we present the resulting optimization pro-

cedure for solving the registration problem in the newly pro-

posed framework. For the presentation in this section we

will assume that M = S2, which allows us to parametrize

any surface using spherical coordinates (θ, φ) ∈ [0, 2π] ×
[0, π], where θ denotes the azimuthal angle and φ denotes

the polar angle. For the construction of such a parametriza-

tion we refer to the articles [30, 26].

Given two surfaces f1, f2 ∈ Imm(M,R3) we aim to

find the optimal point correspondence between the shapes

of these two surfaces, i.e. we want to find the optimal γ ∈
Diff+(S

2) that realizes the following infimum

dS([f1], [f2])
2 = inf

γ∈Diff+(S2)
dImm(f1 ◦ γ, f2)

2,

where [f1] and [f2] are the equivalence classes of f1
and f2 under the action of the group of diffeomorphisms

Diff+(S
2), respectively, and the distance function dImm is

given by formula (7). Note that, in general, the existence of

optimal reparametrizations is not guaranteed, see e.g. [8].

We observed however a good and stable convergence be-

havior of our numerical algorithms.

In the following let Id be the identity map from S2 to

itself and let {vi, i = 1, · · · , L} be a truncated orthogonal

basis for the space of all smooth tangent vector fields on S2

with respect to the Euclidean metric, see e.g. [32] on how

to construct such a basis. We then define

γ = Proj

(
Id+

L∑

i=1

Xivi

)
, (8)

where Proj is the projection map from R
3 to the unit sphere

S2. The resulting mapping γ is a diffeomorphism of S2 if

the size of the coefficient vector X = (X1, X2, · · · , XL)
is small enough, see [32, Theorem 3]. We are aiming to

minimize the functional F : RL → R given by

F (X) = dImm(f1 ◦ γ, f2)
2,

where γ is of the form (8). To find the best coefficient vec-

tor X = (X1, X2, · · · , XL) we employ a BFGS method as

provided in the optimize package of scipy with the gradient

calculated using automatic differentiation in Pytorch. Since

the maps obtained by formula (8) only lead to ‘small’ de-

formations we iterate this optimization procedure. Like any

gradient based method it is important to choose a good ini-

tialization for our BFGS method. For this purpose, we use

the icosahedral group, which contains 60 orientation pre-

serving rotations, and can be viewed as a discrete subset

of the diffeomorphism group of S2. We use as our initial

guess the element of the icosahedral group that minimizes

the distance.



We will now describe how one can deal with other shape

preserving group actions, i.e., translations and rotations.

Our family of metrics (6) is naturally defined on the quo-

tient space of surfaces modulo translations, as translations

(constant vector fields) form exactly the kernel of our met-

ric. Therefore to solve the registration problem on the space

of unparametrized sufaces modulo rigid motions it remains

to minimize over the group of rotations, i.e. we need to

solve a joint optimization problem of finding the optimal

γ ∈ Diff+(S
2) and R ∈ SO(3) that realize

dS([f1], [f2])
2 = inf

γ∈Diff+(S2)
R∈SO(3)

dImm(f1 ◦ γ,Rf2)
2,

where [f1] and [f2] are the equivalence classes of f1 and

f2 under the actions of the group of diffeomorphisms

Diff+(S
2) and the group of rotations SO(3). We use a sim-

ilar approach as we discussed before to solve this joint op-

timization problem and we omit the details here.

Remark 1. The framework developed in [32] for calcu-

lating geodesics with respect to the 4-parameter family of

elastic metrics could be used here for calculating geodesics

with respect to the new family of metrics (6) both in the

space of unparametrized surfaces and in the space of un-

parametrized surfaces modulo rigid motions. This is based

on the following correspondence: the pullback of the metric

(6) gives the 4-parameter family of metrics for a = 4α, b =
8αλ+β/2, c = β, d = 0. Therefore, the geodesics could be

calculated after solving the registration problem first using

this new (g, q) representation. We expect this procedure to

lead to a significant speed-up over the algorithm of [32].

5. Numerical Experiments

In this section, we will present numerical results to val-

idate our proposed method for surface matching. To bet-

ter visualize the obtained registrations we will also depict

the corresponding geodesics, which are calculated using

the framework developed in [32] where the point registra-

tions are obtained from the present implementation, cf. Re-

mark 1.

In Figure 1 we consider a pair of parametrized spher-

ical surfaces with one bump on different positions. The

parametrization of the surface is visualized by the color

map of the surface. The initial and final correspondences

between this pair of surfaces for the general elastic metric

(1) with different constants are depicted. One can clearly

see the effect of the constants a, b, c on the resulting surface

registrations. To better visualize the resulting point corre-

spondences we depict the corresponding geodesics between

these pairs of surfaces in Figure 2: In the first row the bump

on the first surface is shrunk and a new bump is grown out

on the correct location. If we decrease the weight that mea-

sures the change in the metric then the bump on the target

Figure 1. Matchings between surfaces with one bump in the space

of unparametrized surfaces Imm(S2,R3)/Diff+(S
2) with re-

spect to the general elastic metric (1) for a = 0.1, b = 0.07, c = 1
(first row), a = 0.01, b = 0.07, c = 1 (second row) and

a = 1, b = 1, c = 0.1 (third row). In each row, the surfaces on the

left and right show the original parametrizations of the boundary

surfaces; the second one gives the final parametrization of the first

boundary surface after the whole optimization process.

shape corresponds to the bump on the initial shape and the

target shape is obtained by shearing the neighborhood of the

initial bump, which can be seen in the second row. In the

last row, where we put only a small weight on measuring

the change of normal directions, the bump is simply mov-

ing (sliding) along the surface to its new position. This ex-

periment suggests that one can model a variety of different

behaviors by appropriately choosing the constants. Similar

effects can be observed in our second toy example where we

consider a pair of spherical surfaces with two bumps at dif-

ferent locations, cf. Figure 3. Finally in Figure 4 we show

an example of surface matching using real data from the

SHREC07 watertight models database [7], where the ini-

tial parametrizations of the boundary surfaces are obtained

using the code from [26]. All results were obtained on a

standard laptop with 16 basis elements for the space of tan-

gent vector fields on S2. With this setup all each of our

experiments was computed in less than 10 seconds.

6. Conclusion

In this paper we have introduced a new representation

for immersed surfaces in R
3 by considering both the in-

duced metric and the SRNF of each surface. By endowing

the space of metrics with the DeWitt metric and the space

of SRNFs with the L2 metric, we have obtained an open

subset of the 3-parameter family of elastic metrics intro-



Figure 2. Geodesics between surfaces with one bump in the space of unparametrized surfaces Imm(S2,R3)/Diff+(S
2) with respect to

the general elastic metric (1) for a = 0.1, b = 0.07, c = 1 (first row), a = 0.01, b = 0.07, c = 1 (second row) and a = 1, b = 1, c = 0.1
(third row). Here each geodesic is calculated with the method provided in [32] using the final point correspondence of our new algorithm.

Figure 3. The matchings and geodesics between surfaces with two bumps in the space of unparametrized surfaces

Imm(S2,R3)/Diff+(S
2) with respect to the general elastic metric (1) for a = 1, b = 1, c = 1 (first row) and a = 0.1, b = 1, c = 1

(second row). In each row, the surface f1 on the left and f2 on the right show the original parametrizations of the boundary surfaces; the

second one f1 ◦ γ gives the final parametrization of the first boundary surface after the whole optimization process; the right 7 surfaces

on the right show the interpolating geodesic. Here each geodesic is calculated with the method provided in [32] using the final point

correspondence of our new algorithm.

duced by Jermyn et al. in [19]. Compared to the SRNF

representation, the advantage of using this new represen-

tation is that it leads to a whole family of non-degenerate

elastic metrics, which enables us to choose the constants in

a data-driven way. Additionally, it yields explicit formulas

for minimal geodesics and for the geodesic distance func-

tion in the image space, which makes the matching between

surfaces computationally efficient. Similar to the SRNF,

the geodesic in the image space might leave the image of

the space of surfaces. Although in this situation the method

does not provide the actual geodesics between shapes, it still

yields an effective method to register surfaces. We have pre-

sented several examples of registration between surfaces to

validate our framework.

In future work we plan to apply our algorithms to real

data sets to further investigate the influence of the constants

and to generalize this new representation such that it allows

to represent the whole family of elastic metrics by consider-

ing the pseudo-Riemannian DeWitt metric on the space of

metrics where the constant λ can be negative.

A. The Space of Positive Definite Symmetric

n× n Matrices

Denote by Sym+(n) the space of positive definite sym-

metric n×n matrices. The space Sym+(n) is an open sub-

set of the space of all n × n symmetric matrices, denoted

by Sym(n). Thus it is a manifold of dimension
n(n+1)

2 and

its tangent space at each point is the vector space Sym(n).
Let A ∈ Sym+(n) and K ∈ TA Sym+(n)

∼= Sym(n). In

this section we consider the Riemannian metric on the space



Figure 4. The matching and geodesic between two hand shapes in the space of unparametrized surfaces Imm(S2,R3)/Diff+(S
2) with

respect to the general elastic metric (1) for a = 1, b = 1, c = 1. The surface f1 on the left and f2 on the right show the original

parametrizations of the boundary surfaces; the second one f1 ◦ γ gives the final parametrization of the first boundary surface after the

whole optimization process; the right 7 hand shapes show the interpolating geodesic between the two hand shapes. The geodesic is

calculated with the method provided in [32] using the final point correspondence of our new algorithm.

Sym+(n) induced by the DeWitt metric:

〈K,K〉λA = tr(A−1K0A
−1K0)

√
det(A) (9)

+ λ
(
tr(A−1K)

)2√
det(A),

where K0 = K − 1
n
tr(A−1K)A is the traceless part of

K. This Riemannian metric (9) is not affine invariant, but

instead satisfies the following equivariance property, that is

necessary for the reparametrization invariance of the De-

Witt metric on the space of Riemannian metrics:

Theorem 5. Let A ∈ Sym+(n) and K ∈ TA Sym+(n).
Then the family of metrics (9) is invariant under the follow-

ing action of the group of invertible matrices:

Sym+(n)×GL(n) → Sym+(n)

(A,C) 7→ CTAC,

that is, given C ∈ GL(n) the following equality always

holds:

〈CTKC,CTKC〉CTAC = 〈K,K〉A.

Proof. This result can be shown by direct calculation.

For this family of metrics, the geodesic initial value

problem on Sym+(n) can be solved explicitly, see [15]:

Theorem 6. Let A ∈ Sym+(n) and K ∈ TA Sym+(n).
Define

r1(t) = 1 +
t

4
tr(A−1K),

r2(t) =
t

4

√
λ−1 tr (A−1K0A−1K0).

If K0 6= 0, then the geodesic for the metric (9) in Sym+(n)
starting at A in the direction of K is given by

At =
(
r21 + r22

) 2
n A exp

(
t arctan(r2/r1)

r2
A−1K0

)
;

otherwise, if K0 = 0, then the geodesic starting at A in the

direction of K is given by At = r
4
n

1 A.

Notice that if K0 = 0 and tr(A−1K) < 0, then

the geodesic will leave the space Sym+(n) at time T =
− 4

tr(A−1K) . Thus the space Sym+(n) is not geodesically

complete.

Denote by S̃ym+(n) the space of positive semi-definite

n × n symmetric matrices. The metric completion of

Sym+(n) is then given by the quotient Sym(n) =

S̃ym+(n)/ ∼, where A ∼ B if they both are degenerate.

In the metric completion Sym(n), the minimal geodesic be-

tween any two points always exists and is unique.

Theorem 7. Let A,B ∈ Sym(n). Then there exists a

unique minimal path between A and B. If either A or

B is [0] (the equivalence class of the 0 matrix), the min-

imal path is the line between A and B. Otherwise let

K = A log(A−1B), then the minimal path is given by

(1) the geodesic connecting A and B if

tr
(
A−1K0A

−1K0

)
< (4π)2λ,

(2) the concatenation of the straight line segments from A
to 0 and from 0 to B if

tr
(
A−1K0A

−1K0

)
≥ (4π)2λ.

Furthermore, the squared distance on the metric completion

is explicitly given by

dλ
Sym

(A,B)2 = 16λ
(
s21 − 2s1s2 cos θ + s22

)
,

where

s1 = 4
√
det(A), s2 = 4

√
det(B),

K =

{
A log(A−1B) if A and B are non-degenerate

0 else

θ = min
{
π,
√

λ−1 tr (A−1K0A−1K0)/4
}
.

Proof. For λ = 1
n

the result was proven on [11]. The gen-

eral case follows by using the results of [11] and combining

it with the explicit formulas of [15]. This would however

exceed the scope of this conference paper and we thus refer

from presenting the full proof here.
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