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Abstract

Single image haze removal has been a challenging prob-

lem and the performance of the most existing dehazing meth-

ods is degraded when point light sources exist in the hazy

image. In this paper, we propose a point light source inter-

ference removal method (PLiSIR) to reduce the interferences

when estimating the atmospheric light. According to our

observation, the pixel intensity around the point light sources

can be modeled approximately by Gaussian distribution. The

locations of the interfered pixels are obtained reasonably

regardless of the specific number of light sources. A binary

masking map is then created for distinguishing whether the

pixel is affected by light sources and thus PLiSIR can be

adopted to dehazing algorithms by removing the interfered

pixels, during the estimation of the atmospheric light. To

demonstrate how to apply PLiSIR to different algorithms,

we select the dark channel prior dehazing method (DCP)

and the color attenuation prior dehazing method (CAP) as

two carrier methods and introduce the adaptations accord-

ingly. Experimental results indicate that the PLiSIR can

assist DCP and CAP to better estimate the atmospheric light,

and thus generate better dehazing results compared to the

original DCP and CAP methods. Moreover, PLiSIR also

helps DCP and CAP to simplify the parameter adjustment

process of the guided filter. At last, we compare our modified

DCP approach (which we refer to PLiSIR-DCP) with the

state-of-the-art nighttime dehazing algorithm to present an

approach which is suitable for both daytime and nighttime

haze removal.

1. Introduction

Many computer vision applications [12, 11, 13, 15, 34,

35], such as image retrieval, image classification, object

tracking, etc., benefits from input images with decent quality

and suffers from degraded ones. Currently, images captured

at outdoor may be deteriorated (causing color decay, lower

contrast, higher noise) by bad weathers like haze, rains and
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etc. Therefore, numerous dehazing techniques [2, 8, 6, 22,

31, 32] are proposed to reduce the deterioration caused by

haze and restore clear scenes. It not only increases the visual

quality of the obtained images, but also provide input images

with better quality to the latter applications.

The major challenge when developing haze removal tech-

niques is that the concentration of the haze is dependent

on the unknown depth in the hazy image. Initially, re-

searchers apply traditional image enhancement tools, such

as histogram equalization [28], to the hazy image for haze

removal. However, this approach may cause color shifting of

the scene since the contrast of the image is increased. Later,

different researchers try to improve the dehazing perfor-

mance via different mechanisms, such as polarization-based

methods in [20, 16] and haze removal with known depth

information [19, 7].

He et al. propose the dark channel prior (DCP) in [4].

Although DCP presents decent dehazing results in many

cases, it fails to provide good results when there exist point

light sources in the scene. This failure is caused due to

the overestimation of the atmospheric light when the point

light sources exist. Also, DCP possesses high complexity

due to the adaptation of soft matting [9] and cannot process

sky images properly. After DCP [4] proposed, numerous

approaches [3, 30] are proposed to reduce the computational

load. Since the algorithms based on DCP will estimate the

atmospheric light by some maximum value selecting criteria

in the hazy image or a local neighborhood, these DCP based

methods still suffer from light interferences when there exist

point light sources.

In 2015, Zhu et al. propose a novel color attenuation prior

(CAP) [39] and create a linear model for the scene depth of

the hazy image with supervised learning. Then the scene

depth and thus the transmission map and the atmospheric

light can be estimated, and the single image dehazing can

be carried out. Still, CAP obtains worse atmospheric light

estimation results when point light sources exist, and thus

the final dehazing results.

The above mentioned approaches are designed for day-

time hazy images. Recently, researchers also started to in-

vestigate the nighttime haze removal problem. In 2012, Pei
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et al. in [21] map the colors of a nighttime haze image to

those of a daytime haze image with a color transfer tech-

nique, which causes unrealistic colors in the dehazed results.

Later, Zhang et al. propose a dehazing system in [36] which

includes spatially varying light estimation and compensa-

tion, color correction and dehazing steps. However, the

glow effect appears on the dehazed images generated by

[36]. To reduce the glow effect, Li et al. [14] introduce a

nighttime haze model which consists of direct transmission,

the haze, and the glow estimations. Although they success-

fully solved the glow effect, the dehazed image shows unreal

point light sources and some flat regions reveal obvious noise.

In general, these nighttime haze removal methods generate

unsatisfactory results when processing daytime hazy images.

In addition to priors-based dehazing methods, there are

also many deep learning based approaches to solve the image

enhancement problem [26, 33], including image dehazing

[25, 27, 37, 38], in recent years. Cai et al. [1] propose an

end-to-end convolutional neural network (CNN) to estimate

the transmission map. Ren et al. proposed a multi-scale

deep model to estimate the transmission map. Li et al. [10]

reformulate the atmospheric model and design an AOD-Net

to learn the mapping function between the hazy input and

the corresponding clean image. Ren et al. [23, 24] use

multi-scale networks fusion-based strategy to estimate the

transmission map or directly restore a clear image from a

hazy image. However, all these CNN-based networks cannot

remove haze from nighttime scenes with point light sources.

In summary, when the hazy image contains some point

light sources, the above-mentioned dehazing methods prob-

ably encounter a problem that the pixels interfered by the

point light sources can easily be regarded as the most haze-

opaque region, leading to an overestimated atmospheric light

and sometimes a problematic estimated transmission map.

To reduce the point light source interferences, this paper

contributes as follows.

• We observe that the existing dehazing algorithms usu-

ally perform worse when there exist point light sources

in the hazy image due to the inaccurate estimation of

the atmospheric light.

• We propose a point light source interference removal

method (PLiSIR), which can be easily applied to the

different dehazing algorithms such as DCP and CAP, to

reduce the point light source interferences.

• Experimental results demonstrate that PLiSIR can as-

sist DCP and CAP to obtain a better estimation of

the atmospheric light and the depth map, respectively,

and the modified DCP (PLiSIR-DCP) and modified

CAP (PLiSIR-CAP) can generate better dehazing re-

sults compared to the original DCP and CAP methods.

Moreover, PLiSIR also helps DCP and CAP to simplify

the parameter adjustment process of the guided filter

where the dynamic ranges of suitable parameters are

extended.

• We also compare the PLiSIR-DCP approach with the

state-of-the-art nighttime haze removal algorithm [14]

to present an approach which is suitable for both day-

time and nighttime haze removal.

The remainder of this paper is organized as follows: In

Sec. 2, we review the mainstream atmospheric scattering

model, one popular haze removal algorithm (DCP) in [5]

and one latest algorithm (CAP) in [39] respectively. Sec. 3

presents the proposed method and two examples of applying

it to the carrier algorithms (applied to DCP and CAP). The

experimental results are given in Section 4 and Section 5

concludes the paper.

2. Backgrounds

In this section, the mainstream atmospheric scattering

model adopted in recent years will be introduced at first.

Then, two haze removal algorithm, DCP and CAP, which

will be exploited as the carrier algorithm later in the experi-

ments, will be briefed accordingly.

2.1. Atmospheric Scattering Model

In recent years, the most widely adopted atmospheric

scattering model is proposed in [18],[17],[29]. The model is

defined as Eq. 1 shows.

I(x) = J(x)t(x) +A(1− t(x)) (1)

where x is the position of the pixel, I represents the hazy

image, J stand for the scene radiance (the haze-free image),

A represents the atmospheric light and t is the transmis-

sion ratio which indicates the portion of real scenes being

captured by the camera. Note that I, J and A are all three-

dimensional vectors in R-G-B space. When the atmosphere

is homogeneous, the transmission t can be expressed as Eq.

2 shows.

t(x) = e−β∗d(x) (2)

where β is the atmosphere scattering coefficient and d is the

depth of the scene.

As we can conclude from Eq. 1, to recover the real scene

J, A and t must be estimated first.

2.2. Dark Channel Prior

In 2009, by performing numerous experiments on outdoor

haze-free images, He et al. discover that in most of the

natural scene patches, at least one of the color channels

possesses some pixels with close to zero intensities. Then

they propose the popular dark channel prior (DCP) in [5] as

Eq. 3 shows.



Figure 1. Light spreading model of a point light source.

Jdark = min
y∈Ω(x)

(

min
c∈r,g,b

Jc(y)
)

(3)

where Jc is a color channel of J and Ω(x) represents a

local patch centered at x. Once the atmospheric light A is

given, Eq. 1 can be normalized to

Ic(x)

Ac
= t(x)

Jc(x)

Ac
+ 1− t(x) (4)

To calculate the transmission map, the atmospheric light

A will be estimated first. He et al. simply obtain the lo-

cation of the brightest pixel in the dark channel map Jdark

and employ the co-located pixel value in I as A. Later, for

better robustness, He et al. also exploit to obtain the loca-

tions of the top 0.1 percent brightest pixels in Jdark and then

calculate the average value of the co-located pixel values in

I as A. Once A is estimated, the transmission map t can be

calculated. After the atmospheric light and the transmission

map obtained, the scene radiance can be recovered by Eq. 5.

J(x) =
I(x)−A

t
+A (5)

2.3. Color Attenuation Prior

Eq. 2 indicates that the scene transmission t is attenuated

exponentially with the depth d. Thus, Zhu et al. propose

to first recover t via depth estimation in [39] and then cal-

culate the atmospheric light and the scene radiance. Based

on experiments, the concentration of the haze is found to

be correlated with the differences between the brightness

channel and the saturation channel in the Hue, Saturation,

Value (HSV) color model. Then they propose a linear model

as Eq. 6 shows.

d(x) = θ0 + θ1v(x) + θ2s(x) + ǫ(x), (6)

where x still represents the pixel index, d still represents

the the depth, v is the brightness component, s is the satura-

tion component, θ0, θ1, θ2 are unknown linear coefficients

and ǫ(x) is a gaussian random variable with zero mean to

represent the random error.

With the depth map, the transmission can be calculated

via Eq. 2. As for the atmospheric light estimation, they

search the location of the brightest pixel in the depth map d,

and employ the co-located pixel value in the haze image I as

A. At last, the scene radiance J can be recovered according

to Eq. 5.

3. Methodology

When the existing dehazing methods estimate the atmo-

spheric light during the dehazing process, they may en-

counter a problem when the picture contains point light

sources. Since the point light sources usually increase the val-

ues of neighboring pixels, they may overestimate the atmo-

spheric light and thus the dehazing performance decreases.

Therefore, we propose a point light source interferences

removal method called PLiSIR to increase the estimation

accuracy.

To remove the interferences of point light sources, the

light interfering range and locations of the point light sources

must be found. At first, we introduce the case of a single

point light source. In reality, a point light source affects a

sphere-like three-dimensional neighborhood as Fig. 1 shows.

The total light intensity from a light source is a constant

which won’t be changed by the distance between the current

sphere surface and the point light source itself. Since the

surface area is directly proportional to the squared radius

of the sphere, the average light intensity on the surface is

inversely proportional to the squared radius. Once the radius

is known, the average light intensity can be easily calculated.

As the radius increases, the average light intensity decreases.

When a certain threshold is achieved, the light interferences

to the objects on the current distance can be neglected. When

locating a point light source and its light interfering range

on a single image, it is of great challenge to get an accurate

depth map and transform the two-dimensional depth map to

the three-dimensional true distance map.

Figure 2. Distributions of pixel intensities.

Although it is hard to rebuild a three dimensional scene



Table 1. Relationship between the retained area and cuf-off param-

eters .
interval area proportion

(µ-σ,µ+σ) 0.683

(µ-1.96*σ,µ+1.96*σ) 0.954

(µ-2.58*σ,µ+2.58*σ) 0.997

model based on a single image, we can still locate the point

light source and its light interfering range. During the experi-

ments, we observe that the distribution of the pixel intensities

around a point light source can be approximately modeled

by Gaussian distribution as Fig. 2 shows, while the pixel

intensities of unaffected pixels reveal a random distribution.

Then the point light source and its light interfering range can

be located by fitting the observed the pixel intensity distri-

bution to Gaussian distribution. The expression of Gaussian

distribution is in Eq. 7,

f(x) =
1

√
2πσ

exp

(

−
(x− µ)2

2σ2

)

(7)

where µ is the mean value and σ is the variance of f(x).
These two parameters both influence the shape of distribu-

tion.

During the curve fitting process, the location of the point

light source can simply be selected as the location of the

mean value µ. Besides, as we can conclude from Tab. 1,

the area between the curve and the x axis are related to µ

and σ. So when the difference between x and µ exceeds a

threshold Td, we consider the Gaussian distribution is close

to zero, i.e., the pixels farther than the threshold distance

Td is considered to be unaffected by the point light source.

Refer to Tab. 1, Td = 2.5 ∗ σ is selected throughout the rest

of this paper.

For each hazy image, a binary masking map M is created

to indicate whether the current pixel is interfered by the

point light source. After the curve fitting process, suppose

the index of each pixel is (i,j), the masking map M is defined

in Eq. 8. Each value in M is set to be zero initially.

M(i,j) =

{

1 pixel(i,j) is affected

0 pixel(i,j) is unaffected
(8)

For a given hazy image, our method is always feasible

despite the image contains a point light source or not. Gen-

erally, pixels close to a point light source possess higher

intensity than those faraway. The closer to the light source,

the brighter a pixel should be. In the input image, we sim-

ply locate the pixel with largest intensity and assume it is a

point light source. The we select nearby pixels and proceed

the curve fitting to fit the selected samples’ distribution to

Gaussian distribution. Since in a two dimensional image, the

distances between horizontal nearby pixels are more close to

the real distances in three dimensional reality, we choose the

nearby pixels in the horizontal direction. For convenience,

we set the threshold distance Td as a constant regardless of

the direction.

Considering that using the distribution of one pixel’s in-

tensity may lead to inaccurate result, the distribution of the

average intensity of pixel blocks is explored to improve the

robustness. Experiments indicate a certain improvement

compared to pixel based distributions. As mentioned be-

fore, pixel intensity around the light source is approximately

Gaussian distributed while the others are not, then the curve

fitting effectiveness can be applied to judge whether a point

light source exists in the hazy image. Here, we choose the

sum of square error, R-squared, root mean square error and

adjusted R-squared as the discrimination criteria for the fit-

ting effectiveness. In the curve fitting process, various block

sizes are tested to obtain the best size according to these

discrimination criteria.

If the curve fitting process fails to provide a decent fitting

result, we consider there is no point light source in the hazy

image, because the pixel with the largest intensity usually

lies in the farthest region with random distributed intensi-

ties in that region when no point light source exists in the

hazy image. For these hazy images, we considered as no

point light source, we simply make no modifications to the

masking map, i.e., the hazy image can still be dehazed by

the carrier dehazing method.

Once fitting well, the parameters of the Gaussian distribu-

tion can be obtained accordingly. The average µ represents

a more accurate location of the point light source. The pix-

els, whose distance to the light source is less than Td, are

regarded as light interfered pixels and the masking map is

modified according to Eq. 8.

In reality, an image usually contains multiple point light

sources. Then, our previous method to locate the single point

light source and its interference range needs to be revised

to adapt. In PLiSIR, we first carry out the previous single

point light source algorithm to obtain an initial masking map.

Then we sort pixels from large intensity to small. According

to the orders, one pixel is selected in every iteration. If its

corresponding value in M is 1, the current pixel is already

being classified as a light interfered pixel and we proceed to

the next iteration. Otherwise, we assume the current location

exists a point light source and carry out the previous curve fit-

ting method to further identify the existence of the point light

source and its potential affecting area. After the masking

map is updated accordingly, the algorithm then proceeds to

the next iteration. The iteration process is terminated when

the pixel intensity is smaller than a threshold Tf . To adapt

different image content, Tf is set as a variable proportional

to the largest pixel intensity in the image.

A final masking map M can be obtained after iterations,

i.e. the light interfered areas are identified at last. Fig. 3

presents three examples of applying our method to hazy im-



(a) Hazy images

(b) Interfered area

Figure 3. Results of interfered area detection.

ages with multiple point light sources. As can be observed,

the majority of the point light source interferences are iden-

tified and located except for those tiny ones. According to

our experiments, these unidentified tiny light sources do not

degrade the final dehazing results in most of the cases.

Once the final masking map M is obtained, it can be

adopted to different carrier dehazing algorithms to reduce

the point light source interferences when estimating the at-

mospheric light. To demonstrate the adaptation of PLiSIR to

the carrier algorithms, DCP and CAP will be employed as

the carriers in this paper, as they represent the most popular

and latest methods. The modified DCP and CAP algorithm

will be represented by PLiSIR-DCP and PLiSIR-CAP re-

spectively.

In PLiSIR-DCP, the majority steps are identical to the

original DCP except for the selection of the locations of po-

tential values for the atmospheric light. During that process,

by referring to M, we select the top 0.1 percent brightest

pixels with no point light source interferences in the dark

channel image.

In PLiSIR-CAP, our approach is adopted during the step

of estimating the atmospheric light from the depth map.

According to the masking map M, PLiSIR-CAP selects

the top 0.1 percent largest pixels with no point light source

interferences in the depth map as the potential atmospheric

light locations.

4. Experimental Results

Since our approach is suitable for various haze removal

algorithms, we apply PLiSIR to the popular algorithm He

et al.’s DCP algorithm [5] and the latest Zhu et al.’s CAP

algorithm [39] and compare to the original methods respec-

tively. Based on the fact that the two carrier algorithms have

different theoretical systems and haze removal mechanisms,

experimental results demonstrate the importance of PLiSIR

regardless of the carrier algorithm. At last, since the existing

nighttime dehazing methods [36] and [14] have the ability to

process the nighttime hazy images with point light sources,

we compare the current the latest nighttime dehazing method

(a) DCP [4] (b) PLiSIR-DCP

Figure 4. Comparison of the selected pixels for atmospheric light

estimation.

(a) DCP [4] (b) PLiSIR-DCP

Figure 5. Results of estimated transmission maps.

Table 2. Estimation of atmospheric light.

Picture DCP estimated A PLiSIR-DCP A

Fig. 7(a) (0.897,0.905,0.901) (0.586,0.594,0.609)

Fig. 7(d) (0.999,1.000,0.998) (0.750,0.751,0.754)

[14], whose results are favorable among the existing night-

time dehazing methods, with PLiSIR employing DCP as the

carrier.

4.1. Experiments with Dark Channel Prior

In the DCP algorithm [5], the transmission map t is cal-

culated according to the estimated atmospheric light A and

then being refined by the guided filter. Thus, it is of great im-

portance to obtain an accurate A when calculating t. In the

experiments, the haze images are processed with the original

DCP and the modified algorithm PLiSIR-DCP. Fig. 4 shows

the different atmospheric light selection of DCP and PLiSIR-

DCP. Tab. 2 shows the estimated atmospheric light of DCP

and PLiSIR-DCP. As can be observed, PLiSIR-DCP select

more reasonable locations for estimating the atmospheric

light and generate more accurate atmospheric light value.

With a better estimated atmospheric light, better refined

transmission map t is extracted during the dehazing process

and the results are shown in Fig. 5. According to Fig. 5, we

can conclude that the transmission map Fig. 5(b) generated

by PLiSIR-DCP possesses better contrast, i.e., it reveals the

real depth of the scene more accurately compared to the

original DCP, especially for the regions contains edges like

tail and distant objects.

Guided filter has been widely adopted once proposed, be-

cause of its ability to reduce the halos and blocking artifacts.

During the processing procedure, the final results are influ-



(a) r=8, eps=0.0001 (b) r=16, eps=0.01

Figure 6. Results with unsuitable r and eps. For each pair, the left image is generated by DCP while the right one is generated by

PLiSIR-DCP.

(a) Hazy image (b) DCP [4] (c) Our PLiSIR-DCP

(d) Hazy image (e) DCP [4] (f) Our PLiSIR-DCP

(g) Hazy image (h) DCP [4] (i) Our PLiSIR-DCP

Figure 7. Results with suitable parameters.

enced by two parameters, namely the local window radius r

and the regularization parameter eps. Experimental results

may vary greatly if one of them changes and the effect is

being judged subjectively but not automatically, which leads

to complicated parameter adjustment for good results. In

reality, most algorithms just set specific parameters for all

images to be processed for convenience. Although these

specific parameters can lead to nearly satisfying results in

many cases, they fails in some other cases. Fortunately, when

remove the haze in images containing point light sources,

PLiSIR can effectively assist the parameter adjustment pro-

cess of the guided filter. As is shown in Fig. 6, the qual-

ity about final refined dehazed images varies greatly with

different parameters. Some refined dehazed images have

high-quality while the others still have some halos or block-

ing artifacts. On the other hand, when applying PLiSIR to

DCP, the performance benefits from PLiSIR and the interfer-

ence of parameter adjustment decreases. As we can observe,

some halos, which are obvious in images processed by the

original algorithm with unsuitable guided filter parameters,

become less noticeable when apply PLiSIR-DCP with iden-

tical parameters to the same test image, which indicate that

the proposed PLiSIR can depress the halos and blocking ar-

tifacts. Thus with PLiSIR, the cost of parameter adjustment

can be reduced because the range of suitable parameters

has been expanded and users can obtain reasonable final

dehazing results more easily.

Fig. 7 shows some examples of guided filter results with

suitable parameters. The halos and blocking artifacts can

hardly be perceived. Except for the support to the parameter

adjustment, our approach possesses other benefits as we can

observe.

Firstly, the objects with small depth in the haze image

have nearly no haze regardless of the parameter β, whose pur-

pose is to add some reasonable haze such that the perceived

scene J is closer to the reality. If the point light sources

are ignored, these close objects may become too bright such

that it looks like there still exist some haze, as the pavement

shows in Fig. 7(h). Meanwhile, our modified algorithm

generate better visual quality for those close objects. As for

the distant objects in the scene, PLiSIR-DCP gives much

clearer results compared to DCP. As we can observe in Fig.

7, the trees in the left part of Fig. 7(c) shows some specific

details while the details of corresponding trees in Fig. 7(b)

is less visible. Moreover, for the faraway backgrounds, our

dehazed images still maintains a rough outline while the

original DCP generated images just gives haze-like scene,

as Fig. 7(c) and 7(b) show. Therefore, PLiSIR-DCP shows

superior performance compared to DCP.

4.2. Experiments with Color Attenuation Prior

As mentioned in Section 2, the algorithm with the color

attenuation prior [39] outperforms the previous haze removal

algorithms in terms of both the dehazing effect and efficiency.

Therefore, CAP is employed as another carrier of PLiSIR.

Differernt from the DCP based algorithms, a scene depth

is firstly computed in CAP based on a learned linear model.

Once the scene depth map is calculated, the transmission

map can be obtained according to Eq. 1 and the atmospheric

light is also estimated from it.

In the experiments, PLiSIR-CAP not only estimates the

atmospheric light better, but also helps during the process



(a) CAP [39] with r=8,16,32,64; eps=0.0001

(b) Our proposed PLiSIR-CAP with r=8,16,32,64;eps=0.0001

(c) CAP [39] with r=8,16,32,64; eps=0.0001

(d) Our proposed PLiSIR-CAP with r=8,16,32,64;eps=0.0001

Figure 8. Results of various parameters. r=64 gives best performance.

of parameter adjustment for the guided filter applied on

the depth map, similar to PLiSIR-DCP. As shown in Fig,

8, with identical parameters, PLiSIR-CAP generates more

natural dehazed images while the original CAP generates

images with halos and blocking artifacts, especially at the

edge regions such as the edges of telegraph pole. As we

can observe, the more the parameters are unsuitable, the

bigger difference is between PLiSIR-CAP and CAP results.

Also, PLiSIR-CAP still outperforms CAP when compar-

ing employing suitable parameters. Therefore, similar to

PLiSIR-DCP, we can conclude that PLiSIR also helps CAP

to depress the halos and blocking artifacts, which reduces

the cost of parameter adjustment, and PLiSIR-CAP gives

better performance compared to CAP.

4.3. Comparisons to Nighttime Dehazing Algorithm

In this subsection, we compare PLiSIR-DCP with the

state-of-the-art nighttime haze removal algorithm [14] to

illustrate that our PLiSIR-DCP not only gives excellent per-

formance for daytime haze removal, but also suitable for

nighttime haze removal.

Fig. 9 shows that [14] has its own merits and drawbacks.

When dealing with distant area, [14] gives clearer result than

PLiSIR-DCP. For example, in the left image of Fig. 9(b),

[14] generates clear bridge while PLiSIR-DCP generates

bridge surrounded by some haze. Still, our bridge is recov-

ered compared to the hazy image and its railing can also been

perceived if observe carefully. Meanwhile, some flat regions

recovered by [14], like the sky, shows obvious noise and

artifacts, which severely degrades the visual quality of the

dehazed image. [14] also fails to recover the original shape

of point light sources. Compared to [14], PLiSIR-DCP’s

recovered images in Fig. 9 restores the point light sources

much better. For example, PLiSIR-DCP’s street lamps re-

gion look more natural. Also, the noise and artifacts in some

flat regions generated by [14] do not appear at the co-located

regions of PLiSIR-DCP’s results. Moreover, PLiSIR-DCP

generated daytime dehazed images are much more natural

compared to [14] generated results.



(a) Hazy image

(b) Li et al. [14]

(c) PLiSIR-DCP

Figure 9. Comparisons between the proposed PLiSIR-DCP and the nighttime dehazing method of Li et al. [14].

5. Conclusion

This paper has focused on resolving an important prob-

lem, which most existing dehazing methods face, caused

by point light source interferences. A point light source in-

terference removal method (PLiSIR) is proposed to reduce

the point light source interferences when estimating the at-

mospheric light. As demonstrated, PLiSIR can be applied

to different dehazing algorithms such as DCP and CAP. In

the experiments, PLiSIR shows excellent performance when

assists DCP and CAP to estimate the atmospheric light and

thus generate superior dehazing results compared to origi-

nal DCP and CAP generated results. Also, PLiSIR helps

the guided filter employed in DCP and CAP to simplify the

parameter adjustment process. At last, the modified DCP ap-

proach (PLiSIR-DCP) is compared with the state-of-the-art

nighttime dehazing algorithm to reveal its ability to perform

both daytime and nighttime haze removal.
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