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Abstract

Skeleton is a winter sport where performance is greatly

affected by the velocity an athlete can achieve during their

start up to the point where they load themselves onto their

sled. As such, it is of interest to athletes and coaching staff

to be able to monitor the performance of their athletes and

how they respond to different training schedules and tech-

niques. This paper proposes a non-invasive vision based

method for measuring the velocity of a skeleton athlete and

their sled during the push start. Mean differences in esti-

mated velocity between ground truth data and our proposed

system were -0.005 (± 0.186) m.s−1 for the athlete mass

centre and -0.017 (± 0.133) m.s−1 for the sled. The results

compare favourably to techniques previously presented in

the biomechanics and sport science literature.

1. Introduction

This paper proposes an approach to measure the veloc-

ity of skeleton athletes and their sled as they sprint along

a push-track training facility. The velocity of the sled has

been shown to be a key determinant of overall skeleton per-

formance [4] and so a thorough understanding of sled and

athlete speed during the push start is valuable to the ath-

letes and coaching staff for the purposes of performance

enhancement.

During running, various parts of the athlete’s body move

at different rates, however, the overall velocity of the athlete

is described by the motion of their centre of mass. This can

be accurately estimated using standard optical motion cap-

ture systems, by placing many reflective markers on the ath-

lete and sled. These markers are time consuming to place

however, and can interfere with the athlete’s natural per-

formance. Markers on the sled are less intrusive, but are

not permitted to be used in the competition environment

and thus a system that can non-invasively measure both the

athlete and sled velocity would provide impact to skeleton

coaching.

Non-invasive field based measures of athlete velocities

include the use of floor mounted laser grids such as the

OptoJumpTMsystem (Microgate, Bolzano, Italy). Such sys-

tems can provide estimates of the average velocity of the

athlete’s mass centre across each step [9] but would fail in

a skeleton environment due the false detections caused by

the sled. Laser distance measurement can also provide non-

invasive estimates of athlete’s mass centre velocity[1] how-

ever such methods provide noisy data which requires ex-

tensive signal processing. Furthermore, such an approach

would also fail in the skeleton environment as the laser

would be occluded as the athlete travels over the brow of

the track during a push start. Alternately, a vision based ap-

proach may provide a non-invasive approach to capturing

important skeleton performance characteristics.

The detection of humans has advanced rapidly with the

progress of convolutional neural network (CNN) systems.

These have been used for basic bounding-box level de-

tections [15], detecting a sparse set of joints on a per-

son (e.g. shoulders, elbows, wrists, hips, knees, ankles,

etc) [2, 6], for predicting the pose of a 3D model from

single views [13, 18] or for providing per-pixel segmen-

tation results of the whole body [21] and individual body
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Figure 1. Camera system. Athletes push the sled along the track

between a corridor of cameras. Cameras a look across the track,

perpendicular to sled motion, while cameras b look along the track,

as parallel to sled motion as possible without obstructing training

activities.

parts [7, 16]. The aim of this paper is to determine if any of

these technologies can enable useful markerless measure-

ment of skeleton athletes and their sled.

First, the camera system used for the experiments will

be described in Section 2. Section 3 will propose a method

for measuring the speed of the athlete, then section 4 will

propose a method for tracking the sled. The performance of

these two systems will then be evaluated in Section 5 with

final thoughts provided in the conclusion.

2. Camera system

The hardware used for this paper consisted of a 9 camera

setup with cameras along both sides of a push-track train-

ing facility. Such facilities allow for off season training of

skeleton and bob-sleigh and consist of a concrete declined

hill with straight metal rails on which a wheeled practice

sled can be used. The cameras used were JAI machine vi-

sion cameras set to record HD images (1920×1080) at 200

Hz, with a 200 Hz trigger signal used to ensure frame syn-

chronisation. The cameras were arranged along the track as

shown in Figure 1, and cover an approximately 8 metre span

at the start of the track where it is sloped but has constant

gradient of 2%.

The camera system was calibrated using standard tech-

niques. A circle-grid calibration board is presented to each

camera in turn for intrinsic calibration [22], and then moved

through the scene, ensuring it is seen by multiple cameras

at any one time. Camera extrinsic parameters are calculated

from these shared observations and then optimised using

Bundle Adjustment [19] to reach a globally optimal calibra-

tion. Marks on the ground are used to align the calibration

such that z = 0 is the floor plane, with +z up. The y-axis of

the system is aligned to be parallel with the sled track, such

that +y is down the hill parallel to the sled rails. Fixing the

alignment of the calibration in this way means that the sled

orientation is both known and easy to work with.

In parallel with the machine vision camera system,

ground truth data were captured using a 15 camera marker-

based motion capture system (Oqus, Qualysis AB, Gothen-

burg, Sweden). 12 international skeleton athletes performed

up to 4 maximal pushes on a dry land skeleton training

track. A full body marker set comprising of 44 individual

markers and four clusters were attached to each participant

to create a full body six degrees of freedom (6DoF) model

(bilateral feet, shanks and thighs, pelvis and thorax,upper

and lower arms, and hands). Four additional markers were

placed on the sled to track position and orientation. Fol-

lowing labelling and gap filling of trajectories (Qualysis

Track Manager v2019.3, Qualysis, Gothenburg, Sweden)

data were exported to Visual 3D (v6, C-Motion Inc, Ger-

mantown, USA) where raw trajectories were low-pass fil-

tered (Butterworth 4th order, cut-off 12 Hz) and a 6DoF

inverse kinematics (IK) constrained model was computed.

Athlete mass centres were computed using the model de-

scribed by de Leva [5]. Additionally, the sled was mod-

elled as a rigid object with uniformly distributed mass. Fil-

tered marker data and mass centre locations were used to

compute mass centre derivatives using a finite central differ-

ences method and touch-down (TD) and toe-off (TO) events

were computed based on foot marker kinematics [8]. Com-

puting TD and TO events permitted the calculation of the

average velocity of the sled and athlete mass centre across

each step.

3. Estimating athlete velocity

To measure the velocity of the athlete as they proceed

along the track, this paper proposes an algorithm based on

multiple processing stages.

1. Label athlete body parts in each camera view using a

CNN based segmentation algorithm.

2. Get bounding boxes of head and torso regions in each

view.

3. Use back-projection to fuse the head and torso obser-

vations.

4. Optimise a 3D bounding box to fit the head and torso

observations.

5. Track the bounding box over time using a Kalman fil-

ter.

A number of different approaches could be taken for de-

tecting the athlete in the images. One of the most widely

seen approaches to human detection and pose estimation

uses CNNs to detect a sparse collection of points corre-

sponding to the approximate image location of body joints



(e.g. shoulders, elbows, wrists, hips, knees, ankles). Ini-

tial testing with OpenPose [2] suggested that the highly oc-

cluded, bent over position of the athlete caused quite noisy

and unreliable detections.

Systems which estimate a full 3D model from uncali-

brated single views such as [13] could provide an alterna-

tive, but it is unclear exactly how to fuse the results of in-

dividual cameras as the athlete traverses the scene. Ideally

each individual camera view would produce the same result,

however in practice the 2D ambiguity is not fully resolved

by these systems and the models will be different. There is

also a question over accuracy when these systems typically

forgo a calibrated camera in favour of a generic projection

matrix during training, and additionally, questions of how

scale can be fully resolved.

The velocity of the athlete is taken to be the rate of

change of their centre of mass displacement. Previous

works have shown that centre of mass can be estimated us-

ing volumetric reconstructions such as a voxel hull [12].

These can generally be constructed from segmentation

masks of the athlete from multiple views, but require that

the cameras are arranged to maximise the performance of

space carving - ensuring that individual limbs can be sep-

arated from each other and the rest of the body, and that

no negative space is filled in. The pose of the skeleton ath-

lete while running with their sled makes it very difficult to

accommodate this need, especially if cameras are required

to also span a significant length of track and the recording

system is to remain economical.

Rather than attempt to recover a high fidelity volumetric

reconstruction of the athlete in the scene, this work demon-

strates that the motion of the athlete’s mass centre along the

track can be recovered by tracking a 3D bounding box that

is optimised to best fit the observations from each individual

view.

For the first stage, human segmentation is performed us-

ing the approach of [16]. This provides a segmentation that

labels pixels of the image as belonging to various parts of

the body - lower and upper leg, torso, lower and upper arm,

and head. Despite the pose of the athlete, and their wear-

ing of a helmet, the algorithm produced useable segmenta-

tions. Some common failures were observed, such as partial

or fragmented segmentations, particularly of the head, and

some mislabelling of body parts; the most common miss-

labelling being to label the arm that pushes the sled as a

leg.

Although it can be guaranteed that only one athlete will

be performing during any one video, it cannot be guaran-

teed that there will not be other people in the background

of images or that the athlete’s body parts will be segmented

into single perfect blobs. As such, a robust method of fus-

ing the segmentations between views is needed to get a 3D

estimate of the athlete’s body parts.

Figure 2. Example occupancy grid overlaid on the push-track (ac-

tual grid is higher resolution).

To this end, a variant of occupancy maps (also termed

synergy maps [14]) is proposed. The camera system is cal-

ibrated and the extents of the observed region of the push-

track are known, as well as the plane of the ground - which

is assumed to be the z = 0 plane. An occupancy map is

typically created by dividing the region of the ground plane

up into a grid of cells as seen in Figure 2, and projecting

each cell into the images. Usually, the occupancy of a cell

is computed as the sum of images for which the projection

is inside the segmentation, although variants exist which al-

low for the occupancy to be based on multiple scene planes

above the ground [20]. Due to occlusions, miss-labelling,

broken up segmentation regions and indeterminate height

of the athlete above the ground, this work changes the com-

putation of occupancy slightly.

First, connected components is used to place a bounding

box around each body part segmentation region. Specifi-

cally, only the head and torso regions are currently used to

minimise the impact of moving legs and arms on estimates

of the centre of mass. An occupancy map for each body part

is computed by projecting each cell of the occupancy map

into each camera view to provide a resulting point pi in the

image. If pi lies between the horizontal extents of one or

more bounding boxes in the view, the occupancy of the cell

is incremented by 1. An example can be seen in Figure 3.

As there will only ever be one athlete on the push-track at

one time, localising the head or torso body parts can be done

by searching for the peak value in the occupancy map. Once

the peak has been found, a tracking bounding box can be

initialised at the location corresponding to that occupancy

cell. If the location of the body part is known from previous

frames then the occupancy map can serve for verifying that

the part is still present.

3.1. Modelling and tracking parts using bounding
boxes

Body parts are tracked by modelling them as 3D axis

aligned bounding boxes and fitting these bounding boxes to

the segmentation. On first detection, the occupancy map

provides an approximate x, y location for the body part, but

does not provide a vertical z coordinate. The z component



Figure 3. The top two images show the occupancy for the head

(left) and torso (right). Beneath this are the segmentation images

that generated the occupancy. Each segmentation image is over-

laid with a 2D bounding box around the torso and head segments

against which grid cells are tested, and a low-resolution visualisa-

tion of the grid.

can be determined as part of the process for optimising the

position of the bounding box.

The 3D part box is described by its centre (x, y, z) and

its size (w, l, h). If the part box is known from previous

frames, then that previous box is used to initialise the search

for the new state in the current frame. If it is not known, then

x and y position are initialised to the peak of the occupancy

map. Width w and length l can be set to reasonable guesses

and held fixed, which for the head are both 300 mm and

for the torso are both 400 mm. z can be initialised to 800

mm, and the height of the box initialised to a large size of

700 mm and solved for as part of the search for the optimal

bounding box position.

Tracking the part from frame to frame consists of opti-

mising the parameters of the 3D part box so that it best fits

the segmentations in the image.

First, the initial 3D part box B3 is projected into each

camera view. This means that the 8 corners of B3 are pro-

jected into image i, and then the smallest 2D bounding box

B2i that can enclose the 8 resulting projections is deter-

mined.

For each image there are a set of 2D bounding boxes

resulting from connected components of the segmentation

map. These segment boxes are checked for intersection with

B2i. The subset that are shown to intersect with B2i are

merged together into a bounding box S2i. This process is

designed to handle problems induced by low quality seg-

mentations where a part might be detected as disconnected

partial segmentations.

The 3D part box B3 is optimised to minimise the error

in Equation 1:

e =
∑

i

10·O(B2i, S2i) +O(S2i, B2i) +C(B2i, S2i) (1)

In Equation 1 the function O(a, b) computes a bounding

box overlap error and C(a, b) computes an error based on

the distance between bounding box centres:

O(a, b) = 1.0− (A(I(a, b))/A(b)) (2)

C(a, b) = 1.0− e

(

−(c(a)−c(b))2

1000000

)

(3)

where A(x) computes the area of the shape x, and I(a, b)
computes the intersection of a and b, while c(x) computes

the centre of the shape x. The functions O(a, b) and C(a, b)
are written so that good results return errors near 0, hence

the 1.0− x form of each equation. For C(a, b), the x of the

1.0 − x form is a Gaussian shaped function, and the large

constant in the denominator is chosen to provide a broad

basin to the error term, selected based on the size of objects

in the image and the image resolution. The constant of 10.0
on the first term of Equation 1 was used because it was con-

sidered to be especially important that B2i not be smaller

than S2i.

Examples of the resulting bounding boxes can be seen

in Figure 4. The optimisation to minimise the error can be

carried out using any suitable algoirthm - this paper uses

the SBPLX algorithm from the open source C++ NLOpt

library [11]. Once the bounding box has been optimised,

the final parameters are used to update a Kalman filter to

help keep the track smooth.

4. Estimating sled velocity

To detect the sled, DeepLabCut (Version 2.1.6) [17] was

used to train a CNN to detect the four corners of the sled

across all camera views. DeepLabCut is a toolbox to facili-

tate transfer learning, taking a pre-trained feature detector

and specialising it for a different, but related, task. Ap-

proximately 400 images of the sled were labelled, with 95%

being used for training. A ResNet-50 encoder and Deeper-

Cut [10] decoder architecture were combined and trained

for 200,000 iterations. Test error was: 4.16 pixels, train er-

ror: 2.13 pixels, and a confidence-cutoff of 0.4 was imple-

mented to condition the (x, y) image coordinates for further

analysis. Figure 5 shows several examples of the detected

sled corners.

Once detected, corners are back-projected from each im-

age down to the z = 100 plane, which is approximately the

height of the sled on the track. This would ideally leave four



Figure 4. Final 3D bounding boxes resulting from fitting to seg-

mentation information.

Figure 5. Examples of sled corner detections. Circles are coloured

based on the corner label, with confidence indicated by the bright-

ness of the circle interior. Many of the detections are of the quality

of the top right and middle left examples, but a number of different

failure cases have been observed as evidenced here.

tight clusters of points, one for each corner, though in prac-

tice there can be some outliers. Another problem can be that

the CNN can confuse which corner is which when labelling.

However, knowing the layout of the track and the shape of

the sled means that labelling can be ignored. An example

of the back-projected points can be seen in Figure 6.
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Figure 6. The top figure shows the detected sled corners back-

projected to the z = 100 plane. The four clusters for the cor-

rect point corners can be seen, as well as a fifth cluster for some

erroneous points. The orange highlighted (orange) point near (-

50,500) can be assumed to be either a back-left corner, or a front

left corner of the sled. If back left, then the hypothesised sled

corners must be located where the black, down-poiting triangle

markers are shown. If back right, then the red, up-pointing trian-

gle markers show where the hypothesised sled corners would be.

As the up-pointing triangle markers are more consistent with the

clusters of back-projected corner detections, it can be inferred that

the highlighted point must be a front-left corner of he sled.

Each back-projected corner point is taken in turn and as-

sumed to be either a front corner or a back corner. Left

vs. right can be inferred from the x coordinate of the point

and the known geometry of the track. Next, a check is con-

ducted to determine how many of the other corner points

would be consistent with this assumption. The configura-

tion that produces the most consistent result is used to ini-

tialise the position of the sled and label the corner points.

The consistency check is as simple as counting how many

points are within 100 mm of each hypothesised corner. An

example of this can be seen in Figure 6.

Once the hypothesis most consistent with the point data

is chosen, points that are consistent with the hypothesis are



Figure 7. Mean markerless sled velocity (± SD) (blue line) and

mean marker-based (ground truth) sled velocity (± SD) (red line).

associated to their nearest sled corner. The (x, y, z) position

of the centre of the sled is then optimised by minimising an

objective function that sums the distance of each detected

corner from the projection of the associated sled corner in

image space. As with the athlete body part box fitting, this

minimisation is carried out using the NLOpt SBPLX algo-

rithm [11].

5. Evaluation

Accuracy of the proposed system was assessed against

marker-based motion capture which provided ground truth

data as described in section 2. In total, 33 push trials from

12 athletes were used for system evaluation. This data

was independent of that used for training/testing but was

collected in the same environment (skeleton training push

track). In order to evaluate system performance, results

were compared using linear regression and Bland-Altman

analysis.

Figure 7 demonstrates the mean (± SD) markerless and

mean ground truth sled velocity as a function of time for

all push trials. Mean differences between systems across

the step were -0.005 (± 0.186) m.s−1 for the athlete mass

centre and -0.017 (± 0.133) m.s−1 for the sled (Table 1).

Bland-Altman analysis of the athlete mass centre veloc-

ity and sled velocity are given in Figure 8 and Figure 9 re-

spectively. Very good agreement is reported between both

systems (proposed vs. ground truth) with a very low bias

for both the athlete and sled step velocities. Furthermore the

standard deviations fall well within the limits of agreement,

further supporting the validity of the proposed method.

When compared to a commonly used field based ap-

proach to measuring athlete running velocities - laser dis-

tance measurement, which exhibits mean errors of up to

0.41 (± 0.18) m.s−1 [1], the proposed method provides

substantial improvements. Previously, combined sled and

athlete velocities have been measured using photocells

placed at five metre intervals along the push track or using

a magnetic encoder placed on the sled’s wheel [3]. How-

ever, discrete photocells provide only discrete data across

Figure 8. Bland-Altman and linear regression plots comparing step

averaged athlete CoM velocity between systems. Confidence in-

tervals are given around the mean difference and 95% limits of

agreement.

Figure 9. Bland-Altman and linear regression plots comparing step

averaged sled velocity between systems. Confidence intervals are

given around the mean difference and 95% limits of agreement.

each five metre section of the track and inconsistencies in

timings can be caused when different body parts trigger the

photocell. The sled’s magnetic encoder can provide data

points at a higher resolution, but this is still limited to one

sample every rotation of the wheel or 0.1984 m (the sled

wheel’s circumference). Additionally, the wheel is suscep-

tible to slipping which creates spurious readings. The pro-

posed method in this paper provides higher resolution infor-

mation than the current approaches being utilised. Further-

more, it can also determine the velocities of the athlete and

sled separately without the need for two measurement sys-

tems and as such provides further novel insights into push

start performance.

6. Conclusion

A vision based approach to non-invasively collect ve-

locity data was proposed and validated for skeleton push

start performance. The proposed method was applied in a

challenging real world environment and application (skele-

ton push starts) and was able to capture representative ve-

locity data of the athlete mass centre and sled. Such an

approach provides a viable and accurate alternative to a)

marker-based motion capture which is invasive due to the

need for athlete’s to wear markers and b) non-invasive field



Variable Mean Difference (Bias) ± SD Bias ± 1.96 SD R2

Athlete CoM Velocity (m.s−1) -0.005 0.186 0.244 0.65

Sled Velocity (m.s−1) -0.017 0.133 0.361 0.85
Table 1. Comparison of computed step velocities.

based measures that would ultimately be difficult to deploy

into such a challenging environment. Furthermore the pro-

posed method could be utilised by coaches and sports sci-

ence support staff to monitor technique where traditional

motion capture techniques may not.
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