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Figure 1. Our stick acquisition pipeline: a) Input images for each frame; b) Point cloud reconstruction; c) Template geometry (blue); d)

Reconstructed stick bend (green); e,f) Deformed hockey stick (red).

Abstract

In Ice-Hockey, a player shot significantly deforms the

hockey-stick. Since this deformation plays a dynamic role

in determining the flight of the puck, it is used in the study

of hockey stick shapes, material properties, match to player

style, etc. Reconstructing the deformable 3D shape of the

stick during the course of a player shot has important ap-

plications. In this work we present a new, low cost, portable

system to acquire videos of a player shot and to automati-

cally reconstruct the deformation in 3D shape of the stick.

The point clouds obtained are low resolution and noisy, as it

is difficult to separate players hand geometry from the stick.

We use the medial axis to constrain the point cloud to stick

only geometry, and then use physics-based co-rotational

FEM to determine the stick bend. We have tested the system

with different sticks, players and shot styles, and our system

yields accurate reconstructions. The results are discussed

both qualitatively and where possible, quantitatively.

1. Introduction

Ice-Hockey is characterized by high intensity intermit-

tent skating, rapid changes in velocity and duration, and fre-

quent body contact [27]. It has become increasingly sophis-

ticated in terms of technological innovations, equipment

design and improvements in training, coaching and game

strategies [31, 15]. It is an equipment heavy game and one

of the most distinctive pieces of equipment in the game of

Ice-Hockey is the stick [17]. The global Ice-Hockey stick

market was valued at 240 million USD in 2018 and will

reach 320 million USD by the end of 2025, growing at a

CAGR of 3.6% during 2019-2025 [2].

Hockey sticks and their shape deformations have been

studied since early seventies for their dynamic role in the

game of Ice-Hockey. The combination of curved blades

and stick bending phenomenon enables projection of the

puck with both high speed and accuracy [28]. A stick’s

utility as well as affordability are highly dependent on its

material properties [12]. Rules of the game stipulate on

the dimension of the shaft and blade; however, there is

no restriction on the material composition of sticks [18].

As such, stick manufacturers have focused on making use

of composite materials which allows them to modify the

sticks’ mechanical characteristics. This in turn helps tailor

the sticks to meet the individual player specifications. In

fact, research suggests that one of the primary reasons for

elite players generating much faster shots is their ability to

flex their hockey stick [38]. A lot of work is carried out

on the investigation of sticks’ performance characteristics

from the Biomechanical perspective [24, 25, 21], and from

the materials perspective [30, 41, 40, 4, 19, 20]. 3D re-

construction of the stick shape and its bend is at the core of

a lot of research topics involving study of material proper-

ties of a hockey stick. In this work, we propose a complete

framework, comprising of completely portable high-speed

stereo video cameras, for acquisition and 3D reconstruction

of a stick along with its deformation during various hockey

shots. We have specifically focused on two widely used

shots, namely, slap shot and wrist shot.

Capturing the shape of the blade during a shot is chal-

lenging because the hockey stick is a very thin object and

when the acquisition cameras are positioned one side, only

part of it is visible at a time. Additionally, the capture vol-

ume needs to be fairly large with the cameras positioned

safely away from the player and there are occlusions. The
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motion is very fast therefore the setup required must cap-

ture at least 250 frames per second (fps). This implies that

the images will be noisy or dark, and to achieve this frame

rate with relatively inexpensive cameras requires a trade-off

between spatial and temporal resolution, which in turn sig-

nificantly impacts reconstruction accuracy. In our setup in

order to accomplish 250 fps, we chose a spatial resolution

of 672× 608.

Compared to work reported in the literature, the primary

new contributions of this work are as follows:

1. A new, low cost, portable system covering the entire

pipeline from player-shot video capture to 3D recon-

struction of the deformable hockey stick,

2. Frame by frame construction of the changing 3D shape

of the hockey stick during the course of a player shot

3. An innovative method using the medial axis to elimi-

nate extraneous points from noisy point data and accu-

rately recover the 3D point cloud of the hockey stick.

The rest of this article is organized as follows; Section 2

discusses related work. Section 3 provides an overview of

the proposed system. The acquisition pipeline and the stick

shape deformation process have been detailed in Section 4.

Results are presented with relevant discussion in Section 5

and finally, Section 6 concludes the paper with limitations

of the proposed work along with some planned future work.

2. Related Work

Various research studies on the game of Ice-Hockey are

available in the literature looking at different aspects of the

game. A recent study in pose estimation and action recogni-

tion in the game of Ice-Hockey is presented by [10]. For the

purposes of stick performance analysis, however, 3D recon-

struction/representation of the hockey stick is imperative,

and not much work has been reported on this problem.

Optical motion capture studies from the perspective of

3D representation are available in the literature for ana-

lyzing various shots employed in the game of Ice-Hockey.

Some of these studies have been carried out in a simu-

lated environment i.e., by making use of the synthetic ice

[14, 26, 13, 20]. A recent study has also been carried out on

real ice with professional hockey players [36] to study the

3D kinematics of various shots played in Ice-Hockey. A few

of the major drawbacks in using these high-end, high accu-

racy motion capture equipment are (i) the intrusive nature of

the markers, (ii) high cost of equipment and its set-up, and

more importantly (iii) non-portable setup. 3D reconstruc-

tion from images and video has been at the core of many of

the research problems for several decades. A lot of literature

is available in both computer vision and computer graphics

domains for 3D reconstruction, and similar representations

often appear in both the domains. This is owing to the fact

that vision researchers are solving the shape recovery of real

objects problem, whereas graphics researchers are simulat-

ing the deformations of virtual ones [34]. The approaches

can be broadly classified into structure from motion (SFM)

and template based reconstruction or shape from template

(SFT) [43].

In SFM approaches, a set of points are tracked on a

set of images, which then are used to reconstruct the ob-

jects. A study on recovering the shape and motion of a

single rigid object is presented by [37]. An assumption

of object shape being a linear combination of some basis

shapes has been made to recover shapes of deformable ob-

jects in [9, 8]. Stick movement in Ice-Hockey is very fast

and such rapid motion leads to large frame-to-frame dif-

ferences, which makes tracking challenging, especially for

highly deformable objects [22]

In SFT or template-based reconstruction approaches, a

shape template of the non-rigid object is available a pri-

ori. This template is then deformed using motion priors

or physics-based principles to match the current observa-

tion. This has been demonstrated to estimate the shapes of

human faces by [7]. SFT approaches can be further sub-

classified based on input data, namely monocular, RGB-D

and stereo image sequences.

Monocular Data: Wangg et al [39] have proposed

a method for reconstructing 3D face expressions from

monocular video sequences using a 3D face template mesh.

Parashar et al [29] have proposed volumetric SFT to recon-

struct an object’s surface and interior deformation using a

single image and a 3D object template. Perriollat et al [32]

have proposed reconstruction of sheet-like inextensible sur-

faces using a single image taken from a camera with known

intrinsic parameters and a template. Alldieck et al [3] have

proposed a method to create personalized realistic 3D hu-

man models from a monocular video sequence and a para-

metric SMPL body model. Zuffi et al [45] have proposed

a method to obtain 3D textured animal model, given a set

of images of the animal annotated with landmarks and sil-

houettes. Deep learning has also been employed in sev-

eral research works for 3D object reconstruction based on

a single image. A detailed review on state-of-the-art deep

learning methods for image-based 3D object reconstruction

is also available in the literature [16]. The difficulty in us-

ing this monocular approach for our problem is that during

a shot, the orientation of the hockey stick keeps changing

very rapidly and a single view is unable to provide all the

information needed for deformation modeling.

RGB-D Data: Microsoft introduced Kinect in 2010 and

ever since affordable RGB-D devices like Intel RealSense,

Primesense Carmine, Google Tango, Occipital have made

RGB-D database creation very easy. Many foundational

research problems have been revisited and rethought to
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Figure 2. Vertex pruning process. top-left) Input image; top-right)

Masking out static pixels; mid-left) Initial point cloud; mid-right)

Pruned point cloud based on the pixel mask; bottom-left) Initial

point cloud with the aligned template; bottom-right) Pruned point

cloud based on the proximity to the aligned template.

make best use of the new capabilities of RGB-D cameras,

and a detailed survey is available in [44]. Li et al [23]

have proposed a method to reconstruct the 3D human body

model from a single RGB-D image and a parametric body

model. Tao Yu et al [42] have proposed a new real-time sys-

tem that combines volumetric dynamic reconstruction with

data driven template fitting to simultaneously reconstruct

detailed geometry, non-rigid motion and the inner human

body shape from a single depth camera. Raoul de Charette

et. al. [11] have proposed a method to reconstruct arbitrary

3D revolving objects (in context of live pottery making) that

handles deformation as well as occlusion using one or more

depth sensors. The primary problem with these acquisi-

tion systems is that the speed of capture is very low and

a fast-moving hockey stick is difficult to capture using cur-

rent state-of-the-art RGB-D sensors. Therefore, we opted

for a stereo setup consisting of two high-speed global shut-

ter cameras with hardware temporal synchronization.

3. System Overview

We designed and built a complete system (software

pipeline and hardware setup) that can acquire the geometry

of a hockey stick during the execution of a shot, including

the stick bending. We employ a stereo setup consisting of

two spatially and temporally synchronized cameras that ac-

quires 275 fps. Each pair of images (Fig. 1 a)) is processed

through our software pipeline obtaining one triangular mesh

for each frame (Fig. 1 f). As we are using an initial 3D tem-

plate of the hockey stick, all triangular meshes are compat-

ible (i.e. they have the same set of vertices and the same set

of triangles). This is important for the subsequent analysis

of the shot and stick deformation.

Using stereo reconstruction, we first obtain a point cloud

per frame. However, this point cloud contains the stick and

all the surrounding environment: the player, the rink, etc.

depending on the setup. Using the temporal information

from the next frame, we prune the points that are static from

frame to frame.(Fig. 2 right-middle).

The next step is to rigidly fit the template to the point

cloud. As the stick undergoes a lot of deformation we can-

not use the geometry of the straight stick as a template in all

frames, therefore we use the reconstruction of the previous

frame as the template for the current frame and we use the

Iterative Closest Point (ICP) [5] algorithm to rigidly align

the template. After this rigid alignment, we perform a sec-

ondary pruning of the point cloud using the distance to the

aligned stick template as a criterion (Fig. 2 right-bottom).

This is necessary because the pruning based solely on mo-

tion may still contain points belonging to some parts of the

player body that are in motion (Fig. 2 right-middle).

We further need to deform the template stick to match the

reconstructed point cloud. This deformation operation has

two ingredients: a deformation model that can be applied to

the stick geometry and a constraint mechanism that ensures

the deformed template matches the point cloud.

For the physics-based deformation model, we use the

co-rotational Finite Element Model (FEM) method simi-

lar to [6]. While there is a rich set of deformation mod-

els, a FEM model was the most appropriate because we

are aiming for a physically correct deformation. The co-

rotational FEM model is accurate, efficient and numerically

stable, particularly suited for deformation that is primarily

rotational as it is in the case of the hockey stick.

The second part is to apply constraints to the hockey

stick in order to deform it to fit the point cloud. However,

the point cloud is very noisy due to (i) relative low reso-

lution of the cameras, (ii) large distance from the subject

and (iii) thin geometry of the hockey stick. Furthermore,

the stick is partially occluded by the hands or gloves of the

player. Therefore, using the point cloud directly results in

artifacts as illustrated in Fig. 3. To stabilize the geometry

we robustly fit a quadratic curve to the medial axis of the
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Figure 3. Comparison between fitting the point cloud directly or

using the medial axis on a given frame. a-d) Result fitting the point

cloud directly. e-h) Result using the medial axis. The results when

using the point cloud directly exhibit clear undesirable artifacts

while the result using the medial axis conforms well to the real

stick shape.

geometry of the hockey stick and we use this curve to apply

constraints to the hockey stick as illustrated in Fig. 4. The

next section provides more details of our acquisition system

and deformation process.

4. Acquisition Pipeline

4.1. Hardware Setup

Since additional goals of our system are portability and

low cost, we selected 2 Grasshopper3 USB3 color cam-

eras from Flir. They are vision cameras with global-shutter

and temporal synchronization support. We built our own

custom-made temporal synchronization box.

As the hockey shots involve high-speed motion, we

needed as high as possible temporal acquisition. We could

successfully acquire at 275 fps, but at the expense of reduc-

ing the resolution to 672×608 pixels. The nonstandard res-

olution was obtained by selecting the maximum resolution

that allows for 275 fps. Experimentally, for a high-speed

hockey shot, a temporal resolution of 250 was considered

sufficient. However, we chose to select 275 fps as a target

because a high performance athlete might shoot at slightly

higher speeds than our subjects.

4.2. Point Cloud Reconstruction and Initial Pruning

We use a commercial multi-view reconstruction pack-

age: Metashape by Agisoft [1], to calibrate the setup and

to get the starting point cloud per frame. As every point

comes from a two image-paired pixels, we compute optical

flow in the scene and we prune the points that project onto

static pixels (Fig. 2).

This motion-based pruning still leaves some points lo-

cated on the player body and so, down the pipeline a sec-

ond pruning step is necessary. However, this initial pruning

is critical, particularly in the first frame where the location

of the stick in the scene is not known a priori and has to

be searched. Fortunately, this pruning facilitates an effi-

cient automatic method of positioning the stick in the scene.

Furthermore, this pruning also makes the subsequent steps

more efficient and with lower memory footprint as a large

amount of unnecessary points is removed.

4.3. Template Deformation

To obtain the final 3D reconstructed result in every

frame, we use as a template the deformed stick from the

previous frame. We first align it rigidly using ICP and we

perform a secondary pruning based on the distance to the

template model. The resulting point cloud is very noisy and

still contains some points where the hands or the glove of

the player touch the stick. These are impossible to remove

unless we rely on the color information, which would limit

greatly the generality of the system.

To explain our deformation model we need to understand

the structure of a hockey stick. A hockey stick has two main

parts: the blade (the lower part used to shoot the puck) and

the shaft (the longer part held by the player). Our system

focuses on deforming the shaft where most of the stick de-

formation happens. We make the observation that the bend

in the stick is relatively low dimensional and can be well

approximated by a quadratic curve. Therefore, we compute

the medial axis of the point cloud as shown in Fig. 4 and we

robustly fit a 3D quadratic curve to the shaft.

However, this medial axis contains some outliers, and

the rest of the points either belong to the medial axis of the

blade or to the medial axis of the shaft. It is important to fit

the quadratic curve only to the shaft, otherwise a quadratic

curve is not enough to approximate the deformation of the

entire stick. To accomplish this we use a RANSAC strategy:

we randomly select 6 medial axis points, we compute a best

fit quadratic curve. We repeat this 30, 000 times and we

select the curve with the largest number of inliers. Fig. 4

shows the medial axis and the quadratic curve.

Next we need to use this quadratic curve to control the

deformation process. As a deformation model, we use a co-

rotational FEM model similar to [6]. In order to use this

model, we need first a tetrahedralization of the template

mesh. We use TetGen [35] to compute a tetrahedraliza-

tion without adding new vertices. Our models have between

6100 and 7100 tetrahedra. This is a good compromise be-

tween accuracy and efficiency.

As the quadratic curve approximates the medial axis of

the shaft, the constraints on the tetrahedral mesh should be

done also based on its medial axis. However, if we add

more vertices, associated tetrahedra will increase signifi-
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Figure 4. Quadratic fit and bending constraints: a) Medial axis of the stick geometry; b) Robust quadratic fit curve (green), inliers (yellow)

and outliers (red) of the RANSAC procedure; c) Inliers/outliers from a different view; d) Quadratic curve (green) and the stick template

constraints (red); e) Final result (red) overlapped with the quadratic fit

cantly the number of elements leading to numerical prob-

lems. Instead, we select the constraint points on a side of

the stick as shown in Fig. 4, noting that, on the shaft, this

line is parallel to the medial axis and, thus, it will lead to

the same deformation, albeit translated slightly. We correct

the translation by rigidly aligning the deformed model to

the point cloud one last time using the same procedure as

before. An additional challenge is that these medial axis

constraints allow for a rotational degree of freedom around

the medial axis. So, we add constraints on the blade with

lower weights to correct for that.

4.4. Stick Template

In our experiments we obtained the geometry of the

hockey stick by using a commercial 3D scanner or it was

provided as a CAD file by the stick manufacturer. In both

scenarios, we remeshed uniformly these models to around

2200 vertices to obtain our template. This approximate

mesh size was chosen experimentally to balance the qual-

ity of the mesh with efficiency of processing.

4.5. Stick Alignment in the First Frame

In every frame except the first, we use the reconstruction

from the previous frame as a starting point. However, in

the first frame we don’t have a previous reconstruction so

we determine the stick pose by aligning the template to the

stick point cloud. In order to do this initial alignment, we

employ a feature matching approach. We used fast point

feature histograms [33] (FPFH) computed on both the tem-

plate mesh and the pruned point-cloud and we compute an

alignment between the two shapes using a RANSAC strat-

egy. We use 4 features to seed the alignment and we per-

form 40, 000 iterations.

5. Results and Discussion

We have tested our pipeline with different sticks, sub-

jects and shot styles. In the results section as well as the ac-

companying video we show 4 shots with 2 different sticks,

2 different shot types and 2 different subjects.

We provide a qualitative evaluation of our method by

overlapping the resulting mesh to the reconstructed point

cloud as shown in (Figs. 5, 6). As can be seen by visual

inspection the 3D model of the shaft matches closely the

point cloud. Even subtle deformation such as the back-bend

due to the moment of inertia is captured in the slap shots

Fig. 5(right).

In the industry, the current state of the art in quantifying

the bending of the stick is attaching markers to the hockey

stick and using a state of the art motion capture (MOCAP)

system to determine various characteristics of the stick such

as maximum bending angle during a shot. Although the

MOCAP systems are very mature and accurate, they do not

capture the entire stick, only the trajectories of a few points.

Furthermore, since our cameras are color cameras and the

MOCAP system’s cameras are infrared cameras, it is very

difficult to align spatially the coordinate frame of the MO-

CAP system with very high accuracy. Lastly, it is very chal-

lenging to temporally synchronize the MOCAP system’s

data stream and our data stream. However, the maximum

bend of a stick, an important benchmark for the stick defor-

mation is independent of spatial and temporal alignment so

we decided to focus on this for our quantitative evaluation.

We follow the standard industry method used to estimate

the maximum bending angle. As shown in Fig. 7a,b) we

attached a number of markers on the shaft in a pattern that

creates three local coordinate frames (A−C). Two axes are

formed from the markers and the third one can be obtained

using a cross product operator; the frame is then normal-
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Figure 5. A few frames of a slapshot. Note the bend backward of the stick in the last frame due to the stick oscillations in the high energy

shot. The entire sequence can be seen in the accompanying video.

Figure 6. A few frames of a wrist-shot. Our system captures the correct orientation of the stick in both deform and undeformed configura-

tions. The entire sequence can be seen in the accompanying video.

ized to obtain an orthonormal matrix. We computed two

angles: angle 1 between the coordinate frames A and B and

angle 2 between coordinate frames A and C. We mimicked

the same setup on the virtual stick as shown in Fig. 7c) by

manually positioning marker points. Since the the MOCAP

markers are physically outside the stick, this is a source of

errors. Nevertheless, we averaged the two maximum angles

for 2 slapshots and 2 wrist-shots using both systems. The
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Figure 7. Comparison setup: (a), (b) hockey stick with retro-

reflective markers captured by the MOCAP system. (c) Our tem-

plate with our virtual markers (red).

Slap Shot Wrist Shot

Max Angle MOCAP 1 21.8 20.0

Max Angle Our System 1 23.65 22.05

Diff 1 1.85 2.05

Max Angle MOCAP 2 26.2 23.15

Max Angle Our System 2 28.35 26.65

Diff 2 2.15 3.5

Table 1. Quantitative comparison of the maximum bending angle

with a MOCAP system

results are presented in Table 1. The expected difference in

the maximum bending angle is about 4 degrees. It is impor-

tant to note that some of this error arises due to somewhat

imperfect alignment of real and virtual markers.

The running time is dominated by the bending step that

takes on average 87 seconds per frame. All the rest of

the steps combined take 15 seconds per frame for a total

combined time of about 100 seconds per frame. The com-

puter that we used to drive the acquisition has an Intel(R)

Core(TM) i7-6700 CPU running at 3.40GHz with 16 Gb of

RAM.

6. Conclusions, Limitations and Future Work

In this work we presented a complete hardware setup

and software pipeline for 3D acquisition of a hockey stick

during a high-speed hockey shot. The hardware setup is

portable and relatively inexpensive. Aside of a few small

initialization per-sequence parameters that can be set within

a few minutes, the processing is completely automatic. Our

method uses a template, which enables the same model to

be used in all frames. This allows for a rich analysis of the

shot such as bending angles, key-point trajectory and tensor

analysis of the tetrahedralization of the 3D mesh. We have

tested our pipeline with different sticks, subjects and shot

styles and in all cases the reconstructed results match well

the point cloud.

One of the main limitations of our work is that it does

not deform the blade of the stick (i.e., the bottom part that

touches the puck). This is because there is a lot of ambigu-

ity in the reconstructed geometry because of the proximity

of the blade, puck and floor. We will address this issue by

detecting and removing the flat floor and detecting and sep-

arating the puck in the scene.

Another limitation is an over reliance on the initial recon-

structed point cloud that is very noisy. In the future work,

we are planning to replace the stereo reconstruction with a

visual hull reconstruction using image-based stick detection

in each image.
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[14] A. GÖKTEPE, I. Ozfidan, HA. KARABÖRK, and F. Ko-
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