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Abstract

Isn’t it about time to help judges with the challenging
task of evaluating athletes’ performances in sports with ex-
treme poses? To tackle this problem and inspired by human
judges’ grading schema, we propose a virtual refereeing
network to evaluate the execution of a diving performance.
This assessment would be based on visual clues as well as
the body joints sequence of the action video. In order to
cover the unusual body contortions in such scenarios, we
present ExPose: annotated dataset of Extreme Poses. We
further introduce a simple yet effective module to assess the
difficulty of the performance based on the extracted joints
sequence. Finally, the overall score of the performance
would be reported as the multiplication of the execution
and difficulty scores. The results demonstrate our proposed
lightweight network not only achieves state-of-the-art re-
sults compared to previous studies in diving but also shows
acceptable generalization to other contortive sports.

1. Introduction

Sports is the language of joy and unity. Sporting events
are usually among the top most-watched televised broad-
casts [3]. Fairness in evaluation is of utmost importance
to both the competitors and spectators, hence the need for
a structured means to evaluate the athletes and determine
the winner. In recent years, the advent of technology has
brought more just and agile refereeing to soccer games by
the introduction of video assistant referees (VAR). How-
ever, some popular fields like diving, gymnastics, etc., are
still suffering from the inefficiency of human-based judging
systems. For example, in a typical diving contest, 7 judges
score the performance of each athlete. These judges should
be from different nationalities to that of the contestant, lim-
iting the qualified choices. Furthermore, although the in-
ternational swimming federation (FINA) has prohibited the
judges from looking at the replays to make the grading pro-
cedure faster, it takes about 40 seconds to report the score
for each performance that itself takes only about 4 seconds.
Considering all these issues, it would be a great help to in-
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Figure 1: Overall pipeline of FALCONS.

troduce an automatic grading system to score the athletes in
a faster and more accurate manner by reducing human in-
tervention. The task of evaluating how an action has been
performed and assigning a grade to the performer is known
as Action Quality Assessment (AQA).

To date, the literature of AQA has been dominated
by networks that have tried to regress the overall score
of each athlete as the only label that needs to be pre-
dicted [11, 13, 14, 17]. However, each performance should
be considered as a complex action in which not only the
quality of the execution but also the difficulty of the task
contributes to the final score. Nevertheless, the judges are
only responsible for awarding the execution score and the
difficulty score would be determined based on a predefined
official benchmark released by the corresponding federation
of that sport. For example, in a diving contest, the diffi-
culty score of each performance would be awarded based
on the type of rotation, position of diving, number of som-
mersaults, and the number of twists according to FINA diffi-



culty look-up table [4]. On the other hand, the judges award
the execution score based on the appearance-based features
of the flight (e.g. smoothness and aesthetic pleasure of the
flight, and amount of splash), and also pose-based features
(e.g. angle of entry to the water).

Existing literature regarding automatic graders take into
account either the pose-based or appearance-based features
to regress the final score of an action, hence suffering from
the limited performance [14, 17, 8, 13, 12]. In this paper, we
decompose the overall score into execution and difficulty.
For the former, inspired by what a human judge does, we
propose a virtual refereeing system that considers both the
pose-based and appearance-based features as the contribu-
tors to the execution score. As for the latter, we introduce
a difficulty extractor module that classifies the task based
on the sequence of body joint arrangements throughout the
performance. Consequently, the difficulty score would be
determined by feeding the classes (e.g. type of rotation and
etc.) into the difficulty look-up table. The overall pipeline
of our work is depicted in Fig.1.

The extraction of pose features has its own challenges.
In most of the sports video footage, not only the athlete but
also the camera is moving fast to track the athlete during
the performance, causing motion blurriness of the image
frames. Furthermore, the unusual configuration of the ath-
letes’ poses is not covered by the existing datasets [9, 1, 7].
These facts have limited the performance of the pose es-
timation networks in such cases. To address this problem
we introduce ExPose, a dataset of extreme poses which in-
cludes 4000 annotated blurry images in extreme body con-
tortion scenarios. In order to regress the scores based on
the extracted joint sequences (taken from the pose estima-
tion module trained on our dataset), we develop the well-
known Spatial Temporal Graph Convolutional Networks
(ST-GCN) [19] to also learn dependencies between uncon-
nected joints. ST-GCN extends graph convolutional net-
works to simultaneously capture spatial and temporal fea-
tures for action recognition. However, it is only able to learn
correlations between the directly connected joints. This
fact may affect the performance of the automatic grader in
which the symmetry of different parts of the body should
contribute to the execution score. To address this issue, we
introduce the idea of virtual super-joints. Each super-joint
is simply the average of its constituting joints’ location and
may have connections with other super-joints.

For spatio-temporal appearance features extraction, we
divide the whole task video into T subtasks, each consisting
of N consecutive frames. In order to learn global spatio-
temporal features, we follow [5] that applies 2D spatial con-
volution filters followed by 1D temporal ones on each sub-
task. Finally, the temporal dynamics between the subtasks
should be encoded to an execution score. However, as the
amount of splash plays a greater role than other appearance

features in the execution assessment, not all of the subtasks
should have the same contribution to the score. To this end,
we propose a bridge-connection module that fuses the fea-
ture sequence of each subtask with a contribution weight.
This module takes the average of confidence score of pose
estimation in each subtask and maps it to a weight for each.
Simply put, as the performer is under the water in splash
capturing frames, the lower the average confidence score of
the subtask, the higher its contribution to the Exe score.

Finally, the weighted sum of the score of the joint-based
and appearance-based graders generates the execution score
(see Fig.1). The overall score would then be calculated
by multiplication of the extracted execution and difficulty
scores. To validate the effectiveness of our method we con-
ducted experiments on existing datasets and demonstrate
that our method not only achieves state-of-the-art results in
diving grading but also shows acceptable generalization to
other fields. The main contributions of this paper are sum-
marized as follows:

e We introduce ExPose, a dataset of blurry images with
annotated joints in extreme contortions to facilitate ex-
treme pose estimation in sports analytics.

e We propose a difficulty extractor module that leverages
the pose sequence to determine the type and details of
the dive and award a difficulty score based on the FINA
look-up table. This module doesn’t need to be trained
in advance and achieves state-of-the-art results.

e Inspired by human judges grading schema, we present
a novel virtual refereeing system that regresses the ex-
ecution score by leveraging both appearance and pose-
based features. The results demonstrate the superior
performance of the proposed network over previous
works with promising generalization to other sports.

2. Related work
Pose-based AQA

Due to the challenges of estimating pose in extreme con-
figurations of athletes’ body and blurriness of image frames,
pose-based AQA has been largely unexplored. Pirsiavash et
al. [14] presented the first model for assessing the quality of
a sports action based on pose features. They trained a lin-
ear SVR on DCT frequency coefficients of the action pose
features to regress the final score. Recently, Pan et al. [11]
decoupled pose features to body parts kinetics and joints co-
ordination, and provided the score by capturing graph-based
joint relations. However, these networks neglect the collab-
orative role of appearance-based with pose-based clues in
score awarding. Furthermore, they rely on the overall score
as the only label that needs to be predicted. In addition,
their pose estimation modules have been trained on regu-
lar existing pose datasets that don’t cover unusual contorted



Figure 2: The pose estimation network should be trained on a dataset which covers blurry images with extreme configuration
of joints. The left side picture of each column is the result of training HRNet on MPII [1] and the right side one corresponds
to the results of training the network on our ExPose dataset. As evident, the network trained on our data set better identifies

body’s true joint locations.

pose configurations of Olympics divers. The above reasons
generally lead to the underperformance of such networks.

Appearance-based AQA

On the other end of the spectrum, most studies in the
realm of AQA rely exclusively on visual clues of the action
in order to regress the score [8, 13, 18, 12]. Parmar and
Morris [13] use C3Ds [16] (inflated counterpart of 2D Con-
vNet) to capture visual spatio-temporal features of the ac-
tion and feed them to a regression framework (SVR, LSTM,
and LSTM-SVR) to provide the final score. Li ef al. [8] seg-
ment videos to multiple fragments and feed them to parallel
C3Ds, followed by some 2D convolution layers. They dis-
cuss that these fragmented features would have more dis-
tinctive power to differentiate a good performance from a
bad performance. However, the heavy computation cost of
using C3Ds, as well as neglecting the pose features and pre-
dicting only the overall score has affected the performance
of these models. To address the last issue, Parmar and Mor-
ris [12] recently proposed a multi-task approach that jointly
learns commentary, action class details, and AQA over-
all score based on the appearance features extracted from
C3Ds. Nevertheless, the first two issues still persist in the
latter study.

3. Approach

In the following, we present our proposed network con-
sisting of two modules. The first module, virtual referee,
evaluates the performance execution based on both of the
appearance and pose features. The second module, diffi-
culty assessor, evaluates the difficulty based on the joints
sequence of the action.

3.1. Virtual Referee

Fig. 3 demonstrates our virtual referee pipeline which is
comprised of pose-based and appearance-based assessors.
In what follows we elloborate more on the details of the
two assessors.

Pose-based execution assessor

We use HRNet pose estimation network [15] to extract the
pose features of extreme actions. The network has been
trained on our ExPose dataset to be able to handle blurry im-
ages with extreme body contortions. As depicted in Fig. 2,
the performance of training the network on regular datasets
is not acceptable.

ExPose dataset contains 3000 diving and 1000 gymnas-
tic vault images together with their annotations. The diving
images are obtained from four different individual diving
events recorded from side-view on two types of boards. The
springboard images are obtained from men’s 3m final of the
2019 world series and the platform images are taken from
men’s 10m platform finals of the 2016 European aquatics
championships in London, 2018 youth Olympic games in
Buenos Aires, and 2019 world series in Sagamihara. The
gym vault images are obtained from three different events;
men’s and women’s final of the 2018 Doha world champi-
onships and women’s final of the 2018 Glasgow European
competitions. All the original videos of the both diving and
gym vault images are sourced from YouTube. For consis-
tency with existing datasets, the annotations have been pro-
vided in MPII dataset format, considering 16 joints for the
human body.

The extracted joint sequence should be fed into an action
regressor that is able to learn the spatio-temporal skeleton-
based features of the action. To this end, we use ST-
GCN [19] that considers the joints of a skeleton as the nodes
of a graph. Spatial edges of the graph connect the struc-
turally neighboring joints and temporal edges connect the
same node in consecutive frames. However, this network is
not able to capture the dependencies between joints that are
unconnected in the predefined skeleton graph.

In order to capture the non-local information (for uncon-
nected joints), we introduce three levels of virtual super-
joints. Each super-joint represents the average location of
its constituting real joints. In the first level, the super-joints
consist of the right leg, left leg, right hand, left hand, waist,
and head. As a result, we would be able to capture wrists-
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Figure 3: Overview of our virtual referee pipeline. This network generates the execution score of the performer based on
appearance features as well as pose ones. The bridge connector module links these two to increase the contribution weight

for the appearance features with the most importance (splash).

shoulders and hips-ankles relationships. The second super-
joint level captures dependencies between the upper body
and the lower body. Finally, the third super-joint level ex-
tracts the symmetricity between the left and the right side
of the body. The composition of super-joints is visualized
in the upper part of Fig. 3.

It goes without saying that not only the local relations
between connected joints but also richer dependencies like
symmetricity between different parts of the body should
verify how well the action was performed. Thus, the fea-
tures of the fixed predefined skeleton body (consisting of
all 16 body joints) as well as non-local features of virtual
super-joints levels are fed into four parallel ST-GCNss to as-
sess the coordination between the joints and between the
body parts (see the upper part of Fig. 3). The output value
of each ST-GCN module is multiplied by its own contribu-
tion weight to account for the superior importance of some
features over others. For example, intuitively, the contribu-
tion weight of the third level of super-joints score should be
larger as it is responsible for the balance of the body during
the flight.

Appearance-based execution assessor

The proposed network should not only be effective but also
have a lightweight configuration to act as fast as possible
in both training and testing phases. To this end, we fol-
low StNet [5] structure that instead of using stacked heavy-
weight C3Ds, decomposes 3D convolutions into 2D spa-
tial convolutions followed by 1D temporal ones. First, we
divide the whole task into T subtasks, each consisting of
N frames (in this case T=17, and N=6). Each subtask is
fed to 2D convolution layers to extract the local spatio-
temporal information. The Convl module followed by the
2 SENet [6] layers are responsible to do so (see the lower
part of Fig. 3). The extracted local features are fed to a
Temporal Modelling Block (TMB), introduced by [5], to
get the temporal features across each subtask. The TMB
block is consisted of a 3D convolutional layer followed by
a BN3d-ReLU. As the spatial information is already cap-
tured by SENets, the spatial filter size of the 3D convolu-
tion for TMB is set to 1. In order to get deeper correlations,
the result of the TMB module is further passed to a stack of
SENet-TMB-SENet.



The extracted features (fqpp,) would contain local
spatio-temporal information of each subtask as well as tem-
poral dynamics across N frames of each subtask. In the next
step, we should capture the temporal information between
the T subtasks. However, there are some visual clues that
should contribute to the execution score more than the oth-
ers. Performing a rip entry into the water making the least
amount of splash is more important than other appearance-
based clues like the smoothness of the flight. In order to
address the aforementioned concern, we introduce a bridge
connection module to increase the contribution weight of
the final subtasks which is where the diver makes an entry
into the water. As discussed before we use HRNet module
to detect the joints in each frame. This module not only
provides the joints’ locations but also gives the overall con-
fidence of estimation for each joint. For example, in the last
frames in which the athlete is under the water, the very dis-
torted visibility of the human body in such frames causes
a drastic drop in the confidence score of its joints estima-
tion. Inspired by this fact, we introduce a link module to
set the weights of subtasks based on the confidence score of
pose estimation in their frames (see the middle part of Fig.
3). Given the confidence scores of all frames, we first take
the average between the confidence scores of each subtask.
Thus, considering the output of HRNet as a I x .J x 1 tensor
(where F' = T x N is the number of frames and J is the
number of joints), the output of the average module would
have size 7' x J. In the next step, the confidence scores
of all joints in each subtask have been summed to form a
T x 1 vector and normalized to (0 — 1) interval. Finally, the
vector is tiled to have the same size as that of the extracted
appearance features (1" x C'). The Fuser module takes these
two (fapp, and Wi,iqge) as well a scale value (k) to set the
contribution of each subtask using the below formula.

fappo = fappi © (1 - Wbridge(l - k)) (1)

As a result, the lower Wy,.;44. a subtask has, the higher
contribution to the score regression it would have. Finally,
to capture the temporal information between the subtasks,
the resulting fpp, is fed to a Temporal Xception Block
(TXB). This block, introduced by [5], decomposes the tem-
poral dynamics of the extracted feature sequence into a 1D
temporal-wise and a 1D channel-wise convolutions. De-
ploying this strategy instead of averaging between the fea-
tures of the subtasks has boosted the results in action clas-
sification tasks. Finally, the resulting tensor of the TXB
module has been fed to a fully connected layer to regress a
number as the appearance based execution score.

In the end, as evident in Fig. 3, the virtual referee calcu-
lates the weighted sum of the appearance-based execution
score and the pose-based ones (including regressed scores

of virtual pose levels) to award the final execution score:

SEa;ef = aappSEweapp + apSEwep + Qpr SEJ;ele (2)

+ap,, SEacepL2 + oy, , SEacepLs

where gpp, 0, and o, ; Tepresent the contribution weight
of appearance-based, predefined skeleton pose-based, and
virtual-pose levels execution assessment.

3.2. Difficulty assessor

Given the joint sequences extracted from the HRNet
module and the direction of filming (west-side or east-side
camera), our proposed difficulty assessor classifies the per-
formed dive and provides the difficulty score based on the
FINA look-up table.

In terms of the rotation type, a performance can be classi-
fied into four different groups: forward, reverse, backward,
and inward. The group can be determined based on the
joints position during frames that capture take-off and en-
try into the water. For example, when the camera is located
in the east-side of the platform and the athlete faces the front
of the board (forward or reverse; Fig. 4a,4d), Txne. wWould
be greater than both xj,;;, and 4,4 (the origin of the coor-
dinates is located at the top left of the picture). On the other
hand, when the athlete takes off with his (her) body back to
the water (backward or inward; Fig. 4b,4e), xjpe. would be
less than both z,, and x4pnkie. Another metric that helps
determine the group is Z4pk1e’s value with respect to other
joints’ positions during frames that capture entry into the
water. As it can be seen in Fig. 4a,4b.4d,4e, the joints po-
sition in the take-off frame and entry one together distinct a
rotation type from another.

For getting the position of the dive, the module looks
for a specific pattern among all of the frames. In a pike
position, the body is bent at the waist but the legs should
remain straight (see Fig. 4c). On the other hand, in a tuck
position the knees should be pulled tightly to the chest. If a
position is neither a pike nor a tuck it would be considered
as a free dive. Thus, based on angle between the lower leg
and thigh we would be able to determine the position.

In a regular dive we only have the sideview profile of
the performance. However, in a twisted dive the performer
rotates its body around the vertical axis, exposing the full-
body profile during the performance (see Fig. 4f). In or-
der to discern a sideview profile from a frontview one, we
have set a threshold for captured shoulder-width of the ath-
lete during the performance. The #twists can be determined
based on number of the switches from a side-view to a front-
view profile and vice versa.

In order to get the #sommersaults, the module moni-
tors the relative positions of the thorax and the pelvis joints
along the y-axis. In a normal configuration of the body, the
thorax should be located in a higher position than the pelvis.



(a) Forward Dive

(d) Reverse

(e) Inward Dive

(c) Pike vs Tuck

(f) Twisted and Armstand

Figure 4: The type of the rotation, the position, and #twists can be determined based on joint sequences. In addition, based
on the the configuration of pelvis and thorax, the #sommersaults and first stand position can be determined. The performance
of pose estimation should be acceptable to have a better diving classifier and respectively a better difficulty assessor.

However, this configuration changes as the body is rotated
around the horizontal axis by performing a sommersault.
The module counts the number of configuration switches to
provide the #sommersaults. Furthermore, as evident in Fig.
4f, we can also distinguish an armstand dive from the reg-
ular one by getting the configuration of the pelvis and the
thorax during the take-off frame.

Finally, the difficulty of the execution would be assessed
based on the type of rotation, position, #twists, #sommer-
saults, and whether it was performed in an armstand posi-
tion or not, according to FINA difficulty look-up table. The
resulting difficulty score would be multiplied by the exe-
cution score provided by the virtual referee and the overall
score determines the ranking of the competitor.

4. Experiments
Implementation Details

The weights of the all SENet blocks of the appearance-
based assessor module are initialized using the ImageNet
pretraied weights. As the first convolution layer takes 3N
channels instead of 3, the same procedure as [2] have been
taken to inflate the ImageNet weights.

The network has been trained for 200 epochs with a
learning rate of 0.000075 using the SGD optimizer with the
momentum of 0.95 and a batch size of 10. Mean squared er-
ror has been used as the loss function of the regression. The
network is trained and tested on UNLV-Diving dataset [13].
The videos of the dataset are originally normalized to 103
frames. We ignore the last frame and feed the rest 102 to
the network. The number of subtasks (T) is set to 17 and
each one is consisted of 6 frames (N). 300 videos of the

[ MTL-AQA | Ours

Armstand? 98.65 100.00
Rotation Type 97.30 97.57
Position 95.14 97.84
#Sommersaults 95.68 98.92
#Twists 94.05 94.32

Table 1: The results of diving detailed classification on
UNLV-Diving dataset [13].

dataset are dedicated to training and the rest 70 are utilized
for testing.

4.1. Quantitative Results

Diving Classification

To the best of our knowledge, there are only two studies in
detailed diving classification [10, 12]. Table 1 shows our
results compared to MTL-AQA [12] which performs better
than the other one. Aside from outperforming the baseline
study, the proposed diving classifier runs online without the
need of being trained in advance. It takes the extracted pose
sequence from the HRNet module and outputs the detailed
classification of the dive as well as the difficulty score. On
the other end of the spectrum, the MTL-AQA network uses
C3Ds that leads to high computational cost and a huge im-
pact on both training and testing phases speed.

Although this paper is mostly geared towards diving rou-
tines, a similar procedure can be taken to assess the perfor-
mance difficulty of other sports. For example, the difficulty
score of a trampoline routine would be awarded based on



Method \ Spearman’s Corr.

Pose-DCT-SVR [14] 53.00

Joint Relation Graphs [11] 76.30
C3D-SVR (best performing in [13]) 78.00
MSCADC-STL [12] 79.79

Liet al. [8] 80.09
C3D-AVG-STL [12] 83.83

Ours (FALCONS) 84.53

Table 2: The results of predicting the overall score of
the athletes. Our network outperforms the previous base-
lines. All networks are trained and tested on UNLV-Diving
dataset [13].

Ablated Model \ Spearman’s Corr.
Bridge Blocking 69.11
Virtual Pose Levels Removal 76.68
Only Appearance-based 81.75
Only Pose-based 50.04

Table 3: The results of systematically removing the compo-
nents of the network to study their effectiveness in the final
results.

the #twists and #sommersaults performed in the whole task.
As another example, the difficulty of a gymnastic vault per-
formance is assessed based on the number of turns (twists),
the position of flight phase (tuck, pike, or stretched), and
type of the approach towards the handspring (backward or
inward).

Overall Score Assessment

In order to be consistent with existing literature, we have
used Spearman’s Rank correlation as the evaluation metric
of our network. We evaluate our model on UNLV-Diving
dataset [13]. As evident in Table 2, our proposed model
achieves superior performance than prior methods. The pa-
rameters Qtapp, Olp, Opp 1> Olpras Olpp s, and k have been set
t0 0.9, 0.01, 0.01, 0.01, 0.07, and 0.9 respectively. It should
be noted that [12] also proposes a multi-task approach in
which they augmented the original dataset with captioning
to jointly learn the overall AQA score, detailed diving clas-
sification, and commentary. This implementation resulted
in Spearman’s Rank correlation coefficient of 88.08. How-
ever, as our method is trained on the original dataset with-
out using excessive information of captioning we have com-
pared our results with their single-task approach.

We also conducted an extensive ablative study to evalu-
ate the components of our network. In the first set of ex-
periments, we blocked the bridge connector by setting the &
scale of the Fuser to 1. As a result, all appearance features

would have the same contribution to the execution assess-
ment procedure. In order to study the importance of non-
local pose features, we removed the contribution of the vir-
tual pose levels by setting their contribution weights (c,, , ,
Qpray Opp,) to 0. We further set ay, to 0, relying only on
appearance features for execution scoring. Finally, we set
the gy, to 0 to evaluate the Only Pose-based execution as-
sessor. In this experiment, ay,, o, ., Qp,,, and o, , have
been set to 0.1, 0.1, 0.1, 0.7 respectively to have the same
scale as the original method. The results of Table 3 show
how each component contributes to the effectiveness of our
final model.

Generalization to Other Fields

Here we present the effectiveness of our method tested on
an unseen event from another sport. To this end, we use
our pretrained network on the UNLV-Diving dataset and fit
a linear regressor on top of the resulting tensor of Fuser
module to test unseen gymnastic vault routines. We freeze
all other weights of the network to be unbiased around the
gymnastic vault performances. As the weight contribution
of the appearance features of each subtask is equally impor-
tant, we blocked the bridge connector by setting the scale
(k) to 1. All other parameters have remained the same as
before. As we have not provided the framework for assess-
ing the difficulty of the routine in a gymnastic vault perfor-
mance (classifier + lookup table), we resort to the evaluation
of our virtual refereeing system that provides the execution
score.

We trained and tested the modified network on the gym-
nastic vault videos of AQA dataset [13]. The resulted Spear-
mann’s Rank correlation for this task is 27.11. At the first
glance it seems that the network is underperforming. How-
ever, it should be noted that the ground truth execution
scores awarded by the judges are close to each other. In
such condition, the difficulty score plays a distinctive role
in ranking the athletes. Thus, having an effective difficulty
assessor contributes to higher Spearmann’s Rank correla-
tion. The promising results of our network on the challeng-
ing task of assessing an unseen event from gymnastic vault
show that the proposed network can be generalized to be
used in other sports.

4.2. Qualitative Results

Fig. 5 presents some qualitative results for classifying
the dive as well as assessing it in terms of execution and
difficulty. The visual clues like amount of splash as well
as joint configuration during the performance, contribute to
the execution score.
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(a) Ground truth - Rotation type: Backward (Armstand), Position: Tuck, #Somm: 3, #Twists: 0, Difficulty Score: 3.3, Exe. Score: 20, Final Score: 66
Predicted - Rotation type: Backward (Armstand), Position: Tuck, #Somm: 3, #Twists: 0, Difficulty Score: 3.3, Exe. Score: 19.59, Final Score: 64.65

’

(b) Ground truth - Rotation type: Forward, Position: Pike, #Somm: 2.5, #Twists: 3, Difficulty Score: 3.8, Exe. Score: 21, Final Score: 79.8
Predicted - Rotation type: Forward , Position: Pike, #Somm: 2.5, #Twists: 2, Difficulty Score: 3.3, Exe. Score: 21.64, Final Score: 71.412

(c) Ground truth - Rotation type: Inward, Position: Tuck, #Somm: 4.5, #Twists: 0, Difficulty Score: 4.1, Exe. Score: 23.5, Final Score: 96.35
Predicted - Rotation type: Inward , Position: Tuck, #Somm: 4.5, #Twists: 0, Difficulty Score: 4.1, Exe. Score: 24.07, Final Score: 98.687

Figure 5: Qualitative results of our proposed method.

5. Conclusion

We present FALCONS, an engine of grading Olympic
diving athletes, based on execution and difficulty assessors.
Similar to what human judges do, the execution evaluation
is based on both visual and pose features of the action. To
handle the estimation of pose in such extreme body con-
figurations, we introduce the ExPose dataset. By introduc-
ing the notion of virtual super-joints, we augment the local
correlations between connected joints with non-local joint
dependencies of the action. The extracted pose sequences
are also utilized by the bridge connector module to increase
the contribution of the splash scene among other appearance
clues. For extracting the difficulty of the action we propose
a simple assessor that works on the basis of pose features.
Finally, the overall score is provided by the multiplication
of the execution and difficulty scores. The results show
state-of-the-art performance compared to previous studies
as well as acceptable generalization to unseen scenes from
other sports.
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