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Abstract

Automatic video production of sports aims at produc-

ing an aesthetic broadcast of sporting events. We present

a new video system able to automatically produce a smooth

and pleasant broadcast of Basketball games using a sin-

gle fixed 4K camera. The system automatically detects and

localizes players, ball and referees, to recognize main ac-

tion coordinates and game states yielding to a professional

cameraman-like production of the basketball event. We also

release a fully annotated dataset consisting of single 4K

camera and twelve-camera videos of basketball games.

1. Introduction

Automatic video production of sports events is an inter-

esting problem both from the commercial perspective [1]

and from the computer vision side [34]. For the former,

low latency streaming of auto-produced sports events is of

interest for sports federations to growth their fan base, for

team sponsors to get brand exposure and for fans to keep

up to date with their team performance. Automatic video

production is particularly relevant for niche sports events

(e.g., Kenyan Basketball Premier League) where often there

is not TV broadcast available. Regarding quality, automatic

video production of sports events should produce an aes-

thetic [16], smooth and pleasant video of the game, as usu-

ally seen on TV but without or with minimal human inter-

vention, hence lowering the production cost.

As a computer vision problem, automatic video produc-

tion of sports events encompasses several open challenges,

such as: where to look at in a scene? or what action is taking

place?. Considering a basketball game, for the former prob-

lem it implies detecting the ball as it is the more prominent

landmark indicating the actionness in the court but given its

tendency to be occluded, detecting players to infer the ball

position is also necessary. For the latter problem, inferring
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Figure 1: Given an input video (e.g., 4K) from a central

point of view that observes the full basketball court, the pro-

posed system aims to produce an automated virtual cam-

era that tracks the action of interest. The resulting video

output (e.g., 720p) is a smooth and pleasant broadcast of

the game. A video example can be watched at: https:

//www.youtube.com/watch?v=3GUsAROG9Z4

the state of the game, as in detecting timeouts or defensive-

offensive transitions, is of paramount importance to obtain

aesthetic productions, as a regular viewer will expect a par-

ticular camera framing for a given game state [27].

In this paper we report solutions to both of the aforemen-

tioned problems in the context of an automatic video pro-

duction system for basketball games. Our proposed system

can be cast as a virtual camera system [10], as the camera

does not move and it acquires high level resolution images

to produce the output video, as it is shown in Fig. 1. This

type of systems are also known by the name of video re-

targeting [30], virtual videography [20], virtual robot cam-

era [22] or re-cinematography [18]. We will review next

these terms and related work to this paper.

1.1. Background

The process of creating high quality broadcast produc-

tion of live sports events is one of high monetary cost, as it

requires a coordinated crew of experienced skilled individ-

ual with fast response in a changing situation [27]. Some

niche sports events cannot cover the high cost of having a



human production crew and hence the following problem

arise: How can a sport event be produced with no human

intervention but having an aesthetic quality?

This problem does not only apply to sports [26] but to

any live event, such as a university lecture [38], a news

show [36] or a theater play [30], and the proposed solu-

tions have different names across related fields. In robotics

the name robot camera was coined more than 20 years ago

[21], where the Japanese TV company NHK has a long

standing track of research in the topic, from football auto-

production [35], to news show [36], including also studies

of cameraman performance evaluation [22]. In the robotics

field the camera physically moves to perform the auto-

production and this property is known in the literature as

“real camera” [10]. Using a “real camera” implies solving

the so-called visual servoing task [8] which involves apply-

ing feed-back control techniques. An example of using a

proportional-only controller for automatic basketball pro-

duction is shown in [5].

In the computer graphics and multimedia informa-

tion system communities, video re-targeting [30], virtual

videography [20] or re-cinematography [18] are common

terms to refer to the automatic camera system problem. All

of them have in common that usually the automatic cam-

era system problem is approached using a re-sampling of a

high-resolution video, hence the camera is static. This type

of cameras are known as “virtual cameras” and in sports

events it requires to cover the whole pitch or court with

one or multiple overlapping cameras. Also all of the afore-

mentioned terminology implies that the solution is based

on the art of videography [25], in particular following the

filming laws for cinematography [4] that aims at producing

videos that follow standard filming cinematic conventions,

i.e., camera motion has continuity in velocity and direction

aiming at aesthetic video production [17, 18].

Besides the possible categorization of automatic camera

system according to its properties, e.g., real-cameras vs vir-

tual cameras or surveillance vs sports events, there are three

problems that need to be solved for any automatic camera

system [10]:

Camera planning. Relates to the problem “where

should cameras look at?” and in sports events there is some

prior knowledge to solve it, e.g, in basketball important ac-

tions usually take place near to the ball. Typical solutions to

this problem rely on object detection [23, 28] and some kind

of activity recognition [3, 2] based on players when the ball

is occluded. It is important to point out that an appropri-

ate solution to this problem should report where to point the

central point of the camera as well as the appropriate field

of view coverage. Solutions to this problem can involve,

among others, mild human intervention as in [15] or [14] or

learning directly from data the desired state of the camera

as reported in [11] and [12].

Camera control. Relates to the problem “how should

cameras move?” and its solution differs if the camera moves

physically or virtually. In any case, it involves moving the

camera from its current configuration to a desired one taking

into account where it should look in a scene. Nowadays

with the availability of 8K or 4K imaging sensors and better

optics it is possible to use the virtual camera approach in

sports events but traditionally the use of PTZ cameras [5] or

over-rail cameras have been the norm [35].

Camera selection. Relates to the problem “which cam-

era should be selected?” and applies in a setup with multi-

ples cameras. Solutions to this problem in sports events are

challenging because there can be fast transitions between

cameras, and solutions usually need to be based on the type

of action happening in the court or pitch. Many solutions

are data-driven based on machine learning techniques as re-

ported in [9, 13] for basketball or [37] for football.

1.2. Paper Contributions

In the context of basketball automatic video production,

in this paper we report solutions to the aforementioned

problems by (i) computing the actionness in the court by

Gaussian modelling players positions plus a ball awareness

rule, and (ii) game state recognition via a deep learning ar-

chitecture using a convolutional neural network based on

occupancy maps. We also report how they integrate into a

basketball automatic video production system.

Finally, we will release with the paper a multipurpose

dataset consisting of (i) single camera 4K resolution and

(ii) twelve-camera 1280 × 1024 resolution videos of bas-

ketball games, available at https://gsbasketball.

github.io. All video footage have ball, players and ref-

erees labels per frame. This dataset was used to develop and

test the methods reported in this paper.

1.3. Paper Structure

We start by defining the building blocks of the proposed

automatic video production system for basketball and pro-

viding an overview of each of them in Section 2. Next, in

Section 3, we detail our solution to the problem where to

look at in an scene? in the context of auto-production of

a basketball game. Section 4 reports a method for infer-

ring the game state of a basketball game to help the cam-

era framing process of an auto-production system. Then, in

Section 5, we present results of the proposed methods and

of their integration for automatic video production system

for basketball. Finally, we present our concluding remarks

in Section 6.

2. Automatic Video Production System

Given a central camera that is able to cover the full court

in a basketball game, our system generates a virtual camera



that tracks all the action of interest, producing as a result a

smooth and pleasant broadcast of the game.

In order to tackle the automatic production problem for

basketball events, we design a system composed of five

components: (i) court modeling, (ii) player and ball de-

tection, (iii) actionness, (iv) game state recognition and (v)

video producer, as it is shown in Fig. 2. These components

work together to capture and model 3D geometric and se-

mantic information, aiming at producing an as seen on TV

automatic broadcast of the game.

2.1. Court Modeling

We consider a single fixed central camera, which is able

to cover the full court and remains still while the production.

The court modeling component is in charge of estimating

the camera pose w.r.t. the court and computing useful geo-

metric guidelines for further components.

Knowing the FIBA, NCAA and NBA court mark-

ings, and given an image of the basketball court installa-

tion, the court modeling estimates a homography H that

maps a known set of at least four (co-planar) 3D points

{(Xi, Yi, Zi)} on the court to its corresponding set of pro-

jections {(xi, yi)} in the image. The world coordinate sys-

tem origin is at center court, with the XY-plane correspond-

ing to the ground plane. The estimated homography cor-

responds to a projective camera when applied to ground

points, so that camera parameters, K, R and C, can be found

from H(x, y, 1)T = KR [I|−C] (X,Y, 0, 1)T [19], where K
is the intrinsic matrix, R is a rotation matrix from world to

camera coordinates, and C is the camera’s center of projec-

tion in the world coordinates.

The resulting court model is enriched by computing,

among others, the court region of interest in the image and

the projection of the court volume, as it is illustrated in Fig.

3. Moreover, from this court volume and its projection, we

compute a set of optimal framings by cropping the input

image space while keeping a 16:9 aspect ratio. In the sim-

pler case, this set is composed by three framings: a zoom-

out that covers the full court volume projection, and left-

side and right-side framings, which enclose the left and

right half-court volumes projections, respectively. Addi-

tional framings can be defined by including crops that en-

close specific parts of the court volume, e.g., right-aligned

75% of the left half-court volume.

2.2. Player and Ball Detection

We use an object detector as responsible for detecting

instances of semantic objects of three classes: ball, player,

and referee. Looking for a reasonable trade-off between

running time and accuracy, we selected and slightly mod-

ified YoloV3 [32] for this task. The input image is resized

to 608 × 608, and we disconnect layer 36 in the combined

feature map and connect instead the layer 11, to be able to

detect small objects (up to 16×16) at the resized resolution.

Starting from the original weights trained in COCO [24], we

train using CrowdHuman dataset [33] and a Google sports

dataset [31], where only the class player was learned. Later

we include the class ball and perform a fine-tuning proce-

dure in the datasets APIDIS and SPIROUDOME, and fi-

nally the third class referee is added and the network is fine-

tuned in our twelve-view cameras basketball dataset.

In order to improve the detection accuracy for our sin-

gle camera problem, we exploit the court modeling in a last

fine-tuning stage. For this purpose, all considered images

in this process should have a court model that provides a

rectangular region containing the court. We crop training

images to fit the court region and resize them to 1024×192,

which we found respect the aspect ratio from this point of

view. The anchors are re-computed at this stage using k-

means. Resulting players and ball detections will feed both

Actionness and Game state recognition components.

2.3. Actionness

We define Actionness as the two-dimensional function,

with domain the court plane, that estimates the amount of

action that can take place at every location of the basket-

ball court. For that, we model the distribution of detected

players in the court and compute some statistics from this

distribution. We also include a ball awareness rule to deal

with specific situations of the basketball game. Sec. 3 de-

scribes the Actionness function in detail and how the main

action coordinates are estimated.

2.4. Game State Recognition

Rules of the game production should vary depending on

the game state, e.g, a half-court possession could be prop-

erly covered by an almost steady camera, whereas a fast-

break requires a fast moving camera to not lose the main

action. With that in mind, we designed a deep-learning

based solution to recognize and localize three game states

that will guide the final production of the basketball game,

as it is described in Sec. 4.

2.5. Video Producer

The last component of our system is the actual video pro-

ducer of the game. It receives as inputs the current full court

image, a game state and the estimated action coordinates.

As output it delivers a virtual camera that optimally frames

the main action by cropping the input image and finally re-

sizes it to the output resolution, e.g., 720p or 1080p. The

producer also should ensure a smooth as possible produc-

tion, so following the results of [30], we define a maximum

displacement in pixels per frame for the virtual camera.

In our system we consider three game states: half-court,

transition and not-playing. The production rules vary de-

pending of the estimated state as it is described below.



Figure 2: Diagram of the five components of the system.

Figure 3: Court modeling. The projection of a four-meters

high volume of the court is drawn in blue, the modeled court

markings are presented in orange and magenta.

2.5.1 Transition Production

During a transition, players are moving from one side to

the other at different velocities and the camera should be

attentive to track the main action. Hence, during a transition

state the camera will be almost free, tracking the action.

The production at this state is done by firstly filtering

the temporal series of each component of the action coor-

dinates, using the one-euro filter [7] to prevent undesired

high-frequency variations. Then a proportional control is

used to move the current location of the virtual camera to

the filtered action value, without exceeding the maximum

displacement. We only take into account the horizontal of

the action, so the motion of the virtual camera corresponds

to a panning. Finally, given the output of the controller, the

input image is cropped centered at this value at a scale com-

puted as the average of the half-court framings.

2.5.2 Half-court Production

During a half-court state the camera will be almost steady

covering the corresponding half-court, which is indicated

by the game-state recognition state. In the case of a single

framing per half-court, once this state is detected the fram-

ing of the virtual camera will smoothly move towards the

desired framing, both in location and scale. It is important

to note that framings could differ in size since they are com-

puted to cover a specific volume projection in image, so a

change in scale could be required. If more than one fram-

ing is defined per half-court, the virtual camera will move

towards the framing closer to the main action coordinates.

2.5.3 Not-playing Production

Not-playing state is formed by the pre-game interval, warm-

ups, end of period intermissions and timeouts. At this state

there is a single rule of production that is to reach the zoom-

out framing and remain there until the state changes. Once

the not-playing state is detected, the producer will move

the virtual camera from its current position to the zoom-

out framing using a linear interpolation between these two

framings without exceeding the displacement limit.

3. Actionness

Actionness is defined as the two-dimensional function,

with domain the court plane, that estimates the amount of

action that can take place at every location of the basket-

ball court. For this purpose, we model the distribution of

detected players by projecting their location into the court

plane. Then we perform a smoothness procedure to aggre-

gate the spatial information across the court. Finally, the

peak location of this distribution is obtained and corrected

to ensure that the ball is contained. The resulted value,

called action value, is used to perform the final video pro-

duction, as it is described in Sec. 2.5.

3.1. Actionness Function

Assuming that every player is touching the basketball

court with their feet, we estimate its location in the image

domain as the middle point at the bottom of the detected

box. Let xtl = (xtl, ytl)
T and xbr = (xbr, ybr)

T be the top-

left and bottom-right corners of a detection, respectively,

the player location in the image is given by the middle at

the bottom as xc = (xc, yc)
T = (0.5 ∗ (xtl + xbr), ybr)

T
.

The court location (at zero height) can be found using the

Homography computed in the court modeling:



Xc = H(xc, yc, 1)
T
=

(

Xc, Y c, Zc

)T

, (1)

from where the location in court units is given by Xc =

(Xc, Yc)
T =

(

Xc/Zc, Y c/Zc

)T

. Once players are lo-

calized over the court, we model each of them as a two-

dimensional Gaussian centered at Xc and diagonal covari-

ance matrix Σ = σ2I , with σ = 0.25cm. Accordingly, a

set of detections {xi

tl
,xi

br
} localized in the court plane at

{Xi
c
}, generate the actionness function given by:

A (X) =
1

2πσ

∑

i

exp

(

−
1

2
(X−X

i

c
)TΣ−1(X−X

i

c
)

)

.

3.2. Action Localization

In order to localize the main action of the game, we com-

bine the peak of a smoothed version of the actionness func-

tion with a ball awareness rule. The idea behind this combi-

nation is twofold: viewers are very interested in the interac-

tion between players and having enough context of what is

going on, so trying to frame most of them will likely contain

the most interesting actions and provide enough informa-

tion; on the other hand, the ball should be always contained

when framing the most interesting events of the game, e.g.,

basket, pass, shot, etc.

Since the actionness function is sparse by definition, we

produce a smoothed version of the distribution looking for a

few number of modes that can make the action localization

easier. For this, we locally aggregate the actionness function

applying a bi-dimensional convolution with a rectangular

window of width and height corresponding to a one quart

of court dimensions As(X) = A (X) ⊛ rect(court/4).
The action value, noted as X∗, is the location where As(X)
reaches its maximum, i.e., X∗ = argmaxAs(X).

In the case when all players are close together, As(X)
follows an unimodal distribution where a framing centered

at this value will enclose all (or most) players as it is shown

in Fig. 4a. Conversely, when players are scattered through

the court, function As(X) will have more than one mode

and finding the optimal framing is not straightforward. To

solve ambiguity and ensure the ball is enclosed, we add a

ball awareness rule to correct the action value if the ball

is out of the framing. Inspired by the Rule of Thirds [16],

we use a rule of fifths. The desired framing is centered at

X
∗ and virtually divided into five equally spaced vertical

segments. The ball is expected to be located somewhere in

between second and fourth segments, i.e., in the inner seg-

ments of the framing. If it is not the case, the horizontal of

X
∗ is corrected until the ball is contained, as it is presented

in Fig. 4b. Otherwise, the action value remains unchanged

and it is directly passed to the video producer.

(a)

(b)

Figure 4: Actionness: horizontal projection of the Action-

ness function in green and corresponding framing given by

the action value in color. (a) Unimodal distribution gener-

ated by players close together. (b) Action value is modified

to the right to produce a framing containing the ball inside

the inner segments.

4. Game State Recognition

In the scope of this paper, we will focus in recognition

and temporal-detection of game states, more specifically,

we will describe a basketball game as a sequence of states,

where each state is characterized by a specific distribution

of players positions and will determine a specific case for

the automatic production.

In brief, the problem of state-of-game analysis is di-

vided on two different axes, state recognition and localiza-

tion. State recognition, which is the problem of assigning

a video to a set of predefined state classes, and state lo-

calization, defined as identification of the temporal location

where a state is taking place. In this work, we are interested

on recognizing three different states: transition, half-court

and not-playing. Fig. 5 depicts examples of the aforemen-

tioned game states. Below we describe a method to rec-

ognize game states on basketball games using player occu-

pancy maps and convolutional neural networks.

4.1. Player Occupancy Map

The player occupancy map is based on a 2D histogram

calculated from the projected bounding boxes provided by

a player detector, this kind of method has been used with

success in [11, 12] where different histograms resolutions



(a)

(b)

Figure 5: State examples: (a) transition and (b) half-court.

(a)

(b)

Figure 6: Player occupancy map. (a) Example of bounding

boxes from our player detector, and (b) projected bounding

boxes in the basketball court plane (red dots) overlaid over

the player occupancy map (NX = 48, NY = 24).

were used to determine the pan position for a virtual camera.

We first localize players by projecting their detected

boxes in the court plane, as it is presented in Sec. 3.1. Later,

to describe the distribution of players we divide the basket-

ball court plane in a 2D grid of size (NX , NY ). Finally,

the occupancy map Xh is computed counting the number

of projected bounding boxes falling within each cell of the

grid, as it is illustrated in Fig. 6.

4.2. Recognizing Game States with CNN

Convolutional Neural Networks (CNN) have been

widely used for recognizing actions due to their power to

encode the information from images [6, 29]. In this paper,

we will use a CNN to recognize states of a basketball game

using the player occupancy map explained in the preced-

ing Section. Our main assumption resides in identifying the

different configurations of players that corresponds to a spe-

cific basketball game state using a CNN trained architecture

and the player occupancy map. The specificity of the CNN

used in our method is illustrated in Fig. 7.

In a nutshell, the input of the network is a Xh occupancy

map of size 24 × 48, and the neural network architecture

is composed of five convolutional layers and two fully con-

nected layers which are in charge of classifying the features

from the occupancy map into a specific state class. The

number of filters and neurons in the fully connected layers

were chosen experimentally with videos that were not in-

cluded in the training or testing dataset. We have used a

Global Average Pooling instead of a simple flattening due

to its capacity to capture the information in an aggregated

way, without loosing the spatial configuration of the play-

ers that we want to keep to identify the states. Finally, to

recognize the game states on a video, we apply the trained

CNN to the computed Xh for each frame, and assign the

state with the highest output score.

5. Evaluation

In this section, we report a set of experiments to evaluate

the performance of the proposed methods in Sec. 3 and Sec.

4. We also report results of the performance of the whole

system described in Sec. 2.

5.1. Training and Evaluation Dataset

For training, tuning and testing the proposed methods

and the system, we used NCAA basketball video recorded

games from men and women. We used a total of 198000

images for training and tuning, i.e., without data augmenta-

tion strategies. For testing, we have available 68534 images

(≈39.38 min). For each image, we have available human-

annotated (i) bounding boxes of the categories of interest

(player, ball, referee), (ii) game states: half-court, transition

and not-playing, and (iii) production of the game: pan value

of the virtual camera and manual crop of input images.

5.2. Evaluation of the Actionness

We firstly evaluate ball and player detection as the ac-

tionness is a function of them, and secondly we assess the

accuracy error of the resulting framing.

5.2.1 Player and Ball Detection

For evaluating player and ball detection we use the

precision-recall curve for each class. We have tested with

different values of Intersection over Union (IoU), that cover

a range between 0.4 to 0.9, as it is shown in Fig. 8. We

present in Table 1, the values of mAP (mean Average Pre-

cision) for each variation of IoU. It can be observed that

at IoU = 0.5, player detection is very accurate achiev-

ing a mAP of ≈ 0.9 while ball detection is highly unreli-

able. Nevertheless, the lack of accuracy in ball detection do

not prevent the system for delivering a high quality auto-

production.



Figure 7: CNN architecture used to recognize states with the player occupancy map.

(a) (b)

Figure 8: Precision-Recall curves for the trained object detector for (a) ball and (b) players

Table 1: mAP metrics ball and player detection

IoU Ball Players mAP

0.4 0.351 0.925 0.638

0.5 0.235 0.898 0.566

0.6 0.106 0.816 0.461

0.7 0.019 0.617 0.318

0.8 0.000 0.268 0.134

0.9 0.000 0.014 0,007

5.2.2 Accuracy Error in Framing

We measure the accuracy error of the resulting production

by computing the Mean Absolute Error (MAE) of the action

localization X
∗ generated by the system (explained in Sec.

3) w.r.t the human-annotated center of the production X
ref :

MAE =
1

T

T−1
∑

t=0

|X∗

t
−X

ref

t
| (2)

Fig. 9 shows the accuracy error over the testing dataset

using a histogram and to provide more insights we com-

pute the CDF from the histogram. This CDF indicates the

probability of occurrence of an accuracy error greater than

N pixels. We also disaggregate results per game state. It

is worth noting that 95th percentile of the CDF is less than

250 pixels, i.e., for an auto-produced video of 720p, the ball

is contained in the resulting frame at least 95% of the time.

5.3. Evaluation of State Recognition

To show the performance of the game state recognition,

we present a temporal analysis for a sequence of frames in

Fig. 10a. It is possible to observe that in a sequence of a bas-

ketball game, we can predict the correct state of the game

without having large sequences of frames with a mistaken

state. In addition, for measuring the capacity of classifying

a state, we have used a confusion matrix as it is shown in

Fig. 10b. The best performance of the system was obtained

in the transition state with 0.91. In the opposite side, the

not-playing state got a score of 0.78, having a confusion of

0.16 with the half-court state.

5.4. Qualitative Evaluation of the System

Aiming at assessing the subjective quality of the result-

ing basketball production, we asked 10 persons to rate from

0 (Absolutely not) to 5 (Completely, yes) the following two

question about the quality of 84 auto-produced video clips

containing a sequence of a basketball game:



(a) (b)

Figure 9: Actionness evaluation. (a) MAE histogram of the action localization w.r.t. the human-annotated center of the

production. (b) CDF of histogram of accuracy error showing the probability of having a MAE less than N pixels.

(a) (b)

Figure 10: Results of the game state recognition presented (a) as a sequence of frames continuously injected into the system

and (b) in terms of classification performance expressed as a confusion matrix.

• Q1. Is the main action of the game visible clearly?

• Q2. Is the ball properly enclosed in the production?

For Q1 the mean rate was 4.63 with a standard devia-

tion of 0.67 and for Q2 4.30 and 0.97 respectively. Over-

all the comments from evaluators were positive praising the

steadiness and on the spot framing while a half-court state.

Main opportunities for improvement are in the jittering dur-

ing transition when the ball is not detected and lagging be-

hind in long passes.

A Youtube video playlist is available with exam-

ples of auto-produced video clips of basketball games

at https://www.youtube.com/playlist?list=

PL03T17ARL5kHvSyMZj3xm8jbfT9aJ3OXf.

6. Conclusion

We have presented a video system able to automati-

cally produce a smooth and pleasant broadcast of basketball

games using a single fixed 4K camera. The system automat-

ically detects and localizes players, ball and referees, to rec-

ognize main action coordinates and game states yielding to

a professional cameraman-like production of the basketball

event. Without the need for expensive or additional hard-

ware installation, the system provides a high quality and

low latency (less than 10 seconds processing in the cloud)

automatic video production of live basketball games and is

scalable to indoor and outdoor sporting events. Due to its

bottom-up design, 3D geometry awareness and deep learn-

ing capabilities, the quality of the auto-production will be

constantly enriched and improved as more venues, data, and

feedback from fans are available.
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