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Abstract

In problems such as sports video analytics, it is diffi-

cult to obtain accurate frame level annotations and exact

event duration because of the lengthy videos and sheer vol-

ume of video data. This issue is even more pronounced

in fast-paced sports such as ice hockey. Obtaining an-

notations on a coarse scale can be much more practical

and time efficient. We propose the task of event detection

in coarsely annotated videos. We introduce a multi-tower

temporal convolutional network architecture for the pro-

posed task. The network, with the help of multiple receptive

fields, processes information at various temporal scales to

account for the uncertainty with regard to the exact event

location and duration. We demonstrate the effectiveness

of the multi-receptive field architecture through appropri-

ate ablation studies. The method is evaluated on two tasks

- event detection in coarsely annotated hockey videos in the

NHL dataset and event spotting in soccer on the SoccerNet

dataset. The two datasets lack frame-level annotations and

have very distinct event frequencies. Experimental results

demonstrate the effectiveness of the network by obtaining a

55% average F1 score on the NHL dataset and by achiev-

ing competitive performance compared to the state of the

art on the SoccerNet dataset. We believe our approach will

help develop more practical pipelines for event detection in

sports video.

1. Introduction

Sports analytics has recently emerged as one of the ma-

jor applications of computer vision. Various problems such

as player tracking [20], sports broadcast video registration

[5, 27] and sports camera selection [6] are being solved with

the aid of computer vision. Event detection is a challenging

problem when it comes to applications of computer vision

in sports. This is because of the fast paced events in cer-

tain sports such as ice hockey and lack of publicly available

datasets dedicated to sports.

Most of the current papers in sports event detection take

advantage of frame-level annotations. Despite the availabil-

ity of a large number of sports videos on online platforms

such as YouTube, frame-by-frame annotations are quite dif-

ficult to obtain. As such, it can be much easier to obtain

coarser, second or minute-wise annotations. The downside

of this is that the annotations will be coarse and approxi-

mate, which can cause problems in sports where events last

for short time spans.

In this paper, we introduce a practical paradigm for event

detection in coarsely annotated untrimmed sports videos.

To accomplish this, we introduce a multi-towered tempo-

ral 1D convolutional architecture for event detection. Video

frames are input into a pretrained 2D CNN to obtain input

feature vectors. The feature vectors are fed to the 1D convo-

lutional towers. Each tower processes input feature vectors

on different temporal scales with the help of varying tempo-

ral receptive fields. The activations from the parallel towers

are finally added up to obtain class probabilities. The over-

all network architecture is shown in Fig. 1.

We evaluate our methodology on the NHL dataset and

SoccerNet dataset [13]. The NHL dataset is a densely an-

notated dataset with a high event frequency where each sec-

ond is annotated with an event. The frame level location

and duration of the event is not defined. The SoccerNet

dataset also presents a more practical scenario where soccer

events are anchored to particular seconds (called spots) in

the video. Hence, the two datasets represent two coarsely

annotated datasets with exactly opposite event frequencies.

For the high event frequency hockey dataset, the output

node of each tower observes a different receptive field tak-

ing into account the uncertainty in the location and duration

of the event in the coarsely annotated video. We experimen-

tally demonstrate the effectiveness of our network architec-

ture when compared to a fixed receptive field network with

an appropriate ablation study. We obtain an F1 score of ∼
55% on the dataset. We address the task of event spotting in
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Figure 1: The overall network architecture. The network takes t frames of dimension w × h × 3 sampled from untrimmed

sports video as an input. A CNN extract l dimensional features from the video frames. The t × l features are input into a

three tower temporal convolutional network. Any two towers with nodes at a particular layer have different receptive fields.

The output is t0 × c dimensional where t0 is the number of contiguous events predicted for the t frames and c is the number

of output classes. Here, b denotes the batch size. Finally softmax function is applied to obtain probabilities.

the sparsely annotated SoccerNet dataset using our network

and obtain competitive performance compared to the state

of the art [7].

2. Background

Video understanding. Video understanding is one of

the most important avenues for computer vision research.

Action recognition [3, 9, 29, 31] and temporal event local-

ization [4, 12, 16, 19] are two major problems addressed in

video understanding literature. Action recognition consists

of recognizing actions from trimmed video clips. Various

techniques such as two stream networks [29], 3D convo-

lutions [31] and recurrent neural networks [9] have been

utilized for action recognition. Other popular works [3] in

action recognition use two-stream inflated 3D convolutions

obtained by pretraining 2D CNN filters on Imagenet [8] and

then inflating 2D filters to 3D by repeating weights depth

wise.

Temporal event localization [4, 12, 16, 19] consists of

locating the start and end frame for actions in untrimmed

videos. Although [12, 19] make use of temporal 1D con-

volutions, they however, require frame level annotations.

Our work is related to weakly supervised approaches for

temporal event localization [25, 28], since we estimate

event locations in untrimmed videos without frame-level

annotations. Our work is also in line with TAL-Net [4] and

Timeception [16]. TAL-Net[4] ,based on the structure of

Faster R-CNN, TAL-Net performs action recognition using

multi-scale anchor proposals by suggesting segments from

an untrimmed video with a small 1D CNN. Hussein et al.

[16] introduce Timeception layers for long-range complex

action recognition. Timeception layers perform multi-scale

temporal only convolutions with reduced complexity and

can be used with either a 2D or 3D CNN backbone. The

focus in this paper is on event localization in sports videos

without frame level annotations, using ice hockey and

soccer datasets having different event frequencies.

Sports video analytics. Event recognition [22, 24, 30],

player level action recognition [2, 10, 11] and event detec-

tion [7, 13, 21, 33] in sport videos are some of the active

research efforts computer vision. Tora et al. [30] predict

hockey events using a single layered LSTM [15] architec-

ture on top of a pre-trained AlexNet [18]. Mehrasa et al.

[22] perform group activity recognition in hockey with the

help of player trajectories using 1D convolutions. Fani et al.

[10] recognize individual hockey player’s action type by es-

timating the pose of the player in each video frame, using a

stacked hourglass network [23], without incorporating tem-

poral information. Cai et al. [2] use the coordinates of the

player’s hockey stick as part of the pose of the hockey play-

ers in each frame, in conjunction with optical flow in a two

stream architecture. In another work, Fani et al. [11] per-

forms action recognition of individual soccer players from

video by extracting the pose of the player, normalizing it

and applying LSTM layers for capturing the temporal vari-

ation of the player’s pose during the action performance.



(a) Towers T1, T2 andT3

Figure 2: Illustration of temporal convolutional towers denoted by T1, T2 and T3. The first block of each tower has a receptive

field of 3, 5 and 2 respectively. The coloured nodes represent the input feature vectors. The two output nodes of each network

corresponds to two contiguous events. The green colored nodes represent the input feature vectors in the receptive field of

the first output node. The receptive field of a particular node covers the event itself and the context around it. Note that the

receptive field of the output nodes in each tower is different.

Due to the lack of standard datasets for event detection in

sports videos, many researchers generate their own datasets

which usually have limited size, and are often not general-

izable. To address this issue, Giancola et al. [13] introduce

SoccerNet, a benchmark for event spotting in soccer videos.

This benchmark, which is generated for the purpose of lo-

calizing very sparse events within long videos, spots three

main event types in 500 soccer games. McNally et al. [21]

introduce a benchmark database for detecting eight events

in the golf swing, named GolfDB consisting of 1400 golf

swing videos.

The above research, with the exception of Giancola et al.

[13], either utilize frame level annotations [2, 10, 11, 21, 22,

30, 33] or classify trimmed video clips [2, 10, 11, 24, 32].

Here, we focus more on the practical case where frame-

by-frame video annotations are not available in untrimmed

video datasets of different event frequencies.

3. Methodology

The proposed approach for event detection is explained

in Subsection 3.1. The designed network is shown in Figure

1 and explained in Subsection 3.2.

3.1. Proposed Approach

Events in sport videos occur at varying temporal scales.

For instance, in hockey, events such as ‘shots’, usually oc-

cur in a shorter time span than an event like a ‘faceoff’. To

take this factor into account, we employ 1D CNNs of vary-

ing kernel sizes and receptive fields. The information from

these parallel 1D CNNs is fused to obtain event class prob-

abilities. The network architecture is described in the next

section.

3.2. Network Architecture

To detect events in untrimmed sport videos, we make use

of a multi-tower architecture. The towers represent tem-

poral 1D CNNs with different receptive fields. The out-

put node gives the probability of an event occurring in the

video. The network architecture is illustrated in Figure 1.

The input to the network is a sequence of t frames

{Ik ∈ Rw×h×3 : k ∈ {1, 2, ..., t}} sampled uniformly at

a frame rate of f frames per second from an untrimmed

sports video. The images are passed through a 2D CNN in

order to obtain features Fk ∈ Rl from an intermediate layer.

Separate 1D convolution towers of varying kernel sizes (or

varying receptive fields) are applied on top of the features

Fk. The kernel size and stride of CNN filters in the towers is

chosen such that for each tower, a node in a particular layer

has a different receptive field than the corresponding node

in other towers. We incorporate contextual features such

that the network sees what happens immediately before and

after an event.

Each 1D convolutional network is composed of a number

of 1D convolution blocks named TConv block, of structure

illustrated in Figure 3. The blocks are composed of a 1D

convolutional layer followed by a batch normalization layer

[17] and ReLU non-linearity. In addition, skip connections

[14] are also added by slicing the input to match the out-

put. While adding skip connections, downsampling is done

in case dimensionality of input is different than that of the

output. The output Ot ∈ Rt0×c where t0 is the number

of contiguous events predicted and c represents the number

of output classes. The output of 1D convolutional towers

are added together and then softmaxed to obtain event class

probabilities.

4. Datasets Used

We have used two different datasets for our experiments.

The two datasets have a large variation in event frequency.

4.1. NHL dataset

The NHL dataset consists of 10 NHL games of three pe-

riods each, with separate 60 fps videos for all game periods.

The videos come from broadcast footage and include ad-

vertisements, replays, shots of varying range, and overlayed

graphics. Each video has a spatial resolution of 1280× 720
pixels. The videos are annotated with one second resolu-

tion, whereby the event is expected to occur within the one



Figure 3: TConv block consists of a 1D Convolutional layer,

Batch Normalization layer and ReLU activation function.

Since t
′

< t, the residuals are sliced symmetrically for mak-

ing the skip connection. b and l denote the batch size and

feature dimension respectively.

second interval. The events are annotated with at least one

of the following labels: Faceoff, Shot, Advance, or Play.

Table 1 gives descriptions of the event types and Figure 4

shows example frames. The dataset is heavily imbalanced

with Play consisting of ∼ 80% of all events. In some cases,

an annotated Play event may overlap with another event of

another type. In this case, the time frame is simply assigned

to the non-Play event without affecting the data distribution.

The dataset contains 589 Faceoffs, 1,062 Shots , 1,306 Ad-

vance and 11,116 Play events. The dataset has a high event

rate of one event every 4.5 seconds. The actual event rate is

higher when excluding advertisements.

The annotations are approximate and coarse. The frames

that represent an event usually span a fraction of a second

and may actually be present outside the annotated one sec-

ond window. This also means that the exact frame-wise lo-

cation of the event is not defined. The annotations were col-

lected manually and this annotation scheme is more prac-

tical than frame-level annotations, which are very difficult

and time consuming to obtain. The dataset is split such that

nine games are used for training, and one period and two pe-

riods from the remaining game are used for validation and

testing, respectively.

4.2. SoccerNet Dataset

The SoccerNet dataset [13] is composed of 500 soccer

games from the main European Championships from three

seasons with a total duration of 764 hours. The events are

categorized into three categories: Yellow/Red Card, Goal,

or Substitution. The dataset is very sparse such that it con-

tains an average of one event every 6.9 minutes, making the

task of event localization difficult. For each event, tempo-

ral anchors of one second resolution are obtained according

to well-defined soccer rules. The 500 games are randomly

split into 300 games for training, 100 for validation and 100

for testing. We use the same split as Giancola et al. [13] for

our experiments. PCA reduced 512 dimensional backbone

features are provided corresponding to ResNet [14], C3D

[31] and I3D [3] networks. The features were extracted ev-

ery 0.5 seconds from the video.

5. Experiments

We perform experiments on the NHL and the Soccer-

Net datasets mentioned above. We introduce the task of

event detection in coarsely annotated videos using the NHL

dataset and address the task of event spotting on the Soccer-

Net dataset [13].

5.1. Event detection in coarsely annotated NHL
videos

5.1.1 Objective

The objective of this task is to detect events from coarsely

annotated untrimmed hockey videos.

5.1.2 Experiment Settings

The videos are first downsampled to a resolution of 284 ×
160 (w = 284, h = 160) pixels such that the initial aspect

ratio is maintained. Images are sampled uniformly at a rate

of 10 frames per second. We sample a total of t = 30 frames

for a period of 3 seconds. The network architecture is de-

signed such that the number of output nodes are two i.e.,

we predict the output for t0 = 2 contiguous seconds (de-

tail in Figure 2). This is because, the NHL dataset is quite

dense and two different events for instance, shot and play

can occur consecutively. We subtract ImageNet [8] mean

and divide by ImageNet standard deviation for normaliza-

tion. A MobileNetV2 [26] pretrained on ImageNet is used

to extract features from the video. Global average pooling

is performed on the final layer of MobileNetV2 to obtain

l = 1280 dimensional features. The network architecture

used to process the 1280 dimensional features is shown in

Table 4. We use a three towered architecture with the first

block of the towers having an effective receptive field of 2,3

and 5 respectively. Random horizontal flipping is used for

data augmentation.

Since the background covers a major proportion of the

video, in order to handle the heavy class imbalance in the

dataset, we explicitly control the event sampling such that

the background events are sampled with a probability of p0
and the events are sampled with probability 1 − p0. The

value of p0 is empirically chosen as 0.2. This is done to

ensure that the training batches contain an even distribution



Table 1: Event descriptions in the NHL dataset.

Event Description

Faceoff The puck is dropped between the sticks of two opposing players

Shot A player attempts to shoot the puck on goal

Advance A player moves the puck into or out of the defensive or offensive zone without an intended recipient (e.g.,

dump in, clearing attempt)

Play A player moves the puck with an intended recipient (e.g., pass, stickhandle)

(a) Faceoff (b) Shot (c) Advance (d) Play

Figure 4: Examples of frames from each of the annotated events

of all c = 5 event classes (including background), without

which the model finds it difficult to converge. Further, in

all experiments, a weighted cross entropy loss is used with

play event and background assigned a weight of .05 and

.033 respectively and the rest of the classes are assigned a

weight of 1 each. Adam optimizer is used with an initial

leaning rate of 0.001. The training is done on an Nvidia

GTX 1080 Ti GPU.

5.1.3 Post processing

During evaluation/testing phase, we apply the network in a

sliding window fashion with a stride of one second on the

untrimmed video. Since the testing is done with a stride of

one second, each event is predicted twice. We take the max-

imum confidence of these two predictions. Furthermore, we

take advantage of the fact that events such as Faceoff, Ad-

vance and Shot are extremely less likely to occur consecu-

tively. If the network predicts one of these event n times in

a row where n > 1, we only consider the prediction with

maximum confidence. The rest of the predictions are as-

signed the prediction with second largest confidence. This

leads to an average improvement of 2-3 % in F1 score val-

ues.

5.1.4 Results and Analysis

A predicted event for a one second interval is considered

correct if it is within one second of any ground truth. It

can be understood as accuracy within a tolerance of δ = 1
second. We calculate the precision, recall and F1 score for

each class according to the above definition. Table 2 shows

the F1 scores for each class.

Table 2: Precision, Recall and F1 score values for the net-

work for the NHL dataset

Faceoff Shot Advance Play Average

Precision 77.78 52.74 32.23 51.42 53.54

Recall 56.76 44.86 44.88 88.48 58.74

F1 score 65.62 48.49 40.70 65.04 54.97

Faceoff and Play events have the highest F1 score

whereas advance event has the lowest F1 score values

(65.62 and 65.04 respectively). From the low precision

value (32.23) of Advance events, it can be concluded that

other events are often mistaken for Advance events. A com-

mon observation is that long passes (Play events) are often

mistaken as Advance events. Another issue arises when a

faceoff is called off before actually happening, usually due

to a faceoff violation on the play. The model, in this sce-

nario, gets enough spatiotemporal information to classify it

as a Faceoff event because of which false alarms are gen-

erated. These kind of failure cases are illustrated in Fig. 5.

Also, many times, the hockey players are occluded by the

near boards of the rink.

5.1.5 Ablation studies

Table 3 shows the performance of the individual towers in

the first three rows. For comparing inherent network per-

formance, comparison values are based on network outputs

excluding post processing. Repeating the same tower three

times and jointly training the three towers performs at-least

as good or better than a single tower as demonstrated by the

higher F1 score of T2 + T2 + T2 and T3 + T3 + T3 config-

uration than their single tower counterparts. This is due to



(a) Ground Truth: Play, Predicted: Advance

(b) Ground Truth: No event, Predicted: Faceoff

Figure 5: Two of the common kinds of failure cases. In (a), the network predicts a long pass as an Advance event. The red

boxes denote the two players between whom the pass is being made. In (b),the faceoff is called off before actually happening,

usually due to a faceoff violation on the play.

Figure 6: Training loss vs Number of Iterations for multi

tower settings. The configuration T1 + T2 + T3 (red curve)

attains the lowest loss values as compared to the other con-

figurations.

the increase in representational power from the increase in

network capacity. This is further seen in the training loss of

the respective models (Fig. 6).

We perform ablation experiments on the number of tem-

poral convolutional towers. The purpose of the study is to

demonstrate that the increase in performance is not merely

because of the increase in network capacity. Table 3 demon-

strates that using towers with different receptive fields is

important. Repeating the same tower three times, although

increases parameters, but does not improve performance

when compared to a multi receptive field network. This

is evident by the highest F1 scores obtained by the three

different receptive field setting (51.56). This is also demon-

strated by the lowest training loss value of T1+T2+T3 set-

ting in Fig 6. Repeating a fixed receptive field tower three

times has one of the two following effects: either redundant

information is provided to the network, (which means the

Table 3: Comparison of various 3-tower configurations for

the NHL dataset. T1, T2 and T3 represent temporal con-

volutional towers having different receptive fields. Highest

F1 score values are obtained on using towers with different

receptive fields.

Network type Faceoff Shot Advance Play Avg F1

T1 54.32 44.44 35.13 64.36 49.56

T2 45.98 41.32 23.91 63.79 43.75

T3 50.70 40.81 30.34 64.55 46.60

T1 + T1 + T1 49.11 44.77 34.41 65.72 48.50

T2 + T2 + T2 55.42 48.02 33.12 65.69 50.56

T3 + T3 + T3 49.35 43.83 30.63 64.48 47.07

T1 + T2 + T3 56.76 45.59 38.86 65.18 51.60

Table 4: Network architecture for the NHL dataset. Each

column denotes a temporal convolution tower Tk. k,s,d and

p denote kernel size, stride, dilation and padding respec-

tively

T1 T2 T3

k=3, s=3,d=1,p=0 k=3, s=5,d=2,p=0 k=2, s=2,d=1,p=0

Batch Norm 1D Batch Norm 1D Batch Norm 1D

ReLU ReLU ReLU

k=3, s=3, d=1,p=1 k=3, s=1,d=1,p=0 k=3, s=3,d=1,p=0

Batch Norm 1D Batch Norm 1D Batch Norm 1D

ReLU ReLU ReLU

k=3, s=1, d=1, p=0 k=2, s=2,d=1,p=0 k=3, s=2,d=1,p=0

Batch Norm 1D Batch Norm 1D Batch Norm 1D

ReLU ReLU ReLU

Sum

Softmax

receptive field is too large for an event), or less information

is provided if the receptive field is too small, (which results

in lower accuracy).



Figure 7: Event detection probability vs game time plot for a 5 minute interval in the second half of 2016-2017 season UEFA

Champions league Barcelona vs PSG game(6-1). The vertical dashed lines denote the ground truth spot timings. The network

generates clean proposal segments for each event type. The high substitution probabilities between 900 - 1050 second occur

during replay-highlights of card and goal. The replay-highlights are a card and substitution are often similar, where camera

is focused on a single player leading to false positives and lower precision for these events.

5.2. Event spotting in soccer

5.2.1 Objective

The objective of this task is to find the anchors of soccer

events in soccer game videos. We demonstrate the effective-

ness of our approach by achieving competitive performance

compared to the state of the art.

5.2.2 Experiment Settings

Instead of a two step approach used by Giancola et al. [13],

consisting of classification and then spotting, we train our

model directly on the spotting task. The model is trained on

15 second windows consisting of t = 30 features (features

are extracted at 2fps from the video). We again use the three

tower architecture used in the NHL dataset. However, the

model now outputs a single node (t0 = 1) representing the

probability of the event. This is done by simply averaging

the output of of final two nodes of the model used in the

NHL dataset. This is done because, unlike the NHL dataset,

the SoccerNet dataset is quite sparse and it can be safely

assumed that a single event occurs in the 15 second interval.

The ground truth anchor is kept at the center of the sampled

window of 15 second.

On the testing data, we slide the network with a stride

of one second in order to obtain event probabilities for one

second resolution. As per Giancola et al. [13] we use a wa-

tershed method to generate segment proposals and use the

center time in the segment to define the spotting candidate.

To handle the dataset imbalance resulting from the ad-

dition of the background class, we control event sampling

with the value of parameter p0 = 0.6. A weighted cross

entropy loss is used where the background class is given a

Figure 8: mAP as a function of tolerance δ. The model

obtains an average mAP of 60.1%.

weight of 0.33 and rest of the classes given a weight of 1

each. The training is done with a batch size of b = 120. For

data augmentation, we tried shifting the windows contain-

ing events by a random offset s ∈ [−7.5, 7.5] seconds from

the event anchor, which, however did not bring any accu-

racy improvement. Adam optimizer is used with an initial

leaning rate of 0.001. The training is done on an Nvidia

GTX 1080 Ti GPU.

5.2.3 Results and Analysis

Giancola et al. [13] define the task of event spotting as find-

ing the anchor time, called spot candidate that identifies the

location of an event. A candidate spot is defined as posi-

tive if it lands within a tolerance δ around the ground truth

anchor. Intuitively, the closer the candidate to a target, the

better is the spotting performance. Mean average precision

(mAP) is calculated for a given tolerance δ. The accuracy



Figure 9: Precision recall curves corresponding to the best

performing model.

Table 5: Class wise mAP scores for the SoccerNet dataset.

Our method outperforms [13] on all the classes

Cards Subs Goals Average

Giancola et. al [13] 52.1 59.3 73.0 61.5

Ours 63.1 69.1 79.0 70.4

metric is the average mAP between δ = 5 to δ = 60 sec-

onds.

Giancola et. al. [13] showed that the I3D and C3D fea-

tures already include temporal information, further incorpo-

rating these features in a temporal architecture leaves them

redundant. Therefore, we use ResNet features in our ex-

periments. Table 5 shows the highest per-class mAP of the

network (corresponding to δ = 60 seconds) compared with

Giancola et. al. Goal events are the easiest to spot obtaining

an mAP of 79%. Card events are the most difficult to spot

with an mAP of 63.1%. Figure 9 shows the corresponding

precision-recall curves for the three classes.

Figure 7 shows the event probability vs game time plot

for one of the soccer games in the test set. The network

generates clean proposal segments for each event type. A

reason why the mAP for substitution and cards is low is be-

cause the replay-highlights of a card and substitution are of-

ten similar, where camera is focused on a single player lead-

ing to false positives and lower precision for these events.

An example of this can be seen in Figure 7 with significant

value for substitution probability after the first card event.

Figure 8 shows the mAP vs tolerance(δ) curve for tol-

erance between δ = 5 to δ = 60. From the shape of

the curve, the mAP decreases almost linearly for tolerance

below which the model was trained on i.e. 15 seconds.

Around 60 second tolerance, the mAP saturates to ∼ 70

%. We obtain an average-mAP of 60.1 % averaged over the

tolerances which exceeds Giancola et. al (49.7%) by 10.4%

(Table 6). We argue that this is because our approach is

able to understand the temporal aspect of the game better

when compared to the two step NetVLAD [1] pooling (64

clusters) and Resnet152 [14] based classification-detection

approach used in Giancola et. al. [13]. Cioppa et. al.

Table 6: mAP scores for the soccer action spotting task. Our

work achieves competitive results compared to the state of

the art.

Method mAP

Giancola et. al (5s) [13] 34.5

Giancola et. al (20s) [13] 49.7

Giancola et. al (60s) [13] 40.6

Cioppa et. al [7] 62.5

Ours 60.1

[7] recently introduced a context aware loss function for

soccer action spotting using a combination of segmenta-

tion loss followed by an iterative matching procedure and

a separate spotting loss. Our work achieves a competitive

performance, with a difference of 2.4% mAP (Table 6) and

outperforms the ablation study baselines in Cioppa et. al.

[7], by using a much simpler network/approach using cross

entropy loss function.

6. Conclusion and Future Work

In this paper, we address the difficulty of obtaining

frame-level annotations in sport event detection. We intro-

duce a multi-scale temporal 1D convolutional network for

detecting events in two coarsely annotated datasets of com-

pletely different event frequencies. The results obtained on

the SoccerNet dataset are more impressive than the hockey

results. A reason for this is that the events in hockey are

much more fast paced and frequent as compared to soccer,

making the hockey dataset more challenging. Future work

will be focused on taking advantage of player level contex-

tual features, hockey puck position and game audio for the

task of event detection.
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