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Abstract

We present a neural network TTNet aimed at real-time
processing of high-resolution table tennis videos, providing
both temporal (events spotting) and spatial (ball detection
and semantic segmentation) data. This approach gives core
information for reasoning score updates by an auto-referee
system.

We also publish a multi-task dataset OpenTTGames
with videos of table tennis games in 120 fps labeled with
events, semantic segmentation masks, and ball coordinates
for evaluation of multi-task approaches, primarily oriented
on spotting of quick events and small objects tracking.
TTNet demonstrated 97.0% accuracy in game events spot-
ting along with 2 pixels RMSE in ball detection with 97.5%
accuracy on the test part of the presented dataset.

The proposed network allows the processing of down-
scaled full HD videos with inference time below 6 ms per
input tensor on a machine with a single consumer-grade
GPU. Thus, we are contributing to the development of real-
time multi-task deep learning applications and presenting
approach, which is potentially capable of substituting man-
ual data collection by sports scouts, providing support for
referees’ decision-making, and gathering extra information
about the game process.

1. Introduction

Deep learning-based computer vision approaches have
recently started to play an important role in sports analyt-
ics. There is a broad scope of tasks to address: tracking of
players [22] and sports equipment (like balls [8] or hockey
sticks [4]), human pose estimation [2], and also multiple
levels of detection of game-related actions [3]. For many
of these tasks, it is of high interest to achieve real-time per-
formance to aid the on-line game analytics that demands
steady and very fast solutions.

Table tennis is a fast-paced game with a great variety of
visual data to be analyzed. Replacing manual data collec-
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Figure 1. Sample frame with the TTNet predictions overlaid.

tion by automatic systems would potentially allow increas-
ing the speed and accuracy of video analysis.

The essential events in table tennis, which define the
game process after a serve, are ball bounces and net touches.
Manual collection of information about the number of
bounces and their coordinates on the table is almost impos-
sible because of high ball speed, but it may be accomplished
with deep learning-based video analysis. However, there is
a broad scope of challenges associated with this task. For
example, the size of the ball in a full HD video, which con-
tains both players, an umpire and a table, is quite small:
about 15 pixels on average. Moreover, the ball may be not
the only small white object in the image because of the parts
of player clothing or background elements. Another chal-
lenge is the ball speed. Indeed, during the intense game, the
speed of the ball may be more than 30 m/s. Therefore, video
data with a high frame rate is required to detect the trajec-
tory of the ball and corresponding events, like bounces and
net hits.

All this leads to many limitations and high demands on
neural network architectures. First of all, the network must
have low inference time to process each frame of the high
frame rate video in real-time, using reasonable equipment
like a machine with a single GPU. Thus, this brings us to
the field of shallow convolutional networks with a relatively
small number of operations. Moreover, different types of in-
formation need to be extracted from the input video in par-



allel: segmentation masks (humans, table and scoreboard),
coordinates of the ball, and game events. In this work,
we present a relatively lightweight multi-task architecture
TTNet to address all these tasks simultaneously, having 5.9
GFLOPs and inference time below 6 ms on a machine with
a single NVIDIA RTX 2080Ti GPU.

Another challenge is the lack of public multi-task
datasets with the main focus on spotting quick game events.
Therefore, we had to introduce a dataset for the assess-
ment of the proposed architecture. To address this issue,
we collected and labeled table tennis videos. In addition to
the model architecture, we release the dataset for the com-
munity, to enable consistent assessment of computer vision
techniques for table tennis analysis.

2. Related works

Despite the table tennis popularity, only a very limited
number of works offer computer vision-based solutions for
the tasks related to this sport. Previous works were mainly
focused on the ball detection. For example, in the work of
Tamaki and Saito [21] contour analysis methods were used
to find potential ball candidates. However, such detection
approach faces problems with ball-like objects, generating
many false positive detections.

Similarly, in the project of Myint et al. [15] adaptive
color thresholding and background subtraction are used for
the ball segmentation on stereo-images. In the final setup,
presented in [16], a system of 4 interrelated high-speed
cameras was involved for the reconstruction of the ball 3D
trajectory that leads to a very accurate ball detection but re-
quires complex equipment.

Besides table tennis, some works investigated the capa-
bilities of Deep Learning solutions for a ball tracking in
other sports. Reno et al. [17] proposed the CNN archi-
tecture for detecting the ball in videos of tennis games by
classifying small patches of the input image to decide if it
contains the ball or not. However, the treatment of a sig-
nificant amount of overlapping patches is not suitable for
real-time applications. Komorowski et al. [11] presented
novel CNN architecture DeepBall, which was designed to
find the ball during football games. It works in 190 fps on
full HD images, achieving state-of-the-art performance in
this task when the ball moves relatively slow, while on table
tennis videos the ball speed is much higher.

However, the main goal of the solutions above was only
the ball detection, while sports videos contain much more
useful information about players, game events and environ-
mental conditions, which may be exploited for a more com-
prehensive analysis of players’ performance, for develop-
ment of auto-umpire systems, and for the building of pre-
dictive machine learning models. Multi-task models ([18])
may be used to deal with the mentioned tasks, simulta-
neously outputting different types of information. For in-

stance, UberNet [10] was proposed as an architecture aimed
at solving a broad scope of computer vision problems: ob-
ject detection, human parts segmentation, etc. All tasks
were addressed by combining different datasets and training
this neural network in an end-to-end manner, which signif-
icantly simplifies the training process, making it more clear
and straightforward.

Also, the multi-task approach was used to enhance action
recognition accuracy in the work of Luvizon et al., where
pose estimation was combined with visual features helps to
classify actions in video sequences [13]. However, to the
best of our knowledge, the problem of tracking very small
objects in the image, combined with a multiclass semantic
segmentation and temporal events spotting, has not been ad-
dressed in a single CNN architecture yet that brought us to
the development of TTNet.

3. Table tennis analysis

The reasoning of score updates during the rally by an
auto-referee system requires different types of information
to be gathered. The core of the rules is in-game events: ball
bounces and net hits, the correct treatment of which gives an
understanding of the current game state. However, the coor-
dinates of the ball and the position of the table are necessary
to determine the bounce side as well as to filter out false-
positive bounces that occur not on the table. Moreover, the
table position may be slightly changed during the game, so
it needs to be updated continuously. Player positions are
also required to prevent the extraction of information about
the table when it may be partially occluded, which can lead
to an incorrect determination of the net position. Also, the
mask of the referee could be utilized for the detection of the
gesture of let serve events. Finally, the scoreboard position
is also essential because a parallel system can use it for the
OCR retrieval of the ground truth score.

Taking into account all the required data, we developed
an architecture that simultaneously solves the tasks of event
spotting, object detection, and semantic segmentation.

4. OpenTTGames Dataset

Due to absence of multi-task datasets combining tempo-
ral and spatial data we introduce OpenTTGames!, covering
the mentioned aspects of table tennis analysis, which was
used for carrying out experiments in this paper. It includes
full HD videos of table tennis games recorded at 120 fps.
Every video is equipped with an annotation, containing the
frame numbers and corresponding targets for this particular
frame: manually labeled in-game events (ball bounces, net
hits, or empty event targets needed for the CNN robustness
and as a tool to avoid overfitting) and/or ball coordinates
and segmentation masks, which were labeled with deep

'https://lab.osai.ai/datasets/openttgames
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Figure 2. TTNet architecture: a and b - ball detectors, a - works on downscaled frames, b - on crops from full HD; ¢ - semantic segmentation
tail resulting in table, scoreboard and human masks; d - events (bounces and net hits) spotting tail; € operation denotes summation of
feature maps from corresponding encoder layer and from previous decoder layer.

learning-aided annotation models. There are 5 videos of
different matches, intended for training, and 7 short videos
from other matches for testing. Every video is recorded in
similar conditions with slight variations in camera angle.
Taking into account our method of target construction, de-
scribed in 5.5, it has resulted in 38752 training, 9502 vali-
dation, and 7328 testing samples.

5. Proposed method

The whole architecture of TTNet is depicted in Fig. 2,
while its main building blocks are described in Tab. 1 and
Tab. 2. The network consumes input tensors, formed by
stacks of 9 subsequent frames from a raw video (resolu-
tion: wo = 1920px; hg = 1080px) sampled at 120 fps, and
outputs in-game events probabilities (bounces on the table
and the net hits), semantic masks of the table, humans, and
scoreboard as well as the ball position. The downscaled
input is processed by the core backbone - VGG-style fea-
ture extractor. The resulting feature maps are used in an
encoder-decoder semantic segmentation branch and for the
initial ball detection. The ball position estimation is rough
on this stage due to low resolution. Therefore, the sec-
ond stage of the ball detection is introduced. It works in
the same manner but utilizes frames from the original input
cropped around the prediction of the first detector. Thus,
the final ball detection is performed with the spatial resolu-
tion of the original video. The events are ball-related, so it
can be expected that local features in the ball area could be

beneficial for the recognition of the events. For this reason,
the local stage feature maps are shared with the event spot-
ting branch. Details of the architecture are described in the
following sections.

5.1. Ball detection

Ball positions should be estimated as precise as possible,
given the camera resolution. This task involves several dif-
ficulties. Our approach assumes only one real ball on the
frame, but there could be other small white round objects,
which could be mistaken for the ball. In addition, the ball
is usually blurred due to motion. This makes the distinctive
dynamic features of the true ball motion substantial for its
reliable detection. Therefore, the proposed approach uses a
stack of consequent video frames rather than a single frame
to capture the motion information.

The ball localization is performed by predicting its cen-
ter on the last (the most recent) frame in the stack. The
target values are composed of two vectors with the length
of the width and the height of the input. The values of the
target vectors are produced by a normal distribution fitted
around the ball center coordinates from the ground truth la-
bels data as proposed in [19]. In other words, the target (Fig.
3) is two one-dimensional Gaussian distribution curves with
means associated with the x and y of the ball center, respec-
tively. The variances of the curves are set to reasonable
values associated with the average ball radius at the scale of
the fed frames.



In-channels/ . .
Operator Out-channels stride | padding
Conv 3x3 a/b 1 1
BatchNorm b/b - -
ReLU b/b - -
MaxPool 2x2 b/b 2 0
Table 1. Structure of the ConvBlock, ”a” and ’b” are arbitrary pa-
rameters
In-channels/ . .
Operator Out-channels stride | padding
Conv 1x1 alg 1 0
BatchNorm ib - -
ReLU yib - -
TConv 3x3, op=1 b 2 1
BatchNorm i - -
ReLU o - -
Conv 1x1 $/b 1 0
BatchNorm b/b - -
ReLLU b/b - -

Table 2. Structure of the DeconvBlock. ”TConv” refers to Trans-

posed Convolution, “op” refers to output padding, a” and ”b” are
arbitrary parameters

=~ = ok
A I

Figure 3. Target construction for two stages of the ball detection.

The ball detection is done on two scales. The first detec-
tion stage (referred to as global) is made on a downscaled
video frames (to size w; = 320px; hy = 128px). The us-
age of the reduced input provides fast localization of the ball
on the whole frame. The input scale for this step is chosen
to ensure the ball to be at least two pixels in diameter. The
second stage ball localization (referred to as local) is ac-
complished on crops (crop size: wy = 320px; hy = 128px)
from the original video frames around the detected center
of the ball by the first stage. Both stages of the ball local-
ization share the same architecture of the neural network
and the same way of the target construction. The final ball
coordinates are derived from the two stages results by Eq.1.
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The network architecture involved in this task consists of

Input size Operator In-channels/
Out-channels
320 x 128 Conv 1x1 27/64
320 x 128 BatchNorm 64/64
320x 128 ReLU 64/64
320x 128 ConvBlock 64/64
160 x 64 ConvBlock 64/64
80x 32 DropOut 64/64
80 x 32 ConvBlock 64/128
40x 16 ConvBlock 128/128
20x 8 DropOut 128/128
20x 8 ConvBlock 128/256
10x 4 ConvBlock 256/256
5x2 DropOut 256/256
5x2 Flatten 256/-
2560 FC -
1792 ReLU -
1792 DropOut -
1792 FC -
640/256 ReLU -
640/256 DropOut -
320/128 FC -
320/128 Sigmoid -

Table 3. Structure of the Ball Detection part (global and local
structures are identical). There are 2 parallel sets of operators after
the horizontal line, giving outputs for x and y vectors respectively

a convolutional encoder (feature extractor) and a fully con-
nected tail. The results of the convolutional backbones from
both detectors are shared with other task branches. The fea-
tures, which were produced while processing downscaled
images of the whole scene, are used for semantic segmenta-
tion, whereas the features based on the cropped frames are
utilized for the event spotting task. The encoder is made
up of the 1x1 Convolutional layer, followed by six Convo-
lutional blocks (Tab. 1) wired sequentially. The following
fully connected part is formed in a swallow-tail shape, as
the neural network has to predict a pair of coordinate vec-
tors (Tab. 3).

The branch is trained with a cross-entropy loss function,
calculated for x and y vectors independently and summed
up on both scales (Eq. 2):

1 w12 1 hi2
L =———> i logph ,———> P, logp!
bally 2 = w1 o pévl,z gpwl,Q hl 9 py1,2 gp?h.z
= og=1 =1

2

, where ﬁi - target vector values, pi - predicted values.
5.2. Event spotting

According to the table tennis rules, only ball bounces,
serves, and net hits are essential to keep the score updated.



. In-channels/
Input size Operator Out-channels
5x2 Conv 1x1 512/64
5x2 BatchNorm 64/64
5x2 ReLU 64/64
5x2 DropOut 64/64
5x2 ConvBlock (w/o MaxPool) 64/64
5x2 DropOut 64/64
5x2 ConvBlock (w/o MaxPool) 64/64
5x2 DropOut 64/64
5x2 Flatten 64/-
640 FC -
512 ReLU -
512 FC -
2 Sigmoid -

Table 4. Structure of the Events Spotting part

Due to the fact that the neural network feed is a 9 frame
sequence, which timespan is less than 0.1 s, the architecture
is capable of detecting only fast events, such as bounces and
net hits. Thus, the TTNet model is used for the auto-referee
purposes only during the rally, while serves, indicating the
start of the rally, could be recognized by a similar network.
It works with temporarily wider frame sequences because
serves have a great variety of possible duration; however,
this task is out of the scope of the paper.

The event spotting branch acts on concatenated feature
maps from global and local detectors. Such an approach
helps gradients from event spotting loss to flow through
both feature extractors. The branch consists of three con-
volutional blocks without MaxPool followed by two fully
connected layers (Tab. 4).

The last activation layer (Sigmoid) allows both events to
occur simultaneously. Thus, the event spotting task may be
considered as a multilabel classification. This is motivated
by the fact that binary labels are not practically suitable for
this task due to the high speed of the ball. It may be impos-
sible to pick the particular frame with the event because the
ball may be blurred in motion, or there may not be a frame
with an actual bounce at all. This leads to the necessity of
smooth event labeling. The target values were constructed
as sin %” to be in (0,1) range and act as events probabilities,
where n is the number of frames between the considered
frame and the manually labeled event frame. The target is
nonzero if n € (—4,4) and 0 otherwise.

The events of the considered types could not be spotted
without information on the ball trajectory after the potential
event moment. The only input of the system is 2D images
without depth data; hence, one can not say if the ball is al-
ready on the table surface or it will continue its dive on the
next frame. For this reason, the central frame in the image
stack is labeled with appropriate target probabilities. This

Input size Operator In-channels/
Out-channels
10x 4 DeconvBlock 256/128
20x 8 DeconvBlock 128/128
40x 16 DeconvBlock 128/64
80 x 32 DeconvBlock 64/64
160 x 64 TConv 3x3, s=2, p=0, op=0 64/32
321 x 129 RelLU 32/32
321 x 129 Conv 3x3, s=2, p=0 32/32
319x 127 RelLU 32/32
319 x 127 Conv 2x2, s=2, p=1 32/3
320x 128 Sigmoid 3/3

Table 5. Structure of the Semantic Segmentation Decoder part.
”TConv” - Transposed Convolution, “op” - output padding, "p”

9999

- padding, ’s” - stride

way of the target construction allows including data from
the past and the future frames with respect to the assessed
one to spot the events reliably. This leads to a certain delay
in the prediction; however, in our case, it is under 0.05 s,
which is far below the reaction time for humans. Conse-
quently, it does not reduce the subjective quality of predic-
tions on live video, and it is not practically significant.

Because the problem is reduced to classification, the
event spotting branch was trained with a weighted (1:3
bounce:net hit) cross-entropy loss (Eq. 3) due to a sig-
nificant class imbalance. Randomly sampled frames se-
quences without events were added to the training dataset
with zero targets to make the neural network correctly pre-
dict the event absence. A number of these negative samples
was roughly the same as the number of labeled events.

1

Nevents

Levent = -

> Bip'logp’ ()

i€{events}

, where Neyents - number of possible event types (2 in the
case), the summation is performed over these event types.

5.3. Semantic segmentation

The required semantic masks of three classes (humans,
table, scoreboard) are predicted in the last frame of the stack
using an encoder-decoder approach. The encoder is the
backbone, which is shared with the first stage ball detec-
tor. Although the masks are predicted on the downscaled
input only, the resolution is enough for the practical applica-
tions. Decoder blocks (Tab. 2) are based on 2D Transposed
Convolutional layers for upsampling by a factor of 2 as op-
posed to the downscaling with the Max Pooling layer in the
encoder blocks. The Transposed Convolutional layers are
surrounded with 1x1 Convolutional layers, reducing com-
putation by decreasing the treated tensor depth and aligning
feature maps sizes on the encoder and decoder stages in or-



der to apply skip connections.

Skip connections wiring scheme is applied in order to
preserve spatial resolution. Features produced at three
smallest scales before the final encoder block are bypassed
into the corresponding scale decoder blocks and added-up
in an element-wise manner. This approach is adopted from
the LinkNet [5].

The last activation layer is chosen to be a Sigmoid layer
as semantic masks of different classes may be overlapped.
The branch is trained with two loss functions (Eq. 4)
summed up: 1 - Sgrensen-Dice coefficient (smoothed with
€ = 10~* for numerical stability, Eq. 5) as the first compo-
nent of the loss and binary cross-entropy loss (BCE) as the
second one.

Lsegm = (1 - DICESmooth) + BCE 4)
20PN P
DICEsmooth = w (@)
|P|+ |P|+ ¢

, where P - target binary mask, P - semantic segmentation
prediction map

5.4. Multi-task loss function

Multi-task training requires loss aggregation. A naive
weighted sum of losses for simultaneous learning of multi-
ple tasks is widely used. The applied weights are uniform
or manually tuned. The proposed neural network predicts
data of different modalities, and the predictions are inter-
connected. For instance, the success of the event spotting
branch is related to the success of the ball detection, as the
events are predicted for frame crops around the proposed
ball position. Moreover, the differences in the target data
types lead to inconsistent learning paces. In order to over-
come these issues, an approach to weight losses, consider-
ing the homoscedastic uncertainty of each task, was adopted
from [9]. It incorporates the relative weights of the losses
adaptively and treats them as trainable parameters (Eq. 6).
The last term of the sum acts as a regularizer for the trivial
solution elimination.

4
L;
L= 2—2

i=1

4
> log (a3) 6)

=1

9

, where L; - one of four: Lba”m, Leyents O Lgegm -

5.5. Data preparation

The supervised approach requires labeled data for all
three tasks. The manual event labeling is quite fast with an
in-house markup tool, which allows marking frames with
the events of interest. The event spotting task is considered
as the key task; it is done completely manually for the whole
dataset. The rest of the targets are built around it.

Segmentation masks;

w coordinates: {x,y)
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Figure 4. Input tensor structure. Event target is constructed for
the middle (5th) frame, ball and segmentation targets - for the last
(9th).

The training sample is represented as a sequence of 25
video frames with the manually labeled event right in the
middle frame. The length of the sample allows to subsam-
ple training sequences of 9 subsequent frames to provide
different stages of the considered event. Input tensors for
the training were constructed from this 9 frame subsamples
with event spotting target for the middle frame and semantic
segmentation masks and the ball position for the last frame
in such sequence (Fig. 4).

The semi-automated process was utilized to facilitate the
manual annotation procedure for the ball coordinates and
the segmentation masks. Individual networks were used
for every auto-annotation task. The networks’ architecture
mimics the segmentation branch of the proposed multi-task
neural network but adopts more powerful but slower en-
coders: ResNet-152 for the human class and ResNet-34
for the table and the scoreboard classes. These supplemen-
tary neural networks were trained using data from differ-
ent sources. For instance, open-source datasets were used
for the human segmentation task: fine-annotated examples
from Cityscapes Dataset [6], Supervisely Person Dataset [1]
and COCO (detection 2017) Dataset [12], alongside with
manually annotated 50 images of real tennis players. A
custom dataset of 1500 human-labeled images was used for
the table segmentation task, while for the board segmenta-
tion, a synthetic dataset consisting of 5000 images distilled
with several real examples was utilized. Every auto-labeling
model was evaluated using intersection over union metric,
and for human, table and scoreboard segmentation tasks it
resulted in values of 0.964, 0.945, and 0.986, respectively.

The same aided way of data annotation was applied for
the ball detection task. The two-stage ball detection part
of the whole multi-task neural network pipeline was trained
with 4 frame sequences as input tensors. 47500 raw frames
were labeled by hand to form a dataset for this task. The



Featur§ extractor ResNet-18 | TTNet-encoder
architecture

Encoder GFLOPs 2.260 2.340
Parameters, M 11.250 1.180
Inference time, ms 7.6 6.0
Global RMSE, px 12.11 6.79
Local RMSE, px 1.99 1.97
Global accuracy 0.973 0.975
Local accuracy 0.973 0.978
ToU 0.943 0.928
PCE 0.971 0.977
SPCE 0.970 0.970

Table 6. The TTNet VGG-style encoder (feature extractor) per-
forms better in almost all metrics and has lower inference time
(presented for the full pipeline) as compared to ResNet-18 back-
bone.

following metrics were used to evaluate the model perfor-
mance: accuracy of ball presence detections and RMSE er-
ror for detected ball coordinates (see Section 6.2). After
the training process, the final ball detection model for auto-
labeling was able to detect the ball in 96.3% of cases with
an average error of 2.5 pixels by the local detector and in
96.4% of cases with an average error of 14.3 pixels by the
global detector.

6. Experiments
6.1. Implementation Details and Training

As mentioned earlier, spatial and temporal multitasking
is the main goal of this work, and there are no open datasets
combining such data, so OpenTTGames is used for model
evaluation

All experiments were carried out with PyTorch 1.2.0
framework on a PC with a single NVIDIA RTX 2080 Ti
graphics card. The same setup was involved in the final
pipeline performance evaluation.

During all training experiments, the Adam optimizer was
used with an initial learning rate 0.001 and default param-
eters f1 = 0.9, B = 0.999, and € = 1078, The learning
rate was halved after 3 epochs without the loss value de-
crease, whereas the finishing criterion for training was the
absence of any loss decrease for 12 epochs in a row. These
relatively small numbers of epochs were worked out by a
manual hyperparameters tuning process.

Following image augmentations were applied: random
cropping with width and height reduction up to 15%, frames
rotation (4+15°), horizontal frames flip (which improves
treatment of left-handed players), random brightness, con-
trast, and hue shifts. The image transformations were ap-
plied with the same parameters to each frame in a sequence
in order to keep consistency.

6.2. Evaluation metrics

Both stages of the ball position prediction were assessed
with two metrics. Initially, the predicted vectors were
thresholded with a level of 0.5. Then, the first metric is
intended to evaluate the accuracy of the ball presence pre-
diction. The ball was considered to be present in the frame
in case there was at least one non-zero value in both thresh-
olded vectors. Matching these results with the ground truth
data allows calculating the number of true-positive and true-
negative detections, resulting in detection accuracy. The
second metric was the Euclidean distance (RMSE) between
the predicted and labeled ball position computed over true-
positive ball detections only.

The event spotting branch target was designed as proba-
bility values for each event type. This makes it impossible
to use sequence-based metrics, like temporal Intersection
Over Union. Therefore, the Percentage of Correct Events
(PCE) metrics was applied [14]. It calculates the portion of
correctly spotted events. An event was considered as correct
if the predicted value is equal to the ground truth after 0.5
level thresholding of the predicted and target values. It is
worth noting that the metric could misclassify predictions
with intermediate probabilities. A Smooth Percentage of
Correct Events (SPCE) metric was introduced to overcome
this limitation. It is the same as PCE, but an event treated
as a correct one if the difference with the target is less than
a threshold (0.25 in the experiments).

The semantic maps predictions were assessed with Inter-
section Over Union (IoU).

6.3. Feature extractor

The first object of interest in the CNN architecture was
feature extractor. Due to the mentioned above reasons, it
was designed to be fast, lightweight, yet powerful, with the
main focus on inference time for real-time applications. We
examined ResNet-18 architecture as a potential replacement
for our original TTNet backbone due to its relatively small
size and proven effectiveness of the general ResNet archi-
tecture in many deep learning tasks.

The results presented in Tab. 6 demonstrate that the
whole model with TTNet backbone has lower inference
time, much fewer parameters, and it outperforms the model
with the ResNet-18 backbone in almost every task. Training
process for both encoders was conducted using the optimal
number of input frames and adaptive loss balancing. Due
to our inference time limitations, we excluded from consid-
eration many other popular architectures like DenseNet [7],
Inception [20], and ResNeXt [23].

6.4. Target sequence length

We performed experiments to find the minimum number
of subsequent frames forming an input tensor to produce the
best results, without decreasing the processing speed. For



Target width, 1 3 5 7 9 Loss Unbalanced Map ually Balanced
n frames weighted

Global RMSE, px | 3093 | 3.56 | 3.08 | 3.47 3.60 Global RMSE, px 9.34 7.74 6.79
Local RMSE, px 6.64 1.23 1.36 1.46 1.46 Local RMSE, px 2.93 2.38 1.97
Global accuracy 0.955 | 0.982 | 0.982 | 0.981 | 0.980 || Global accuracy 0.977 0.977 0.975
Local accuracy 0.912 | 0.983 | 0.983 | 0.983 | 0.981 || Local accuracy 0.975 0.978 0.978
IoU 0.938 0.902 0.928
Table 7. Input sequence length optimization for the ball detection PCE 0.976 0.968 0.977
part of TTNet. 3-5 frames performs better. SPCE 0.966 0.963 0.970

Target width, | 3 5 7 9
n frames

PCE 0.947 | 0.940 | 0.965 | 0.970 | 0.979
SPCE 0.931 | 0.923 | 0.954 | 0.965 | 0.975
Global RMSE, px | 23.65 | 7.02 | 5.81 | 5.79 | 5.27

Local RMSE, px | 5.53 | 227 | 1.71 | 240 | 2.03

Global accuracy 0.962 | 0.978 | 0.981 | 0.979 | 0.981
Local accuracy 0.928 | 0.979 | 0.983 | 0.981 | 0.982

Table 8. The influence of the length of the input sequence on the
event spotting metrics. As the task is paired with ball detection,
the results of the last are shown as well. Longer input sequences
are beneficial for the event spotting.

this purpose, experiments with separate training of every
branch of the TTNet with input tensors of different widths
(from 1 to 9 subsequent frames with a step of 2) were car-
ried out. In the ball detection task, the optimal numbers of
frames were 3-5, demonstrating the best results on almost
every metric (Tab. 7). However, the usage of 9-frame se-
quences resulted in just a slight results decrease in the same
metrics.

For the semantic segmentation task, the best results were
achieved for a 1-frame sequence; however, no degradation
in segmentation quality was observed in the case of longer
sequences.

The event spotting branch is naturally related to the ball
detector branch in TTNet, so for the experiments with the
different lengths of the input sequence the network archi-
tecture included both of these branches (Tab. 8). The event
target strongly correlated with temporal information, so the
best results in event spotting and, surprisingly, in ball de-
tection by the global detector were achieved in the case of
the longest 9-frame sequences. Thus, this length was used
in all further experiments because of the best results on the
core task of events spotting and as a compromise with a
slight degradation of accuracy in other tasks. Moreover,
such length is reasonably small for providing the events pre-
dictions with a short time lag.

6.5. Loss balancing

Different ways of the TTNet loss components balancing
were investigated to chose an optimal training approach. As

Table 9. Comparison of training results of the TTNet with differ-
ent loss aggregation strategies. The adaptive balancing performs
better on most tasks and metrics

a final loss, it was either just a sum of all components, or
manually tuned constant weights for the loss components,
or adaptively balanced loss described above. Expectedly,
the latter method demonstrated the most promising results
(see Tab. 9), giving the best metric values in more tasks and,
most importantly, in the event spotting task.

7. Inference on a live video stream

As it was mentioned above, the predictions of the pro-
posed neural network should be supplemented with the
serve event spotting approach. It was done with a sepa-
rate convolutional neural network, which adopts architec-
ture and the training method from the event spotting branch
of the multi-task neural network.

The game rules module, working on the raw predictions,
was developed to enable completely automated table ten-
nis referring. The whole system demo video is provided in
supplementary materials. It demonstrates the performance
of the neural network for the purposes of the auto-referee
system.

8. Conclusion

This paper introduces a lightweight multi-task architec-
ture TTNet for real-time data extraction from table tennis
videos. It works on downscaled full HD videos and is able
to detect the ball with pixel-level accuracy, using a cascade
of two detectors, working on different resolutions; spots fast
in-game events and predicts semantic segmentation masks
while processing 120 fps with a single consumer-grade
GPU. Additionally, we demonstrated that all branches of the
proposed neural network could be trained simultaneously in
an end-to-end manner. Thereby, our work contributes to the
development of deep learning-based approaches for sports
analysis. We also publish a labeled multi-task dataset for
development and assessment of computer vision-based sys-
tems of table tennis analysis.
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