
TTNet: Real-time temporal and spatial video analysis of table tennis

Roman Voeikov∗ Nikolay Falaleev∗ Ruslan Baikulov∗

OSAI

{r.voeikov, n.falaleev, r.baikulov}@osai.ai

Abstract

We present a neural network TTNet aimed at real-time

processing of high-resolution table tennis videos, providing

both temporal (events spotting) and spatial (ball detection

and semantic segmentation) data. This approach gives core

information for reasoning score updates by an auto-referee

system.

We also publish a multi-task dataset OpenTTGames

with videos of table tennis games in 120 fps labeled with

events, semantic segmentation masks, and ball coordinates

for evaluation of multi-task approaches, primarily oriented

on spotting of quick events and small objects tracking.

TTNet demonstrated 97.0% accuracy in game events spot-

ting along with 2 pixels RMSE in ball detection with 97.5%

accuracy on the test part of the presented dataset.

The proposed network allows the processing of down-

scaled full HD videos with inference time below 6 ms per

input tensor on a machine with a single consumer-grade

GPU. Thus, we are contributing to the development of real-

time multi-task deep learning applications and presenting

approach, which is potentially capable of substituting man-

ual data collection by sports scouts, providing support for

referees’ decision-making, and gathering extra information

about the game process.

1. Introduction

Deep learning-based computer vision approaches have

recently started to play an important role in sports analyt-

ics. There is a broad scope of tasks to address: tracking of

players [22] and sports equipment (like balls [8] or hockey

sticks [4]), human pose estimation [2], and also multiple

levels of detection of game-related actions [3]. For many

of these tasks, it is of high interest to achieve real-time per-

formance to aid the on-line game analytics that demands

steady and very fast solutions.

Table tennis is a fast-paced game with a great variety of

visual data to be analyzed. Replacing manual data collec-

∗Authors contributed equally

Figure 1. Sample frame with the TTNet predictions overlaid.

tion by automatic systems would potentially allow increas-

ing the speed and accuracy of video analysis.

The essential events in table tennis, which define the

game process after a serve, are ball bounces and net touches.

Manual collection of information about the number of

bounces and their coordinates on the table is almost impos-

sible because of high ball speed, but it may be accomplished

with deep learning-based video analysis. However, there is

a broad scope of challenges associated with this task. For

example, the size of the ball in a full HD video, which con-

tains both players, an umpire and a table, is quite small:

about 15 pixels on average. Moreover, the ball may be not

the only small white object in the image because of the parts

of player clothing or background elements. Another chal-

lenge is the ball speed. Indeed, during the intense game, the

speed of the ball may be more than 30 m/s. Therefore, video

data with a high frame rate is required to detect the trajec-

tory of the ball and corresponding events, like bounces and

net hits.

All this leads to many limitations and high demands on

neural network architectures. First of all, the network must

have low inference time to process each frame of the high

frame rate video in real-time, using reasonable equipment

like a machine with a single GPU. Thus, this brings us to

the field of shallow convolutional networks with a relatively

small number of operations. Moreover, different types of in-

formation need to be extracted from the input video in par-

allel: segmentation masks (humans, table and scoreboard),

coordinates of the ball, and game events. In this work,

we present a relatively lightweight multi-task architecture

TTNet to address all these tasks simultaneously, having 5.9

GFLOPs and inference time below 6 ms on a machine with

a single NVIDIA RTX 2080Ti GPU.

Another challenge is the lack of public multi-task

datasets with the main focus on spotting quick game events.

Therefore, we had to introduce a dataset for the assess-

ment of the proposed architecture. To address this issue,

we collected and labeled table tennis videos. In addition to

the model architecture, we release the dataset for the com-

munity, to enable consistent assessment of computer vision

techniques for table tennis analysis.

2. Related works

Despite the table tennis popularity, only a very limited

number of works offer computer vision-based solutions for

the tasks related to this sport. Previous works were mainly

focused on the ball detection. For example, in the work of

Tamaki and Saito [21] contour analysis methods were used

to find potential ball candidates. However, such detection

approach faces problems with ball-like objects, generating

many false positive detections.

Similarly, in the project of Myint et al. [15] adaptive

color thresholding and background subtraction are used for

the ball segmentation on stereo-images. In the final setup,

presented in [16], a system of 4 interrelated high-speed

cameras was involved for the reconstruction of the ball 3D

trajectory that leads to a very accurate ball detection but re-

quires complex equipment.

Besides table tennis, some works investigated the capa-

bilities of Deep Learning solutions for a ball tracking in

other sports. Reno et al. [17] proposed the CNN archi-

tecture for detecting the ball in videos of tennis games by

classifying small patches of the input image to decide if it

contains the ball or not. However, the treatment of a sig-

nificant amount of overlapping patches is not suitable for

real-time applications. Komorowski et al. [11] presented

novel CNN architecture DeepBall, which was designed to

find the ball during football games. It works in 190 fps on

full HD images, achieving state-of-the-art performance in

this task when the ball moves relatively slow, while on table

tennis videos the ball speed is much higher.

However, the main goal of the solutions above was only

the ball detection, while sports videos contain much more

useful information about players, game events and environ-

mental conditions, which may be exploited for a more com-

prehensive analysis of players’ performance, for develop-

ment of auto-umpire systems, and for the building of pre-

dictive machine learning models. Multi-task models ([18])

may be used to deal with the mentioned tasks, simulta-

neously outputting different types of information. For in-

stance, UberNet [10] was proposed as an architecture aimed

at solving a broad scope of computer vision problems: ob-

ject detection, human parts segmentation, etc. All tasks

were addressed by combining different datasets and training

this neural network in an end-to-end manner, which signif-

icantly simplifies the training process, making it more clear

and straightforward.

Also, the multi-task approach was used to enhance action

recognition accuracy in the work of Luvizon et al., where

pose estimation was combined with visual features helps to

classify actions in video sequences [13]. However, to the

best of our knowledge, the problem of tracking very small

objects in the image, combined with a multiclass semantic

segmentation and temporal events spotting, has not been ad-

dressed in a single CNN architecture yet that brought us to

the development of TTNet.

3. Table tennis analysis

The reasoning of score updates during the rally by an

auto-referee system requires different types of information

to be gathered. The core of the rules is in-game events: ball

bounces and net hits, the correct treatment of which gives an

understanding of the current game state. However, the coor-

dinates of the ball and the position of the table are necessary

to determine the bounce side as well as to filter out false-

positive bounces that occur not on the table. Moreover, the

table position may be slightly changed during the game, so

it needs to be updated continuously. Player positions are

also required to prevent the extraction of information about

the table when it may be partially occluded, which can lead

to an incorrect determination of the net position. Also, the

mask of the referee could be utilized for the detection of the

gesture of let serve events. Finally, the scoreboard position

is also essential because a parallel system can use it for the

OCR retrieval of the ground truth score.

Taking into account all the required data, we developed

an architecture that simultaneously solves the tasks of event

spotting, object detection, and semantic segmentation.

4. OpenTTGames Dataset

Due to absence of multi-task datasets combining tempo-

ral and spatial data we introduce OpenTTGames1, covering

the mentioned aspects of table tennis analysis, which was

used for carrying out experiments in this paper. It includes

full HD videos of table tennis games recorded at 120 fps.

Every video is equipped with an annotation, containing the

frame numbers and corresponding targets for this particular

frame: manually labeled in-game events (ball bounces, net

hits, or empty event targets needed for the CNN robustness

and as a tool to avoid overfitting) and/or ball coordinates

and segmentation masks, which were labeled with deep

1https://lab.osai.ai/datasets/openttgames

Figure 2. TTNet architecture: a and b - ball detectors, a - works on downscaled frames, b - on crops from full HD; c - semantic segmentation

tail resulting in table, scoreboard and human masks; d - events (bounces and net hits) spotting tail;
⊕

operation denotes summation of

feature maps from corresponding encoder layer and from previous decoder layer.

learning-aided annotation models. There are 5 videos of

different matches, intended for training, and 7 short videos

from other matches for testing. Every video is recorded in

similar conditions with slight variations in camera angle.

Taking into account our method of target construction, de-

scribed in 5.5, it has resulted in 38752 training, 9502 vali-

dation, and 7328 testing samples.

5. Proposed method

The whole architecture of TTNet is depicted in Fig. 2,

while its main building blocks are described in Tab. 1 and

Tab. 2. The network consumes input tensors, formed by

stacks of 9 subsequent frames from a raw video (resolu-

tion: w0 = 1920px;h0 = 1080px) sampled at 120 fps, and

outputs in-game events probabilities (bounces on the table

and the net hits), semantic masks of the table, humans, and

scoreboard as well as the ball position. The downscaled

input is processed by the core backbone - VGG-style fea-

ture extractor. The resulting feature maps are used in an

encoder-decoder semantic segmentation branch and for the

initial ball detection. The ball position estimation is rough

on this stage due to low resolution. Therefore, the sec-

ond stage of the ball detection is introduced. It works in

the same manner but utilizes frames from the original input

cropped around the prediction of the first detector. Thus,

the final ball detection is performed with the spatial resolu-

tion of the original video. The events are ball-related, so it

can be expected that local features in the ball area could be

beneficial for the recognition of the events. For this reason,

the local stage feature maps are shared with the event spot-

ting branch. Details of the architecture are described in the

following sections.

5.1. Ball detection

Ball positions should be estimated as precise as possible,

given the camera resolution. This task involves several dif-

ficulties. Our approach assumes only one real ball on the

frame, but there could be other small white round objects,

which could be mistaken for the ball. In addition, the ball

is usually blurred due to motion. This makes the distinctive

dynamic features of the true ball motion substantial for its

reliable detection. Therefore, the proposed approach uses a

stack of consequent video frames rather than a single frame

to capture the motion information.

The ball localization is performed by predicting its cen-

ter on the last (the most recent) frame in the stack. The

target values are composed of two vectors with the length

of the width and the height of the input. The values of the

target vectors are produced by a normal distribution fitted

around the ball center coordinates from the ground truth la-

bels data as proposed in [19]. In other words, the target (Fig.

3) is two one-dimensional Gaussian distribution curves with

means associated with the x and y of the ball center, respec-

tively. The variances of the curves are set to reasonable

values associated with the average ball radius at the scale of

the fed frames.

Operator
In-channels/

Out-channels
stride padding

Conv 3x3 a/b 1 1

BatchNorm b/b - -

ReLU b/b - -

MaxPool 2x2 b/b 2 0

Table 1. Structure of the ConvBlock, ”a” and ”b” are arbitrary pa-

rameters

Operator
In-channels/

Out-channels
stride padding

Conv 1x1 a/a
4

1 0

BatchNorm a
4

/a
4

- -

ReLU a
4

/a
4

- -

TConv 3x3, op=1 a
4

/a
4

2 1

BatchNorm a
4

/a
4

- -

ReLU a
4

/a
4

- -

Conv 1x1 a
4

/b 1 0

BatchNorm b/b - -

ReLU b/b - -

Table 2. Structure of the DeconvBlock. ”TConv” refers to Trans-

posed Convolution, ”op” refers to output padding, ”a” and ”b” are

arbitrary parameters

Figure 3. Target construction for two stages of the ball detection.

The ball detection is done on two scales. The first detec-

tion stage (referred to as global) is made on a downscaled

video frames (to size w1 = 320px;h1 = 128px). The us-

age of the reduced input provides fast localization of the ball

on the whole frame. The input scale for this step is chosen

to ensure the ball to be at least two pixels in diameter. The

second stage ball localization (referred to as local) is ac-

complished on crops (crop size: w2 = 320px;h2 = 128px)

from the original video frames around the detected center

of the ball by the first stage. Both stages of the ball local-

ization share the same architecture of the neural network

and the same way of the target construction. The final ball

coordinates are derived from the two stages results by Eq.1.

x = x1

w0

w1

−
w2

2
+ x2; y = y1

h0

h1

−
h2

2
+ y2 (1)

The network architecture involved in this task consists of

Input size Operator
In-channels/

Out-channels

320 x 128 Conv 1x1 27/64

320 x 128 BatchNorm 64/64

320 x 128 ReLU 64/64

320 x 128 ConvBlock 64/64

160 x 64 ConvBlock 64/64

80 x 32 DropOut 64/64

80 x 32 ConvBlock 64/128

40 x 16 ConvBlock 128/128

20 x 8 DropOut 128/128

20 x 8 ConvBlock 128/256

10 x 4 ConvBlock 256/256

5 x 2 DropOut 256/256

5 x 2 Flatten 256/-

2560 FC -

1792 ReLU -

1792 DropOut -

1792 FC -

640/256 ReLU -

640/256 DropOut -

320/128 FC -

320/128 Sigmoid -

Table 3. Structure of the Ball Detection part (global and local

structures are identical). There are 2 parallel sets of operators after

the horizontal line, giving outputs for x and y vectors respectively

a convolutional encoder (feature extractor) and a fully con-

nected tail. The results of the convolutional backbones from

both detectors are shared with other task branches. The fea-

tures, which were produced while processing downscaled

images of the whole scene, are used for semantic segmenta-

tion, whereas the features based on the cropped frames are

utilized for the event spotting task. The encoder is made

up of the 1x1 Convolutional layer, followed by six Convo-

lutional blocks (Tab. 1) wired sequentially. The following

fully connected part is formed in a swallow-tail shape, as

the neural network has to predict a pair of coordinate vec-

tors (Tab. 3).

The branch is trained with a cross-entropy loss function,

calculated for x and y vectors independently and summed

up on both scales (Eq. 2):

Lball1,2 = −
1

w1,2

w1,2∑

i=1

p̂ix1,2
log pix1,2

−
1

h1,2

h1,2∑

i=1

p̂iy1,2
log piy1,2

(2)

, where p̂i - target vector values, pi - predicted values.

5.2. Event spotting

According to the table tennis rules, only ball bounces,

serves, and net hits are essential to keep the score updated.

Input size Operator
In-channels/

Out-channels

5 x 2 Conv 1x1 512/64

5 x 2 BatchNorm 64/64

5 x 2 ReLU 64/64

5 x 2 DropOut 64/64

5 x 2 ConvBlock (w/o MaxPool) 64/64

5 x 2 DropOut 64/64

5 x 2 ConvBlock (w/o MaxPool) 64/64

5 x 2 DropOut 64/64

5 x 2 Flatten 64/-

640 FC -

512 ReLU -

512 FC -

2 Sigmoid -

Table 4. Structure of the Events Spotting part

Due to the fact that the neural network feed is a 9 frame

sequence, which timespan is less than 0.1 s, the architecture

is capable of detecting only fast events, such as bounces and

net hits. Thus, the TTNet model is used for the auto-referee

purposes only during the rally, while serves, indicating the

start of the rally, could be recognized by a similar network.

It works with temporarily wider frame sequences because

serves have a great variety of possible duration; however,

this task is out of the scope of the paper.

The event spotting branch acts on concatenated feature

maps from global and local detectors. Such an approach

helps gradients from event spotting loss to flow through

both feature extractors. The branch consists of three con-

volutional blocks without MaxPool followed by two fully

connected layers (Tab. 4).

The last activation layer (Sigmoid) allows both events to

occur simultaneously. Thus, the event spotting task may be

considered as a multilabel classification. This is motivated

by the fact that binary labels are not practically suitable for

this task due to the high speed of the ball. It may be impos-

sible to pick the particular frame with the event because the

ball may be blurred in motion, or there may not be a frame

with an actual bounce at all. This leads to the necessity of

smooth event labeling. The target values were constructed

as sin nπ
8

to be in (0,1) range and act as events probabilities,

where n is the number of frames between the considered

frame and the manually labeled event frame. The target is

nonzero if n ∈ (−4, 4) and 0 otherwise.

The events of the considered types could not be spotted

without information on the ball trajectory after the potential

event moment. The only input of the system is 2D images

without depth data; hence, one can not say if the ball is al-

ready on the table surface or it will continue its dive on the

next frame. For this reason, the central frame in the image

stack is labeled with appropriate target probabilities. This

Input size Operator
In-channels/

Out-channels

10 x 4 DeconvBlock 256/128

20 x 8 DeconvBlock 128/128

40 x 16 DeconvBlock 128/64

80 x 32 DeconvBlock 64/64

160 x 64 TConv 3x3, s=2, p=0, op=0 64/32

321 x 129 ReLU 32/32

321 x 129 Conv 3x3, s=2, p=0 32/32

319 x 127 ReLU 32/32

319 x 127 Conv 2x2, s=2, p=1 32/3

320 x 128 Sigmoid 3/3

Table 5. Structure of the Semantic Segmentation Decoder part.

”TConv” - Transposed Convolution, ”op” - output padding, ”p”

- padding, ”s” - stride

way of the target construction allows including data from

the past and the future frames with respect to the assessed

one to spot the events reliably. This leads to a certain delay

in the prediction; however, in our case, it is under 0.05 s,

which is far below the reaction time for humans. Conse-

quently, it does not reduce the subjective quality of predic-

tions on live video, and it is not practically significant.

Because the problem is reduced to classification, the

event spotting branch was trained with a weighted (1:3

bounce:net hit) cross-entropy loss (Eq. 3) due to a sig-

nificant class imbalance. Randomly sampled frames se-

quences without events were added to the training dataset

with zero targets to make the neural network correctly pre-

dict the event absence. A number of these negative samples

was roughly the same as the number of labeled events.

Levent = −
1

Nevents

∑

i∈{events}

βip̂
i log pi (3)

, where Nevents - number of possible event types (2 in the

case), the summation is performed over these event types.

5.3. Semantic segmentation

The required semantic masks of three classes (humans,

table, scoreboard) are predicted in the last frame of the stack

using an encoder-decoder approach. The encoder is the

backbone, which is shared with the first stage ball detec-

tor. Although the masks are predicted on the downscaled

input only, the resolution is enough for the practical applica-

tions. Decoder blocks (Tab. 2) are based on 2D Transposed

Convolutional layers for upsampling by a factor of 2 as op-

posed to the downscaling with the Max Pooling layer in the

encoder blocks. The Transposed Convolutional layers are

surrounded with 1x1 Convolutional layers, reducing com-

putation by decreasing the treated tensor depth and aligning

feature maps sizes on the encoder and decoder stages in or-

der to apply skip connections.

Skip connections wiring scheme is applied in order to

preserve spatial resolution. Features produced at three

smallest scales before the final encoder block are bypassed

into the corresponding scale decoder blocks and added-up

in an element-wise manner. This approach is adopted from

the LinkNet [5].

The last activation layer is chosen to be a Sigmoid layer

as semantic masks of different classes may be overlapped.

The branch is trained with two loss functions (Eq. 4)

summed up: 1 - Sørensen-Dice coefficient (smoothed with

ǫ = 10−4 for numerical stability, Eq. 5) as the first compo-

nent of the loss and binary cross-entropy loss (BCE) as the

second one.

Lsegm = (1−DICEsmooth) +BCE (4)

DICEsmooth =
2|P̂ ∩ P |+ ǫ

|P̂ |+ |P |+ ǫ
(5)

, where P̂ - target binary mask, P - semantic segmentation

prediction map

5.4. Multi­task loss function

Multi-task training requires loss aggregation. A naive

weighted sum of losses for simultaneous learning of multi-

ple tasks is widely used. The applied weights are uniform

or manually tuned. The proposed neural network predicts

data of different modalities, and the predictions are inter-

connected. For instance, the success of the event spotting

branch is related to the success of the ball detection, as the

events are predicted for frame crops around the proposed

ball position. Moreover, the differences in the target data

types lead to inconsistent learning paces. In order to over-

come these issues, an approach to weight losses, consider-

ing the homoscedastic uncertainty of each task, was adopted

from [9]. It incorporates the relative weights of the losses

adaptively and treats them as trainable parameters (Eq. 6).

The last term of the sum acts as a regularizer for the trivial

solution elimination.

L =

4∑

i=1

Li

σ2

i

+

4∑

i=1

log (σi) (6)

, where Li - one of four: Lball1,2 , Levents or Lsegm .

5.5. Data preparation

The supervised approach requires labeled data for all

three tasks. The manual event labeling is quite fast with an

in-house markup tool, which allows marking frames with

the events of interest. The event spotting task is considered

as the key task; it is done completely manually for the whole

dataset. The rest of the targets are built around it.

Figure 4. Input tensor structure. Event target is constructed for

the middle (5th) frame, ball and segmentation targets - for the last

(9th).

The training sample is represented as a sequence of 25

video frames with the manually labeled event right in the

middle frame. The length of the sample allows to subsam-

ple training sequences of 9 subsequent frames to provide

different stages of the considered event. Input tensors for

the training were constructed from this 9 frame subsamples

with event spotting target for the middle frame and semantic

segmentation masks and the ball position for the last frame

in such sequence (Fig. 4).

The semi-automated process was utilized to facilitate the

manual annotation procedure for the ball coordinates and

the segmentation masks. Individual networks were used

for every auto-annotation task. The networks’ architecture

mimics the segmentation branch of the proposed multi-task

neural network but adopts more powerful but slower en-

coders: ResNet-152 for the human class and ResNet-34

for the table and the scoreboard classes. These supplemen-

tary neural networks were trained using data from differ-

ent sources. For instance, open-source datasets were used

for the human segmentation task: fine-annotated examples

from Cityscapes Dataset [6], Supervisely Person Dataset [1]

and COCO (detection 2017) Dataset [12], alongside with

manually annotated 50 images of real tennis players. A

custom dataset of 1500 human-labeled images was used for

the table segmentation task, while for the board segmenta-

tion, a synthetic dataset consisting of 5000 images distilled

with several real examples was utilized. Every auto-labeling

model was evaluated using intersection over union metric,

and for human, table and scoreboard segmentation tasks it

resulted in values of 0.964, 0.945, and 0.986, respectively.

The same aided way of data annotation was applied for

the ball detection task. The two-stage ball detection part

of the whole multi-task neural network pipeline was trained

with 4 frame sequences as input tensors. 47500 raw frames

were labeled by hand to form a dataset for this task. The

Feature extractor

architecture
ResNet-18 TTNet-encoder

Encoder GFLOPs 2.260 2.340

Parameters, M 11.250 1.180

Inference time, ms 7.6 6.0

Global RMSE, px 12.11 6.79

Local RMSE, px 1.99 1.97

Global accuracy 0.973 0.975

Local accuracy 0.973 0.978

IoU 0.943 0.928

PCE 0.971 0.977

SPCE 0.970 0.970

Table 6. The TTNet VGG-style encoder (feature extractor) per-

forms better in almost all metrics and has lower inference time

(presented for the full pipeline) as compared to ResNet-18 back-

bone.

following metrics were used to evaluate the model perfor-

mance: accuracy of ball presence detections and RMSE er-

ror for detected ball coordinates (see Section 6.2). After

the training process, the final ball detection model for auto-

labeling was able to detect the ball in 96.3% of cases with

an average error of 2.5 pixels by the local detector and in

96.4% of cases with an average error of 14.3 pixels by the

global detector.

6. Experiments

6.1. Implementation Details and Training

As mentioned earlier, spatial and temporal multitasking

is the main goal of this work, and there are no open datasets

combining such data, so OpenTTGames is used for model

evaluation

All experiments were carried out with PyTorch 1.2.0

framework on a PC with a single NVIDIA RTX 2080 Ti

graphics card. The same setup was involved in the final

pipeline performance evaluation.

During all training experiments, the Adam optimizer was

used with an initial learning rate 0.001 and default param-

eters β1 = 0.9, β2 = 0.999, and ǫ = 10−8. The learning

rate was halved after 3 epochs without the loss value de-

crease, whereas the finishing criterion for training was the

absence of any loss decrease for 12 epochs in a row. These

relatively small numbers of epochs were worked out by a

manual hyperparameters tuning process.

Following image augmentations were applied: random

cropping with width and height reduction up to 15%, frames

rotation (±15◦), horizontal frames flip (which improves

treatment of left-handed players), random brightness, con-

trast, and hue shifts. The image transformations were ap-

plied with the same parameters to each frame in a sequence

in order to keep consistency.

6.2. Evaluation metrics

Both stages of the ball position prediction were assessed

with two metrics. Initially, the predicted vectors were

thresholded with a level of 0.5. Then, the first metric is

intended to evaluate the accuracy of the ball presence pre-

diction. The ball was considered to be present in the frame

in case there was at least one non-zero value in both thresh-

olded vectors. Matching these results with the ground truth

data allows calculating the number of true-positive and true-

negative detections, resulting in detection accuracy. The

second metric was the Euclidean distance (RMSE) between

the predicted and labeled ball position computed over true-

positive ball detections only.

The event spotting branch target was designed as proba-

bility values for each event type. This makes it impossible

to use sequence-based metrics, like temporal Intersection

Over Union. Therefore, the Percentage of Correct Events

(PCE) metrics was applied [14]. It calculates the portion of

correctly spotted events. An event was considered as correct

if the predicted value is equal to the ground truth after 0.5

level thresholding of the predicted and target values. It is

worth noting that the metric could misclassify predictions

with intermediate probabilities. A Smooth Percentage of

Correct Events (SPCE) metric was introduced to overcome

this limitation. It is the same as PCE, but an event treated

as a correct one if the difference with the target is less than

a threshold (0.25 in the experiments).

The semantic maps predictions were assessed with Inter-

section Over Union (IoU).

6.3. Feature extractor

The first object of interest in the CNN architecture was

feature extractor. Due to the mentioned above reasons, it

was designed to be fast, lightweight, yet powerful, with the

main focus on inference time for real-time applications. We

examined ResNet-18 architecture as a potential replacement

for our original TTNet backbone due to its relatively small

size and proven effectiveness of the general ResNet archi-

tecture in many deep learning tasks.

The results presented in Tab. 6 demonstrate that the

whole model with TTNet backbone has lower inference

time, much fewer parameters, and it outperforms the model

with the ResNet-18 backbone in almost every task. Training

process for both encoders was conducted using the optimal

number of input frames and adaptive loss balancing. Due

to our inference time limitations, we excluded from consid-

eration many other popular architectures like DenseNet [7],

Inception [20], and ResNeXt [23].

6.4. Target sequence length

We performed experiments to find the minimum number

of subsequent frames forming an input tensor to produce the

best results, without decreasing the processing speed. For

Target width,

n frames
1 3 5 7 9

Global RMSE, px 30.93 3.56 3.08 3.47 3.60

Local RMSE, px 6.64 1.23 1.36 1.46 1.46

Global accuracy 0.955 0.982 0.982 0.981 0.980

Local accuracy 0.912 0.983 0.983 0.983 0.981

Table 7. Input sequence length optimization for the ball detection

part of TTNet. 3-5 frames performs better.

Target width,

n frames
1 3 5 7 9

PCE 0.947 0.940 0.965 0.970 0.979

SPCE 0.931 0.923 0.954 0.965 0.975

Global RMSE, px 23.65 7.02 5.81 5.79 5.27

Local RMSE, px 5.53 2.27 1.71 2.40 2.03

Global accuracy 0.962 0.978 0.981 0.979 0.981

Local accuracy 0.928 0.979 0.983 0.981 0.982

Table 8. The influence of the length of the input sequence on the

event spotting metrics. As the task is paired with ball detection,

the results of the last are shown as well. Longer input sequences

are beneficial for the event spotting.

this purpose, experiments with separate training of every

branch of the TTNet with input tensors of different widths

(from 1 to 9 subsequent frames with a step of 2) were car-

ried out. In the ball detection task, the optimal numbers of

frames were 3-5, demonstrating the best results on almost

every metric (Tab. 7). However, the usage of 9-frame se-

quences resulted in just a slight results decrease in the same

metrics.

For the semantic segmentation task, the best results were

achieved for a 1-frame sequence; however, no degradation

in segmentation quality was observed in the case of longer

sequences.

The event spotting branch is naturally related to the ball

detector branch in TTNet, so for the experiments with the

different lengths of the input sequence the network archi-

tecture included both of these branches (Tab. 8). The event

target strongly correlated with temporal information, so the

best results in event spotting and, surprisingly, in ball de-

tection by the global detector were achieved in the case of

the longest 9-frame sequences. Thus, this length was used

in all further experiments because of the best results on the

core task of events spotting and as a compromise with a

slight degradation of accuracy in other tasks. Moreover,

such length is reasonably small for providing the events pre-

dictions with a short time lag.

6.5. Loss balancing

Different ways of the TTNet loss components balancing

were investigated to chose an optimal training approach. As

Loss Unbalanced
Manually

weighted
Balanced

Global RMSE, px 9.34 7.74 6.79

Local RMSE, px 2.93 2.38 1.97

Global accuracy 0.977 0.977 0.975

Local accuracy 0.975 0.978 0.978

IoU 0.938 0.902 0.928

PCE 0.976 0.968 0.977

SPCE 0.966 0.963 0.970

Table 9. Comparison of training results of the TTNet with differ-

ent loss aggregation strategies. The adaptive balancing performs

better on most tasks and metrics

a final loss, it was either just a sum of all components, or

manually tuned constant weights for the loss components,

or adaptively balanced loss described above. Expectedly,

the latter method demonstrated the most promising results

(see Tab. 9), giving the best metric values in more tasks and,

most importantly, in the event spotting task.

7. Inference on a live video stream

As it was mentioned above, the predictions of the pro-

posed neural network should be supplemented with the

serve event spotting approach. It was done with a sepa-

rate convolutional neural network, which adopts architec-

ture and the training method from the event spotting branch

of the multi-task neural network.

The game rules module, working on the raw predictions,

was developed to enable completely automated table ten-

nis referring. The whole system demo video is provided in

supplementary materials. It demonstrates the performance

of the neural network for the purposes of the auto-referee

system.

8. Conclusion

This paper introduces a lightweight multi-task architec-

ture TTNet for real-time data extraction from table tennis

videos. It works on downscaled full HD videos and is able

to detect the ball with pixel-level accuracy, using a cascade

of two detectors, working on different resolutions; spots fast

in-game events and predicts semantic segmentation masks

while processing 120 fps with a single consumer-grade

GPU. Additionally, we demonstrated that all branches of the

proposed neural network could be trained simultaneously in

an end-to-end manner. Thereby, our work contributes to the

development of deep learning-based approaches for sports

analysis. We also publish a labeled multi-task dataset for

development and assessment of computer vision-based sys-

tems of table tennis analysis.

References

[1] Supervisely person dataset. https://

supervise.ly/explore/projects/

supervisely-person-dataset-23304/

datasets. Accessed: 2019-10-15.

[2] Lewis Bridgeman, Marco Volino, Jean-Yves Guillemaut,

and Adrian Hilton. Multi-person 3d pose estimation and

tracking in sports. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR) Workshops, June 2019.

[3] Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard

Ghanem, and Juan Carlos Niebles. Sst: Single-stream tem-

poral action proposals. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), July 2017.

[4] Zixi Cai, Helmut Neher, Kanav Vats, David A. Clausi, and

John S. Zelek. Temporal hockey action recognition via pose

and optical flows. CoRR, abs/1812.09533, 2018.

[5] Abhishek Chaurasia and Eugenio Culurciello. Linknet: Ex-

ploiting encoder representations for efficient semantic seg-

mentation. CoRR, abs/1707.03718, 2017.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proc.

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[7] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely

connected convolutional networks. CoRR, abs/1608.06993,

2016.

[8] Paresh Kamble, Avinash Keskar, and Kishor Bhurchandi. A

deep learning ball tracking system in soccer videos. Opto-

Electronics Review, 27(1):58 – 69, 2019.

[9] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task

learning using uncertainty to weigh losses for scene geome-

try and semantics. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2018.

[10] Iasonas Kokkinos. Ubernet: Training a universal convolu-

tional neural network for low-, mid-, and high-level vision

using diverse datasets and limited memory. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5454–5463, July 2017.

[11] Jacek Komorowski, Grzegorz Kurzejamski, and Grzegorz

Sarwas. Deepball: Deep neural-network ball detector. CoRR,

abs/1902.07304, 2019.

[12] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: common objects in context. CoRR, abs/1405.0312,

2014.

[13] Diogo C. Luvizon, David Picard, and Hedi Tabia. 2d/3d pose

estimation and action recognition using multitask deep learn-

ing. CoRR, abs/1802.09232, 2018.

[14] William McNally, Kanav Vats, Tyler Pinto, Chris Dulhanty,

John McPhee, and Alexander Wong. Golfdb: A video

database for golf swing sequencing. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR)

Workshops, June 2019.

[15] Hnin Myint, Patrick Wong, Laurence Dooley, and Adrian

Hopgood. Tracking a table tennis ball for umpiring purposes.

In Fourteenth IAPR International Conference on Machine

Vision Applications (MVA2015), May 2015.

[16] Hnin Myint, Patrick Wong, Laurence Dooley, and Adrian

Hopgood. Tracking a table tennis ball for umpiring purposes

using a multi-agent system. In The 20th International Con-

ference on Image Processing, Computer Vision, & Pattern

Recognition, July 2016.

[17] Vito Reno, Nicola Mosca, Roberto Marani, Massimiliano

Nitti, Tiziana D’Orazio, and Ettore Stella. Convolutional

neural networks based ball detection in tennis games. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshops, June 2018.

[18] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Math-

ieu, Rob Fergus, and Yann Lecun. Overfeat: Integrated

recognition, localization and detection using convolutional

networks. International Conference on Learning Represen-

tations (ICLR) (Banff), 12 2013.

[19] Daniel Speck, Pablo Barros, Cornelius Weber, and Stefan

Wermter. Ball localization for robocup soccer using convo-

lutional neural networks. In Sven Behnke, Raymond Sheh,

Sanem Sarıel, and Daniel D. Lee, editors, RoboCup 2016:

Robot World Cup XX, pages 19–30, Cham, 2017. Springer

International Publishing.

[20] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,

Jonathon Shlens, and Zbigniew Wojna. Rethinking

the inception architecture for computer vision. CoRR,

abs/1512.00567, 2015.

[21] Sho Tamaki and Hideo Saito. Reconstruction of 3d tra-

jectories for performance analysis in table tennis. In 2013

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 1019–1026, June 2013.

[22] Mohib Ullah and Faouzi Alaya Cheikh. A directed sparse

graphical model for multi-target tracking. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR)

Workshops, June 2018.

[23] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,

and Kaiming He. Aggregated residual transformations for

deep neural networks. CoRR, abs/1611.05431, 2016.

