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Abstract

Determining a waterline in images recorded in canoe

sprint training is an important component for the kine-

matic parameter analysis to assess an athlete’s perfor-

mance. Here, we propose an approach for the automated

waterline detection. First, we utilized a pre-trained Mask

R-CNN by means of transfer learning for canoe segmen-

tation. Second, we developed a multi-stage approach to

estimate a waterline from the outline of the segments. It

consists of two linear regression stages and the systematic

selection of canoe parts. We then introduced a parameter-

ization of the waterline as a basis for further evaluations.

Next, we conducted a study among several experts to esti-

mate the ground truth waterlines. This not only included

an average waterline drawn from the individual experts an-

notations but, more importantly, a measure for the uncer-

tainty between individual results. Finally, we assessed our

method with respect to the question whether the predicted

waterlines are in accordance with the experts annotations.

Our method demonstrated a high performance and provides

opportunities for new applications in the field of automated

video analysis in canoe sprint.

1. Introduction

Recording and analysing video sequences is a common

method for the quantification, logging and optimization

of the technique of athletes performing canoe and kayak

sprint [22, 23]. A particularly important form is the record-

ing from the position of a motorboat that moves in parallel

direction to the canoe [30, 34]. While moving at the same

speed, the athlete is recorded from an approximately per-

pendicular perspective with respect to the movement direc-

tion. This ensures standardized recording conditions which

Figure 1. Illustration of the disciplines canoe sprint (top) and

kayak sprint (bottom). The prediction of the waterline (dash-

dotted yellow line) is crucial for the analysis of kinematic param-

eters to assess the technique of athletes.

are the basis to assess the performance of athletes and in

particular of their technique. The actual analysis is then

based on determining kinematic parameters and their com-

parison to well known target values.

The underlying recording conditions in the free envi-

ronment are subject to variations (e.g. due to water move-

ment, hand-held camera, inherent cyclic speed changes dur-

ing paddling) that affect the comparability of the analyses

performed on these recordings. Hence, an analysis is usu-

ally restricted to a narrow time range to minimize potential

variations, i.e. often only a few or even a single paddle cy-

cle. The technique is then analyzed based on several sin-

gle images which are selected in accordance with a paddle

phase model that defines the beginning, end and intermedi-

ate stage of a cycle [21, 15, 23]. The parameters determined

in each of these images allow a comparison between multi-



ple athletes as well as between repeated training runs of the

same athlete.

The analysis of these single images aims at measuring

several distances and angles, i.e. the kinematic parameters,

in the projected 2D image plane [11]. It comprises the iden-

tification of several landmarks as, in particular, key-points

on the body of the athlete, a so called paddle line, that means

a straight line through the longitudinal middle of the paddle

shaft, and a waterline. As shown in Fig. 1, the latter ap-

proximates a boundary between the blurred water surface

and the more well-defined hull of the canoe. The waterline

is of particular interest for two reasons. First, it serves as a

reference with respect to the kinematic parameters to be es-

timated. Second, its exact position and orientation is often

difficult to specify in practice. Turbulences in water, waves

and splashes, reflections, camera jitter, a varying camera po-

sition or even poor image quality give rise to ambiguity in

this task.

The manual analysis procedure of these standardized

video sequences is time consuming, requires expert knowl-

edge and is also subject to individual errors. There is a

general interest in an automatic procedure which provides

a much faster analysis and which is also less prone to indi-

vidual errors. The advances in image processing by means

of deep neural networks in recent years pave the way for

the development of a widely automated analysis of video

recordings in canoe sprint. On the one hand, the rise of hu-

man 2D pose estimation algorithms [5, 6, 37, 17] and their

task-specific optimization provides the opportunity to au-

tomatically determine key-points on an athlete’s body in

a given image [16]. The application of such algorithms

for key-point detection has proven effective in a variety of

applications such as, e.g., skeleton tracking of players in

sports [3], swimming style classification [10] and stroke fre-

quency detection [35], and pose mining in long jump [18].

There is reason to expect them to work in canoe sprint anal-

ysis as well. In fact, their potential use for video analysis in

canoe sprint has recently been reported [12]. On the other

hand, approaches for the pixel-wise segmentation of objects

in an image such as Mask R-CNN [13] might serve as a ba-

sis for an automated detection of the canoe and the paddle

which can subsequently be used to determine the waterline

and the paddle line, respectively. However, the prospects of

success are much less obvious compared to pose estimation.

This work presents an approach for an automated detec-

tion of the waterline. Our method is based on image seg-

mentation using the Mask R-CNN network pre-trained on

the COCO dataset [19] and a subsequent multi-stage pro-

cedure that includes two linear regression steps. As to the

mentioned uncertainty of waterlines defined by several ex-

perts, we conducted an evaluation study and derived a gold

standard to assess the predicted waterlines.

The contributions of this paper include (1) an adoption

of Mask R-CNN for canoe segmentation and discrimination

of the disciplines canoe sprint and kayak sprint (compare

Fig. 1), (2) a procedure to estimate a waterline given the

segmented shape of the canoe, (3) a gold standard to assess

predicted waterlines with respect to human experts and (4)

a performance analysis of the proposed waterline detection

method.

2. Related Work

2.1. Mask R­CNN in Sports Applications

Since its superiority in the instance segmentation task of

the COCO Challenge 2017, Mask R-CNN has been widely

used for scene analyzing in sports videos. The applica-

tions range from ball detection [4] to jersey number recog-

nition [20], and further to player tracking [28] and events

identification [33, 27].

Challenges in these applications are amongst others the

dynamics of the subject and the numerous occlusions of the

tracked object that occur during the game. When analyzing

canoe sprint videos though, there is an additional challenge:

the peculiarity of the medium water, which render a robust

and accurate detection of the waterline difficult.

2.2. Waterline Problem

Several works focus on estimating the waterline on im-

ages or videos of rivers or lakes in order to detect the sailing

area of an autonomous boat. Wei and Zhang [36] present

a waterline detection method based on texture analysis of

river images with local binary patterns (LBPs) and gray

level co-occurrence matrix (GLCM). Steccanella et al. [32]

apply a supervised approach based on a Fully Convolutional

Neural Network for obtaining a pixel-wise image segmen-

tation.

These methods however rely on a detection of the water

area and focus on its boundary with the horizon line. Hence,

they cannot be used to estimate the separation line between

the lower part of a canoe hull and the water surface. Our

case requires a segmentation of the canoe hull within the

water body. The use of Mask R-CNN for this case is the

subject of several papers [31, 39, 25, 38, 24, 26]. However,

these approaches are applied exclusively to satellite images.

Due to the aerial perspective and their remote sensing char-

acter, these are not comparable to the video sequences of

canoe sprints that are examined here.

3. Proposed Approach

3.1. Task definition

The goal of our work is to determine a waterline in an

RGB image I ∈ R
m×n×3 drawn from video sequences

(50 frames per second) in the disciplines canoe sprint and

kayak sprint (see Fig. 1). Here, the spatial resolution is



m = 1024 × n = 576 pixels. It is assumed that the

images are recorded from an approximately perpendicular

perspective with respect to the movement direction of the

canoe. Moreover, only minor variations of the distance and

the relative position between canoe and motorboat are ex-

pected for consecutive images selected from the short time

window to be analyzed in the training run of an athlete.

The determination of the waterline is a regression prob-

lem. The goal is to approximate a straight line that separates

the visible part of the canoe from the invisible part below

the water surface. Waves, splashes and other disturbance

that might occlude the canoe hull must be considered when

approximating the line. The linear approximation of the wa-

terline should be particularly accurate in the central part of

the canoe right below the athlete, since this segment is no-

tably important for the subsequent derivation of the kine-

matic parameters.

We propose a two-staged approach for waterline predic-

tion. First, it is based on a pixel-wise segmentation of the

canoe by means of a Mask R-CNN that we adjusted to this

particular task using transfer learning. This is presented in

Sec. 3.2. Second, it employs a multi-stage procedure to con-

fine the pixels of the canoe segmentation to those close to

the water surface which can finally be used to define a wa-

terline. This is shown in Sec. 3.3.

3.2. Canoe Segmentation with Mask R­CNN

3.2.1 Method

The first stage of our approach is a pixel-wise instance seg-

mentation of each canoe object contained in the image.

The Mask R-CNN method proposed by He et al. [13] has

evolved to a state of the art approach for pixel-wise instance

segmentation. It is a two-stage framework built on top of a

Faster R-CNN [29]: the first stage generates object propos-

als, while the second stage predicts the class of each ob-

ject, refines its bounding box and generates a correspond-

ing binary mask on pixel level. Both stages are connected

to a backbone, in our case a ResNet101 [14] paired with a

Feature Pyramid Network, that serves as a feature extractor.

Hence, such a net is able to detect the set of objects Ω, with

its elements ωv = (Mv, cv, pv) ∈ Ω, v ∈ N defining the

class cv , its confidence value pv ∈ R, 0 < pv ≤ 1 and its

binary mask Mv ∈ {0, 1}m×n of an instance. The latter

provides a pixel-wise binary appearance of an object in an

image.

The particular segmentation problem in canoe sprint

video analysis is highly specific. That means that the al-

gorithm is not required to identify any additional object

in an image but only the canoe of an athlete. We ex-

ploited this fact and restricted the potential output objects

to canoes used in canoe sprint and kayak sprint (i.e., cv ∈
[canoe, kayak ]), both of which are actually canoes but with

a slightly different appearance. The segmented canoe as de-

fined by its binary segmentation mask Mv can subsequently

be used to determine the lower part of the outline of the ca-

noe.

3.2.2 Dataset and Implementation Details

We adopted the Mask R-CNN implementation as provided

by Matterport [2] which employs a ResNet101 architecture

as a backbone [14]. It is implemented in TensorFlow [1]

and Keras [7]. As described above, we restricted the output

layer for the segmentation to only two types of objects, i.e.

canoes for the disciplines canoe sprint and kayak sprint. We

applied transfer learning to train our model. Therefore, we

used the pre-trained weights that resulted from training the

Matterport implementation on the COCO dataset [19]. We

used the following training parameters: 400 iterations, 300

steps per iteration, SGD solver, learning rate 0.001, momen-

tum 0.9, one image batch size and weight decay 0.0001.

We carried out image annotation to derive training and

test sets as follows. Given were a total number of 66 video

sequences from both disciplines from which 250 images

were randomly selected. We used the VGG Image Anno-

tator [9, 8] to define polygones that mimic the canoe hull

in each image. Next, we used 210 images (58 from canoe

sprint, 152 from kayak sprint) to define a training set and

40 for the validation set (11 canoe sprint, 29 kayak sprint).

Moreover, we selected 30 of these images for the validation

set in a way that ensured that they belong to video sequences

from which no other image is used for training. In case of

the other 10 images, the canoes they contain are already

known to the model due to the training process.

During training, the image was either kept in its original

form (p = 0.5) or processed using data augmentation as

follows: flipping in horizontal direction (p = 0.5), rotation

by 2 degree and cropping/padding in a range from -15 % to

15 % in both image dimensions. The former represents a

zoom-in effect, the latter corresponds to zooming out.

3.3. Waterline Detection

The second stage of our approach comprises an itera-

tive procedure to derive a waterline given the binary seg-

mentation mask M ∈ {0, 1}m×n as provided by the seg-

mentation approach presented in the previous section. The

procedure is depicted in Fig. 2, step 1 shows the initial

segmentation. First, all points C ⊂ M that represent the

contour of the canoe are determined (step 2). As a result,

C contains at least two tuples for each image coordinate

xi where the canoe segment was found, i.e. (xi, y1) and

(xi, yj), j ∈ N, j ≥ 2, all of which belong to the contour.

It is obvious that the waterline is close to the bottom of the

canoe and we therefore reject the tuples belonging to the up-

per part and keep the others. Since we defined y = 0 at the

top of the image, the tuples with the larger coordinate, i.e.



Figure 2. Illustration of the iterative procedure to predict a water-

line on the basis of a canoe segmentation. Details for steps 1-6 are

provided in the text. The dashed blue lines in steps 4 and 5 are

the same. The solid green line in step 6 represents the predicted

waterline. It corresponds to the waterlines illustrated in Fig. 1.

max (y1, ..., yj), are used for further processing, leading to

C ′. Hence, C ′ ⊂ C ⊂ M defines the set of points belong-

ing to the bottom line of the canoe contour (step 3). Third,

a linear regression L1 (C
′) is performed on the set of points

contained in C ′ (step 4). All points above this regression

line are subsequently removed to form C ′′ ⊂ C ′ (step 5).

This step mimics cropping of small waves and splashes. Fi-

nally, another linear regression step L2 (C
′′) is performed

on the set of points in C ′′ (step 6). Its result defines the

predicted waterline.

4. Evaluation

The evaluation of predicted waterlines requires reference

data to assess its accuracy. However, quantitative refer-

ence data, for example, derived from passive optical mark-

ers does not exist. Moreover, it would only be hardly possi-

ble to collect this sort of data. Hence, the manual definition

of waterlines by human experts is the only possibility to de-

rive ground truth references. However, the task of defining

a waterline in an image is subject to individual perception

to some extent. As a result there often is no unique solu-

tion but rather different experts will provide several differ-

ent waterline estimates for the same image. Hence, there is

a narrow range within which waterlines defined by differ-

ent experts can be expected. Since our goal is to provide a

method that mimics an expert when solving the regression

problem to define a waterline, it is necessary to answer the

question whether the predicted waterline is in accordance

with this narrow range of ambiguity. To put it more sim-

ple, the question should be answered whether a waterline

prediction would be accepted by experts. We accounted for

this and performed an evaluation as follows.

First, we assessed the quality of canoe segmentation as

well as the inherently related classification of the particular

disciplines (see Sec. 4.1). Second, we conducted a small

study among several experts in the field of kinematic pa-

rameter analysis in canoe and kayak sprint (see Sec. 4.2).

The study was the basis to define a ground truth reference

as well as to quantify the uncertainty among experts. We

subsequently assessed the accuracy of our predictions with

respect to this gold standard.

4.1. Canoe Segmentation and Classification

The segmentation of the canoe is important for the sub-

sequent waterline prediction. We assessed the segmentation

quality of the adjusted and trained Mask R-CNN using the

validation set according to a standard evaluation metric. We

used the intersection-over-union (IoU ) defined as

IoU =
M ′ ∩M

M ′ ∪M
(1)

to measure the overlap between the predicted segmenta-

tion M ′ ∈ {0, 1}m×n and the ground truth mask M ∈
{0, 1}m×n of the canoe. The former was selected from the

predicted objects Ω as the one with the highest confidence

value pv .

We also assessed the classification performance of the

algorithm. To that end, we evaluated whether the algo-

rithm predicts the disciplines canoe sprint and kayak sprint

correctly. We therefore determined the true and false posi-

tives/negatives on the validation set separately for each dis-

cipline and used them to calculate the corresponding F1

scores.

4.2. Waterline Detection

The algorithm proposed in this work predicts the course

of a waterline. Here, we present our evaluation procedure

as well as the necessary preliminaries.

The parameterization of the waterline and an evaluation

metric is presented in Sec. 4.2.1. An evaluation study that

was carried out to derive individual annotations (i.e., the

determination of a waterline) for each image in the test set

from several human experts is presented in Sec. 4.2.2. Fi-

nally, the actual derivation of the ground truth reference data

and the ambiguity between different expert annotations that

can finally be used for the performance analysis of the algo-

rithm are presented in Sec. 4.2.3.

4.2.1 Parameterization and Evaluation Metric

The evaluation of a predicted waterline requires a suitable

parameterization in order to perform comparisons with a

reference. Each waterline is a linear function and is clearly

defined by its slope and a bias, i.e. an interception with the

coordinate axis at x = 0. Without the loss of generality, we

used a different parameterization which is shown in Fig. 3.

It allows a better interpretation and comparison of the eval-

uation results. Firstly, it consists of a height parameter h



which is defined as the y-coordinate of the waterline at the

center postion of the image (in x-direction), thereby effec-

tively representing the location of the line. Secondly, an

angle α which defines the rotation of the waterline with re-

spect to the horizontal line is another parameter.

Note that this parameterization implies a rough similar-

ity between the waterlines in different images being evalu-

ated. The consistence with respect to their position at and

their extent along the x-direction is particularly important to

derive an estimate for the uncertainty between experts (see

below). Due to the reasonably controlled conditions during

video recording in our particular application scenario, this

convention can be considered as true.

Given a particular waterline, the deviation between a

given ground truth height hi and angle αi and the predicted

parameters h′

i and α′

i in the i-th image defines as

ǫhi = |hi − h′

i| (2)

ǫαi = |αi − α′

i| (3)

The actual definition of a suitable ground truth for the pa-

rameters hi and αi for each image is subject of the evalua-

tion study presented below.

4.2.2 Evaluation study

As mentioned before, a ground truth for the waterlines can

only be defined on the basis of manual annotations. We

conducted an evaluation study to derive multiple human an-

notations for each image in our test set for waterline evalu-

ation. Therefore, we asked several experts from the field of

kinematic parameter analysis in canoe sprint to determine a

waterline. The implementation details were as follows.

The study was implemented on the basis of an interac-

tive website. Given a test set (see below), we presented each

image together with an initial guess of the waterline to each

expert. The task of each expert was to carefully review the

presented waterline and afterwards either modify its posi-

tion and orientation by means of moving anchors at its ends

or to accept the guessed line without any changes. Thereby,

we controlled the initial guess as described below to pre-

vent habituation to accept guessed lines without extensive

review.

A total number of 130 images were selected from 66

videos to construct a test dataset T . 44 images were from

canoe sprint and 86 from kayak sprint. We used these im-

ages to construct 4 groups within the test set. Group A: 90

images, the waterline as predicted by the algorithm with-

out further modifications; Group B: 20 images drawn from

group A, an additional offset of −3 pixels was added to the

waterline; Group C: 10 images, a vertical shift of +2 pix-

els and a −1.5 ◦ rotation was added to the line as predicted

by the algorithm; Group D: 10 images, similar processing

Figure 3. Waterline parameterization: h defines as the y-

coordinate of the waterline at the center location in x-direction

(x = 612); α is the angle between waterline and horizontal line.

as in group C, but with the rotation into the opposite direc-

tion, i.e. +1.5 ◦. The groups B-D were used to enforce a

misalignment of the presented waterline so that the partic-

ipants are expected to perform modifications. The size of

the distortions were selected by means of explorative tests

to achieve variations that are visible but not trivial. The

images were presented in a random order and without dis-

closing the group.

4.2.3 Ground Truth and Ambiguity of Waterlines

The dataset T resulting from the evaluation study comprised

multiple individual annotations for each image. We ex-

ploited this information to determine a ground truth water-

line for each image as well as an estimate for the variation

of the experts annotations as follows.

First, provided the individual parameters hi,k und αi,k,

with k ∈ Ni and Ni being the set of the individual experts,

we calculated the mean value for each of the two parameters

for each image i, i ∈ T , i.e.

hi = 1/|Ni| ·
∑

k∈Ni

hi,k (4)

αi = 1/|Ni| ·
∑

k∈Ni

αi,k (5)

|Ni| denotes the number of experts who annotated the i-

th image. Next, the deviation of each individual parameter

hi,k and αi,k to the corresponding mean values hi and αi

were calculated by means of

ǫhi,k = hi,k − hi (6)

ǫαi,k = αi,k − αi (7)

We employed these differences for further statistical analy-

sis. We were particularly interested in the question whether



there is statistical evidence that the individual annotations

provided by different experts are similar and can therefore

be used to calculate an average annotation for each image

as introduced before in Eqs. 4 and 5. We applied a Kruskal-

Wallis test as a non-parametric method to compare the dis-

tributions of the individual differences to the ground truth

estimates, separately for the height and rotation parameter.

The null hypothesis is that the medians of these distribu-

tions are equal which would support the assumption that

they originate from the same population. If the null hypoth-

esis cannot be rejected in the light of the data, the parame-

ters hi and αi as introduced above seem a plausible approx-

imation for the ground truth in each image. Hence, they can

be used as the reference for further performance analysis.

Given this ground truth for each image, we were still

interested in the overall variation of the individual anno-

tations. Based on the individual deviations according to

Eqs. 4 and 5 for the entire dataset, we calculated the stan-

dard deviation for both waterline parameters, i.e.

σh = σ
(

ǫhi,k
)

∀k ∈ Ni, i ∈ T , and (8)

σα = σ
(

ǫαi,k
)

∀k ∈ Ni, i ∈ T , (9)

These estimates serve as a general measure for the uncer-

tainty among all experts. Using these measures, we finally

defined an acceptance range, that means an interval in the

vicinity of the ground truth reference parameters hi and αi,

within which a predicted waterline would be considered as

a valid estimate. This interval was constructed as the u-fold

σh and σα vicinity,

∆h = ±u · σh (10)

∆α = ±u · σα (11)

The parameter u was determined such that 95% of all indi-

vidual annotations are contained within this range.

5. Results

5.1. Canoe Segmentation and Classification

The segmentation quality on the test dataset measured in

terms of the IoU was 0.82 on average with a standard de-

viation of 0.04 and minimal and maximal values of 0.72
and 0.88, respectively. This corresponds to a moderate

and, more importantly, very consistent segmentation qual-

ity. The results clearly indicate a strong overlap between the

true and the predicted masks of the canoe, which is particu-

larly important for the subsequent waterline estimation.

The result of the classification performance analysis re-

vealed a F1 score of 1.0 for both disciplines. It means that

the Mask R-CNN was perfectly able to distinguish between

canoe and kayak sprint. The classification performance it-

self is only less important for the subsequent estimation of

the waterline. However, it might be utilized in an auto-

mated processing pipeline to discriminate different paths in

the analysis procedure which depends on the particular dis-

cipline.

5.2. Ground Truth Waterline Parameters

A total number of 7 experts participated in our study, 6

of which processed all 130 images and one processed only

48. This led to a total of 828 annotated waterlines in the

test dataset. The distributions of the individual deviations

from the ground truth as determined according to Eqs. 10

and 11 are shown in Fig. 4. The visual comparison of the

distributions reveals a general consent between experts. The

rotation parameters are in stronger accordance to each other

compared to the height parameters. This is also reflected in

the upper and lower quartiles of these distributions, which

are located within a range of only ±0.22 ◦ for the rotation

and ±1.96 px for the height parameter. Note the minor dif-

ferent appearance of the results for participants 4, 5 and 7

for the height parameter and for subject 6 for the rotation

parameter compared to the other participants. These distri-

butions are shifted slightly downwards for the height param-

eter for the participants 4 and 5 and upwards for participant

7. Regarding the rotation, the distributions standard devia-

tion for participant 6 is considerably larger compared to all

others.

The Kruskal-Wallis test was performed separately for

each parameter given the null hypothesis that the medians

of the distributions are similar using a significance level of

p = 0.05. We obtained the p-values p = 0.65 for the rota-

tion and p = 0.99 for the height parameter. This indicates

that the null hypothesis cannot be rejected in the light of the

data. From this we concluded to estimate the ground truth

reference for each waterline from the individual annotations

provided by experts according to Eqs. 4 and 5 separately for

each image.

Next, we determined the standard deviation of the ex-

pert annotations according to Eqs. 8 and 9 to σh = 1.48 px
for the height parameter and σα = 0.20 ◦ for the rota-

tion parameter. Finally, we used Eqs. 10 and 11 to esti-

mate u = 2.5 for the u-fold σh and σα vicinity around the

ground truth parameters hi and αi, provided the assump-

tion that 95 % of the individual expert annotations should

be contained in this vicinity for both height and angle pa-

rameter. The resulting intervals are ∆h = ±3.70 px and

∆α = ±0.50 ◦. The tolerance interval for the height pa-

rameter corresponds to less than ±0.7% of the spatial reso-

lution (height dimension) of the images in the dataset.



Figure 4. Distributions of the individual deviations from the estimated ground truth references shown for the height (left) and the rotation

parameter (right). Upper / lower boundaries of boxes correspond to upper / lower quartiles. Whiskers denote the 1.5-fold of the inter

quartile range; circles denote outliers; vertical bars / red squares inside the boxes denote median / mean values.

5.3. Accuracy of Predicted Waterlines

We assessed the accuracy of the predicted waterlines by

calculating the absolute differences to the ground truth pa-

rameters by means of Eqs. 2 and 3. The results for each

discipline and the combined results are shown in Fig. 5. It

is obvious that the results obtained for canoe sprint appear

to be slightly worse than for kayak sprint. Besides that it is

shown that 50 % of the absolute differences for both height

and rotation are less or equal than 1.26 px and 0.19 ◦, re-

spectively, considering the distributions from the combined

results. The largest values given the error metric are 5.57 px
for the height and 0.82 ◦ for the rotation parameter.

Finally, we applied the u-fold σh and σα vicinity as de-

termined in the previous section to assess whether a water-

line can be considered as a valid expert estimate. It turns out

that a total number of 85 % of all predicted waterlines are in

accordance with this interval. If the parameters are consid-

ered separately, even 95 % of the results for the rotation and

89 % for the height parameter fall into these intervals.

6. Discussion and Conclusions

We introduced an approach for the automatic detection

of the waterline in canoe sprint video analysis. Our general

goal was to provide an estimate for the course of waterlines

in an image that could also have been defined by a human

expert or, in other words, that experts would accept this

prediction as a valid estimate. We achieved this for 85 %

of the images in the validation dataset. Our solution for

this particular regression problem comprises the segmenta-

tion of canoes based on an adjusted Mask R-CNN approach

and a subsequent multi-stage procedure to estimate a wa-

terline. We demonstrated its performance on a real dataset

for which the ground truth references were derived on the

basis of human expert annotations. Our solution provided

robust and accurate results while still leaving space for fur-

ther improvements and optimizations. They might not only

refer to the segmentation part and the waterline estimation

procedure but also to the derivation of the ground truth ref-

erences.

Defining a suitable reference that can be used for further

performance evaluations is a particular problem of this kind

of regression tasks, i.e. for which a ground truth cannot be

Figure 5. Error of predicted waterlines for height (left) and rotation

parameter (right). Upper / lower boundaries of boxes correspond

to upper / lower quartiles. Whiskers denote the 1.5-fold of the inter

quartile range; circles denote outliers; vertical bars / red squares

inside the boxes denote median / mean values. See text for details.



determined otherwise, e.g. by means of sensors. In fact, the

actual problem here is that the definition of a waterline is

an ambiguous problem (caused by waves, splashes, a.s.o.),

since it is prone to errors due to individual perception. As

a consequence the results obtained from several experts for

the same test image are subject to small variations. Hence,

the ground truth can only be defined on the basis of an av-

erage result from several experts. Moreover, it is neces-

sary to determine the amount of the variation between indi-

vidual annotations. In fact, only the latter provides an ac-

tual meaning for the predicted waterline during evaluation,

namely that a prediction is in accordance with the consent

of experts. The quantification of these variations needs to

be done carefully.

Here, we derived a ground truth and an estimate of the

variation by means of a study among a small group of ex-

perts. This is certainly a limitation of our procedure, since

it led to only a rather small number of annotations per im-

age and, therefore, might have reduced the validity of the

ground truth references. However, we assume that the do-

main knowledge of experts to define the waterlines implies

that their individual deviation from the average annotation

is small at all, and so the mean value of their annotations

can be considered an appropriate estimate. The calcula-

tion of the overall ambiguity among experts is less affected

since it was derived from the distribution of all deviations

in the dataset rather than from individual images. Nonethe-

less, our gold standard definition is only valid with respect

to the experimental conditions of the video recordings, e.g.

the perspective of the camera, the distance to the canoe and

the spatial resolution of the images.

As mentioned before, 85 % of the predicted waterlines

were in accordance with the gold standard we derived from

the evaluation study and so 15 % were not. Importantly, our

results show that the magnitudes of these outliers are still

moderate. It is obvious that these proportions depend upon

the definition of the u-fold σh and σα vicinities. Here, it

was selected such that 95 % of individual annotations were

part of this interval. Less strict assumptions would of course

improve the success rate. Further data is needed to derive a

more sophisticated selection for this value. Moreover, out-

lier samples are worth to be analyzed separately and in more

detail in order to identify potential systematic errors and to

achieve further optimizations.

We carried out a brief error analysis and found a clear

pattern for images that were not in accordance with ex-

perts annotations. These waterlines were slightly shifted

upwards in the frontal part of the canoes compared to the

ground truth. There is reason to believe that this is caused

by larger waves in the frontal area resulting from, e.g., the

cyclic movement of the canoe in upward and downward di-

rection which is inherent to these disciplines. As a result,

the waves occlude visible parts of the canoes front which

shifts the segmentations, their outlines and finally also the

waterlines. A possible solution is to not only restrict the lin-

ear regression to more central areas of the canoe segmenta-

tion but also to improve the canoe segmentation itself.

The good quality of the segmentation performance of the

adjusted Mask R-CNN is effectively reflected by a high av-

erage IoU value. The very small standard deviation un-

derpins its general robustness, although the amount of data

available for training and validation was fairly small. In-

creasing the amount of data might improve the performance

significantly. Further limitations in the current dataset are

unbalanced proportions of the samples with respect to the

movement direction of canoes and to the actual discipline,

i.e. canoe or kayak sprint. Moreover, the dataset does not

contain any negativ samples, that means images without any

canoe. However, this is only of minor relevance if it can be

ensured that the algorithm is applied to application specific

data.

The developed method provides an important component

for future developments towards an automated derivation

and analysis of kinematic parameters from video and image

recordings in canoe sprint and kayak sprint. A straightfor-

ward extension is the application and optimization of algo-

rithms for human pose detection, e.g. OpenPose [5], which

can provide coordinates of key-points on limb and face of

athletes. Assessing such key-point positions with respect

to the waterline can be used to derive kinematic parameters

comparable to those used in todays human analysis [12].

Another extention is the detection of the paddle, which is

important for several reasons. First, it provides another ref-

erence for key-point positions and the subsequent kinematic

parameter analysis. Second, it provides information on the

relative time in a paddle cycle if evaluated in comparision to

the waterline. The Mask R-CNN approach might be applied

to the task of paddle segmentation as well.

Finally, the combination of these approaches paves the

way for new applications in which not only several images

but rather an entire video sequence can be analyzed. This

provides new opportunities as, e.g., the utilization of tempo-

ral filters on the extracted parameters to achieve more robust

predictions in single images but also to exploit the dynamics

of kinematic parameters for the biomechanical analysis.
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