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Abstract

We study the problem of using active learning to re-

duce annotation effort in training object detectors. Exist-

ing efforts in this space ignore the fact that image anno-

tation costs are variable, depending on the number of ob-

jects present in a single image. In this regard, we examine

a fine-grained sampling based approach for active learning

in object detection. Over an unlabeled pool of images, our

method aims to selectively pick the most informative subset

of bounding boxes (as opposed to full images) to query an

annotator. We measure annotation efforts in terms of the

number of ground truth bounding boxes obtained. We study

the effects of our method on the Feature Pyramid Network

and RetinaNet models, and show promising savings in la-

beling effort to obtain good detection performance.

1. Introduction

State-of-the-art deep object detectors such as Faster R-

CNN [18], Feature Pyramid Networks [15], RetinaNet [16]

and YOLO [17] have been shown to achieve excellent per-

formance in visual object detection. However, it is well-

known that training such networks requires large amounts

of bounding box labeled data. Acquiring a large-scale an-

notated dataset for object detection is both time-consuming

and expensive. It has been reported [24] that drawing

bounding boxes is at least ten times costlier than labeling an

image for the classification task. While large-scale datasets

propel detection performance, not all bounding box sam-

ples in such datasets are equally valuable. In object detec-

tion, each image can have multiple labels depending on the

number of objects. Also, the labeling cost of each image

can vary based on the number of objects present in a sin-

gle image. Nonetheless, existing methods for active learn-

ing in object detection [19, 12, 3, 5] treat a single image

as an instance to be labeled. The annotation cost is also

measured in terms of number of images labeled. While

these assumptions enable one to construct image-level se-

lection metrics (similar to classification), it is clear that ob-

ject detection labeling is done at a bounding box level. Each

bounding box drawn contains a piece of information useful
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Figure 1: Active Learning Framework: Small informative

subsets of bounding boxes are picked from UB and queried

for labeling. Subsequently, LB and LI are updated. LI is

used to retrain the model.

to the model. We consider these assumptions and propose

fine-grained sampling, a bounding box level active learning

method where each potential bounding box is considered as

a sample to be labeled and adjusted. Figure 1 summarizes

our approach.

We train a baseline object detector on a small pool of

randomly selected images, which is used to predict bound-

ing boxes for each image, to effectively create a bounding

box dataset. Each bounding box is now a single entity to be

labeled and adjusted. Keeping the current state-of-the-art

object detection models in mind, we point out a few chal-

lenges in using fine-grained bounding box sampling for ac-

tive learning: (i) Covering all objects: It is possible that

some objects might be missed while creating the bounding

box dataset since the model is trained on a small subset of

data. We address this issue by choosing a low detection

threshold so as to maximize recall while making bounding

box predictions to generate the box dataset. In addition, we

choose the size of the initial subset based on the difficulty

and size of the full dataset. (ii) Training with partially la-

beled images: During active learning, sampling bounding

boxes instead of images can result in partially labeled im-

ages at a given episode, since picking all boxes in a given
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image is not guaranteed. We aim to alleviate this problem

by devising a dampening parameter to reduce the effect of

the non-sampled bounding boxes in an image on the train-

ing loss. The key contributions of our work can hence be

summarized as follows:

• We propose a simple approach for fine-grained sam-

pling approach for active learning to train object de-

tectors, and introduce a new methodology built on ex-

isting object detection models to achieve the same.

• We show promising results on the standard benchmark

PASCAL VOC-12 and MS-COCO datasets.

We hope that our work will promote open discussions

around the broader issues of active learning in training ob-

ject detection models with limited labels.

2. Related Work

Several active learning (AL) frameworks have been pro-

posed including stream-based sampling [2], membership

query synthesis [23] and pool-based active learning [13].

AL has been applied to a variety of machine learning algo-

rithms [9, 11, 25, 14]. For a detailed survey, we request the

interested reader to refer to [22].

When compared to the area of active learning on classi-

fication, active learning for object detection is a relatively

less explored direction of research. Prior to deep learn-

ing, Abramson and Freund [1] proposed a boosting based

active selection method for pedestrian detection. Vijaya-

narasimhan and Grauman [26] suggested using a margin

based active selection method for training an SVM based

object detector. These methods most often use uncertainty

information from classifiers to select instances for labeling.

In a deep neural network setting, there have been very few

efforts [19, 12, 3, 5] in the space of active learning for object

detection. Roy et al. [19] propose a query-by-committee

technique based on the layered structure of object detection

networks. Kao et al. introduced a novel sampling strategy

based on predicting the localization performance of the de-

tector. Brust et al. [3] suggest effective aggregation metrics

for getting image level uncertainty scores and also combine

active learning with an incremental learning approach. De-

sai et al. [5] propose a novel scheme to effectively leverage

the combination of weak supervision and strong supervi-

sion in the active learning process. These works perform

active learning at an image level i.e., consider each image

as an instance to be queried and labeled. We argue that,

unlike classification, the annotation cost in object detection

should be measured in terms of number of bounding boxes

drawn. To the best of our knowledge, none of the works

in this space have attempted active selection queries at the

level of bounding boxes. To bridge that gap, we introduce

the concept of bounding box queries in our work.

3. Methodology

We study a bounding box based querying method for ac-

tive learning in object detection. In a standard active learn-

ing setup [3, 12, 20], images are queried and labeled. In

contrast, our proposed method generates queries which ask

for bounding box labels.

3.1. Initial Setup

The initial setup comprises of training an initial baseline

model using a small subset of images and consequently gen-

erating a bounding box dataset. A pool-based active learn-

ing framework is applied on this dataset in the next steps.

Given a dataset DI of images which is completely unla-

beled at the beginning, our method randomly selects a small

subset of images LI and queries their labels. The size of this

subset is suitably chosen based on the overall difficulty of

the dataset, the number of classes, etc. In a typical active

learning setup, the initial subset size is around 5-10% of

the dataset size. The remaining unlabeled images constitute

UI . An object detection model is trained on LI to obtain

an initial baseline model M . Note that each image in LI is

fully labeled i.e., all objects of interest are annotated with

bounding boxes. This allows for training our initial model

in a robust manner, with a reasonably small annotation ef-

fort. This initial model is used to generate the bounding box

dataset DB which is used in further steps.

To generate DB , the initial model M is run on each im-

age from UI , and a suitable detection threshold td is chosen.

A predicted bounding box b is added to UB when the fol-

lowing membership function evaluates to 1:

M(b) =

{

1, if prob(b) ≥ td

0, otherwise
(1)

Ground truth bounding boxes of each image in LI are

aggregated to form LB . Finally, DB is created as the union

of LB and UB .

3.2. Active Learning Framework

The bounding box dataset DB consists of: (1) originally

labeled bounding boxes from the initial pool; and (2)

bounding boxes predicted by the initial model on the

unlabeled pool of images UI . A pool-based active learning

framework [22] can be readily applied on such a dataset.

In contrast to existing active learning methods for object

detection, we employ our framework on a bounding box

dataset instead of an image dataset. In this framework,

active learning consists of multiple learning episodes. As

shown in Figure 1, each episode mainly comprises of three

steps: (1) Sampling from Unlabeled Pool, (2) Updating the

training dataset and (3) Retraining the model. Typically,

active learning episodes are carried out until the desired

detection performance is reached.
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Figure 2: Creating the Bounding Box Dataset: The model

M is run on images from unlabeled image pool UI and the

labeled image pool LI to obtain bounding box predictions

to generate the bounding box dataset DB .

Sampling from Unlabeled Pool: The bounding boxes in

UB might not be accurately drawn or classified since they

are obtained as predictions from a model trained on an small

randomly chosen subset of training data. The aim of our

active learning method is to pick and adjust the minimum

number of bounding boxes to obtain a desired level of de-

tection performance. The aim of this step is to choose a sub-

set of most informative K samples from the unlabeled pool

UB to be queried and adjusted by the annotator. Here, K

is the size of the subset of samples queried in each episode.

We solve the following optimization K times:

bpicked = argmax
b∈UB

Eb (2)

Here, Eb denotes the informativeness measure of a bound-

ing box b which measure how useful its label could be, to

the model.

Updating the Training Dataset: In an episode, once the

samples are picked from the unlabeled pool UB , they are

queried for labeling. A bounding box is labeled by an or-

acle as follows: if it partially encloses an object, then its

dimensions are adjusted such it tightly encloses the object

and the class of the object is labeled appropriately. If the

bounding box doesn’t enclose any object, then it is labeled

as a background and its dimensions are not adjusted. After

adjusting the picked bounding boxes, they are added to the

labeled box pool LB .

Since contemporary object detection networks are

trained using images, we use the labeled box pool LB

to update the labeled image pool LI as follows. Each

bounding box in the labeled box pool is drawn on its

corresponding image. All images with bounding boxes

in the labeled box pool, LB , are added to the labeled

image pool, LI by default. In addition, we include all the

bounding boxes in UB which correspond to the images

present in LI . This means that each image in the updated

training set LI now contains: (1) the labeled ground truth

bounding boxes from LB ; and (2) unlabeled bounding

boxes from UB which are present on the image but are not

sampled for active learning yet. Such bounding boxes act

as noisy labels. They are used as part of LI for training

the model but they still are eligible to be queried in further

stages of active learning.

Retraining the Model: Since the updated labeled pool of

images LI can now consist of both labeled ground truth

boxes as well as other objects that are unlabeled, we modify

the training loss function to minimize the amount of noise

involved in training the model. In our training method, we

define the loss function for an image as follows:

L = Llabeled + λdLnoisy (3)

Here, Llabeled is the average loss over all the anchors

assigned to a labeled bounding box and Lnoisy refers to the

average loss over all the anchors assigned to a noisy label.

We define λd as the dampening parameter which controls

the effect of noisy labels on the loss. Our experiments show

that setting λd = 0.5 gives good results in most cases.

3.3. Informativeness Measures

An informativeness measure is a metric used in actively

sampling a subset of data. This is an important design de-

cision in any active learning framework. We experiment

with the following informativeness measures in our work:

1. Random selection: In this method, samples are chosen

randomly from the unlabeled pool. This method acts as a

baseline for other active learning metrics.

2. Mean Classification Uncertainty: In case of bounding

boxes, the boxes with the least predicted class probability

are picked. In case of images, the average of the classifica-

tion uncertainties of the predicted bounding boxes is com-

puted. The classification uncertainty of a predicted bound-

ing box is calculated as (1−P ) where P is the highest pre-

dicted probability score for the box. Images with high mean

classification uncertainty are chosen for querying. This cri-

terion has been used for object detection in Roy et al. [20].

3. Coreset Greedy selection: This metric is based on the

feature geometry of data samples. Sener and Savarese

[21] have proposed this method for classification problems,

which we repurpose for object detection (please refer the

appendix for further details). For image-level coreset se-

lection, the distances are calculated based on image-level

feature representations, typically produced by a backbone

network such as ResNet [7].

4. Experiments

Implementation Details: We use Detectron2 [28] imple-

mentations of Faster R-CNN + Feature Pyramid Network

[15] and RetinaNet [16] in all our experiments. ResNet-50

[7] is used as the backbone network, which is pretrained

on ImageNet1k [4]. To implement the greedy algorithm

for core-set selection of bounding boxes in FPN+Faster R-

CNN, we make use of the FC2 feature representations of

each bounding box. We use the L2 distance between the
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Figure 3: AL results on PASCAL VOC 2012 showing num-

ber of bounding boxes labeled vs test mAP.

feature representations as the distance metric. We omit

coreset bounding box selection for RetinaNet as it is a single

stage network with no intermediate bounding box represen-

tations. For all querying methods, we use λd = 0.5 (in Eqn

3) for retraining the model in each episode.

In our experiments, in case of overlap with multiple

ground truth boxes, a selected bounding box is labeled as

that ground truth box with which it has maximum IoU

score. However, if it does not have at least IoU ≥ 0.5 with

a ground truth bounding box of some class label, the bound-

ing box is classified as background and its coordinates are

not adjusted during the oracle’s annotation. To evaluate the

performance of object detection, we use the standard mean

average precision (mAP) metric.

Datasets:

PASCAL VOC 2012: We use the train set of 5717 images

as the unlabeled pool of data. The validation set of 5832

images is used to test the performance of the model. An

initial baseline model is trained on a random subset of 500

images from the unlabeled pool. To ensure fairness of com-

parison, we use the same initial baseline model for all active

learning methods. For image-based baseline methods, 500

images are queried in each round. In our proposed bounding

box querying method, we set the sample batch size equal to

1000 bounding boxes. In each round of AL, the model is

retrained for 15 epochs using SGD with a learning rate of

0.002. We use a batch size of 2 images. A learning rate

decay of 0.1 is applied after every 8 epochs of training.

MS COCO: We use the train2017 subset for training and

val2017 for reporting the results. An initial baseline model

is trained on a random subset of 5000 images. We execute 4

AL rounds and measure the performance. For image-based

baseline methods, 1000 images are queried in each round.

In our proposed bounding box querying method, we set the

sample batch size equal to 5k bounding boxes. The model

is trained using SGD for 8 epochs with a learning rate of

0.0025. We use a batch size of 2 images.

Results: We assess the performance of various AL metrics

in an image-based querying setting and a bounding box-
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Figure 4: AL results on MS COCO showing number of

bounding boxes labeled vs test mAP.

based querying setting. Figure 4 shows mAP on the test

set plotted against the number of bounding boxes labeled

for models trained using various active learning methods on

the MS COCO dataset. Similar results on PASCAL VOC

2012 are shown in Figure 3. All results shown are aver-

aged over three runs of each experiment. In all the four

settings, as a general trend, it can be seen that just by us-

ing bounding box querying instead of image-based query-

ing, the performance on AL metrics are improved. While

the curves may not demonstrate this explicitly, while train-

ing FPN on PASCAL VOC 2012, attaining an mAP of 60

points now requires less than 6500 bounding box labels by

the best bounding box querying method. To achieve the

same mAP, image-based querying methods require close to

9000 bounding box labels (Figure 3a). This reduction could

be significant when annotation cost is high. In fact, 85% of

the fully supervised test mAP has been reached using just

50% of the bounding box labels. For MS COCO, a large

dataset with 80 classes, the “random” image-based query-

ing method seems to perform close to bounding-box query-

ing methods. Nevertheless, bounding box querying meth-

ods still consistently perform better than image-level meth-

ods. Picking in terms of bounding boxes allows for a more

granular selection approach.

5. Conclusion

We studied a fine grained sampling method for active

learning in object detection which seeks to query at the level

of bounding boxes instead of an image. We experiment with

various query strategies in a bounding box querying setting

as well as an image based querying setting. Our experi-

ments on the popular PASCAL VOC-12 and MS COCO

datasets show the effectiveness of bounding box queries

in reducing human annotation efforts when compared to

image-level queries. Our future work includes studying

this method in real-world settings from application domains

(such as healthcare or agriculture) where annotation costs

are prohibitive for the object detection task, as well as study

alternate strategies for bounding box-informativeness in ob-

ject detection frameworks.
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