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Abstract

We propose using large set of unlabeled images as a

source of regularization data for learning robust representa-

tion. Given a visual model trained in a supervised fashion,

we augment our training samples by incorporating large

number of unlabeled data and train a semi-supervised model.

We demonstrate that our proposed learning approach lever-

ages an abundance of unlabeled images and boosts the visual

recognition performance which alleviates the need to rely

on large labeled datasets for learning robust representation.

In our approach, each labeled image propagates its label

to its nearest unlabeled image instances. These retrieved

unlabeled images serve as local perturbations of each la-

beled image to perform Visual Self-Regularization (VISER).

Using the labeled instances and our regularizers we show

that we significantly improve object categorization and lo-

calization on the MS COCO and Visual Genome datasets.

1. Introduction

Image recognition has rapidly progressed and extremely

effective performance is observed using the ImageNet

dataset [22, 7, 35, 17]. Despite this progress, ImageNet

is biased towards single object images which is in contrast

with photos taken by people typically capturing a range of

objects in various context. Also, object categories in Ima-

geNet is a subset of the lexical database WordNet [29] which

makes it biased to certain categories and does not match the

scope of more general image recognition tasks such as object

detection and localization in context. MS COCO [25] and

Visual Genome [21] provide realistic benchmark for image

recognition systems. MS COCO contains ∼300K images

and ∼80 object categories, whereas Visual Genome con-

tains 100K images and thousands of categories. CNNs are

also showing the best performance on these datasets [34, 21].

MS COCO and Visual Genome are annotated via crowd-

sourcing platforms such as Amazon Mechanical Turk and

hence is time-consuming and expensive to obtain additional

labels. However, we have access to huge quantities of un-

labeled or weakly labeled images. For example, the Yahoo

Flickr Creative Commons 100M dataset (YFCC) [40] is com-

prised of a hundred million Flickr photos with user-provided

annotations such as photo tags, titles, or descriptions.

∗Work was done at Flickr, Yahoo Research.

Figure 1. The t-SNE [27] map of the whole set of images (includ-

ing MS COCO and YFCC images) labeled as ‘Bus’ category after

applying our proposed VISER approach. Can you guess whether

green or blue background correspond to the human annotated im-

ages of MS COCO dataset? Answerkey:blue:MSCOCO,green:YFCC
We present a simple yet effective semi-supervised learn-

ing algorithm that is able to leverage labeled and unlabeled

data to improve classification accuracy on the MS COCO

and Visual Genome datasets. We first train a fully con-

volutional network using the multi-labeled data (e.g. MS

COCO or Visual Genome). Then, for each training sample

we retrieve the nearest samples in YFCC using the cosine

similarity in a semantic space of the penultimate layer in

the trained fully convolutional network. We call these Regu-

larizer samples which can be considered as real perturbed

samples compared to the Gaussian noise perturbation con-

sidered in virtual adversarial training [31]. To be practical

at scale, we propose an approximate distributed algorithm

to find the images with semantically similar attention acti-

vation. Our experimental results show that our method is

applicable in object-in-context retrieval as well as image

recognition and significantly improves performance over

previous methods when trained using only the labeled data.

2. Related work

The recognition and detection of objects that appear “in

context” is an active area of research. The most common

benchmarks for this task are the PASCAL VOC [10] and MS

COCO [25] datasets. It has been shown in [33, 38, 9, 3, 42]

that it is possible to classify and localize objects using train-

ing data without object bounding box information. We refer

to this training data as weakly-supervised. The size of labeled



“objects in context” datasets is typically small. However, we

have access to large amounts of unlabeled web images. The

YFCC 100M dataset has one hundred million images that

have user annotations such as tags, titles, and description.

There has been recent efforts to leverage user annotation to

build object classifiers. For instance, [18] proposes a noise

model that is able to better capture the uncertainty in the

user annotations and improve the classification performance.

Annotations are used in [19] and [12] as target labels to learn

image features and neural networks from scratch. However,

classifier performance is lower when training on noisy data.

Contrary to these approaches, we propose a form of curricu-

lum learning [4] where we first train a model on a small set

of clean data, and then augment the training set by mining

instances from a large set of unlabeled images.

While it is shown that by making small perturbations to

the input it is possible to make adversarial examples which

can fool machine learning models [39, 23, 24], adversar-

ial examples can be used as a means for data augmenta-

tion to improve the regularization capability of the deep

models. Our method is related to adversarial training tech-

niques [13, 31, 30] in the sense that additional training in-

stances with small perturbations are created and added to

the training data. In contrast, we retrieve real adversarial

examples from a large set of unlabeled images. Such in-

stances usually correspond to large perturbations in the input

space but follow the natural distribution of the data which

is analogous to the adversarial perturbations. We call our

retrieved image instances as Regularizer and use them to

re-train the model and further improve performance.

Using semi-supervised learning, classifiers can be trained

via labeled and unlabeled data such as in Naive Bayes, EM

algorithm [32], ensemble methods [5] and propagating la-

bels based on similarity as in [43]. In our case, the size of

the unlabeled set is three orders of magnitude larger than

the labeled set. The size of unlabeled set is critical in order

for the label propagation to work effectively, and we pro-

pose approximations using MapReduce to make the search

practical [6]. Large-scale nearest neighbor search is used

for a variety of tasks such as scene completion [16], image

editing with the PatchMatch algorithm [2], image annotation

with the TagProp algorithm [15], and image captioning [8].

Similarly labels can be propagated using semantic segmen-

tation [14]. This method is applied on ImageNet which has

a bias towards a single object appearing in the center of the

image. We focus on images where objects appear in context.

3. Proposed Method

Multiple instance learning for multilabel classification:

We adopt a fully convolutional neural network architec-

ture [26] which produces the output of a H ×W ×N tensor

for N object classes. For each object class the corresponding

heatmap provides information about the object location as

illustrated in Figure 2. We use VGG16 [36] as base architec-

ture and implement our algorithm via TensorFlow [1].
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Figure 2. Our Fully Convolutional Network for object localization.

We are given a set of annotated images A =
{(xi, yi)}i=1...n, where xi is an image and yi =
(y1i , . . . , y

N
i ) ∈ {0, 1}N is a binary vector determining

which object category labels are present in xi. Let f l be

the object heatmap for the lth label in the final layer of the

network. The probability at location j is given by applying

a sigmoid unit to the logits f l, e.g. plj = σ(f l
j). We have a

weakly labeled setting and do not have access to object loca-

tions. We incorporate a multiple instance learning approach

with Noisy-OR operation [28, 41, 11]. The probability for

label l is given by Equation 1. For learning the parameters

of the FCN, we use stochastic gradient descent to minimize

the cross-entropy loss L formalized in Equation 2.

pl = 1−
∏

j

(1− plj). (1)

L =

N∑

l=1

−yl log pl − (1− yl) log (1− pl) (2)

Visual Self-Regularization: Deep neural networks are vul-

nerable to adversarial examples [39]. Let x be an image

and η a small perturbation such that ‖η‖∞ ≤ ǫ. If the

perturbation is aligned with the gradient of the loss func-

tion η = ǫsign(∇xL) which is the most discriminative

direction in the image space, then the output of the network

may change dramatically, even though the perturbed image

x̃ = x + η is virtually indistinguishable from the origi-

nal. [13] suggests that this is due to the linear nature of deep

neural networks and show that augmenting the training set

with adversarial examples results in regularization similar to

dropout. In Virtual Adversarial Training [31] the perturba-

tion is produced by maximizing the smoothness of the local

model distribution around each data point. The virtual adver-

sarial example is the point in an ǫ ball around the datapoint

that maximally perturbs the label distribution around that

point as measured by the Kullback-Leibler divergence:

η = argmin
r:‖r‖2≤ǫ

KL[p(y|x, θ) || p(y|x+ r, θ)]. (3)

We propose to draw perturbations from a large set of un-

labeled images U whose cardinality is much higher than A.

For each example x, we use the example x̃ that is nearby

in the space defined by the penultimate layer in our fully

convolutional network. This layer contains spatial and se-

mantic information about the objects present in the image,

and therefore x and x̃ have similar semantics and composi-

tion while they may be far away in pixel space. We consider

the cosine similarity metric to find samples which are close

to each other in the feature space and for efficiency we com-

pute the dot product of the L2 normalized feature vectors.

Let θ denote the optimal parameters found after minimiz-

ing the cross-entropy loss using the training data in A, and

fθ(x) be the L2 normalized feature vector obtained from



tie bottle umbrella refrigerator remotetruck

Figure 3. Object localization comparison between “FCN,N-

OR”(mid row) and “FCN,N-OR,VISER”(last row).

the penultimate layer of our network(Conv(1,1,2048)). The

similarity between two images x and x′ is computed by their

dot product S(x, x′) = fθ(x)
T fθ(x

′). For each training

sample (xi, yi) in A, we find the most similar item in U

x̃i = argmax
x∈U

S(xi, x), (4)

and transfer the labels from xi, to generate a new, Real Ad-

versarial (Regularizer), training sample (x̃i, yi). Similar

to adversarial and virtual adversarial training, our method

improves the classification performance. We interpret our

sample perturbation as a form of adversarial training where

additional examples are sampled from a similar semantic

distribution as opposed to noise. We also used the ǫ per-

turbation of each labeled sample in the gradient direction

(similar to adversarial training) to find the nearest neighbor

in unlabeled set and observed similar performance.

Large scale approximate regularizer sample search: We

use MapReduce [6] to find approximate nearest neighbors in

a distributed fashion since we use the YFCC dataset with 100

million images for our unlabeled set. We first pre-compute

the feature representations fθ(xi) for xi ∈ A. The size

of A for datasets such as MS COCO or Visual Genome is

small enough that it is possible for each mapper to load a

copy into memory. A mapper then iterates over samples x in

U , computes the feature representation fθ(x) and its inner

product with the pre-computed features in A. It emits tuples

for the top km matches that are keyed by the index in A, and

also contain the index in U and similarity score. After the

shuffling phase, the reducers can select for each sample in A
the kr closest samples in U . We use km = 1000 and kr = 10.

We are able to run the search in a few hours, with the majority

of the time being in the mapper phase where we compute

the image feature representation. Note that our method does

not guarantee that we can retrieve the nearest neighbor for

each sample in A. Indeed, if for a sample xi there exists

km samples xj such that fθ(xj)
T fθ(x̃i) ≥ fθ(xi)

T fθ(x̃i),
then the algorithm will output either no nearest neighbor or

another sample in U . However we found our approximate

method to work well in practice.

4. Experiments

Semi-Supervised Multilabel Object Categorization and

Localization: We use MS COCO [25] and Visual

Genome [21] as our source of clean training data and

YFCC [40] for the source of unlabeled images with the

Figure 4. Top regularizer examples from unlabeled YFCC data

(row 2-6) retrieved for MS COCO multi-label image query (row 1).

images presented in Visual Genome or MS COCO discarded

from YFCC. The data is 14TB and is stored in Hadoop

Distributed File System. We conduct distributed nearest-

neighbor search via a CPU cluster. For training and evalua-

tion, we use the standard split used in [25] for MS COCO and

only use object category annotations in the Visual Genome.

We evaluate via the object classification and point-based

object localization task introduced in [33] and use the mean

Average Precision (AP) metric. Tables 1 and 2 summa-

rize classification and localization results on the MS COCO

and Visual Genome datasets. We compare our performance

with [33, 38, 3]. To handle the uncertainty in object local-

ization, [33] considers the last fully connected layers of the

network as convolution layers and a max-pooling layer is

used to hypothesize the possible location of the object in

the images. In contrast, we use Noisy-OR as our pooling

layer. In [38], a multi-scale FCN network called ProNet is

proposed that aims to zoom into promising object-specific

boxes for localization and classification. Our method uses

a single fully convolutional network, is simpler and has a

lighter architecture as compared to ProNet. In all tables

‘FullyConn’ refers to the standard VGG16 architecture while

’FullyConv’ refers to the fully convolutional version of our

network (see Figure 2). The Noisy-OR loss is abbreviated

as ’N-OR’, and we denote our algorithm with VISER.

As shown in Table 1, our proposed algorithm reaches

50.64% accuracy in the object localization on the MS COCO

dataset which is more than a 4% boost over [38] and a 9.5%
boost over [33]. Also, without doing any regularization and

by only using Noisy OR (N-OR) paired with a fully convolu-

tional network, we obtain higher localization accuracy than

Oquab et al. [33] and different variants of ProNet [38]. In the

object classification task, our VISER outperforms baselines

of [38, 33] by a margin of more than 4.5% and gains an ac-

curacy of 75.48% for the MS COCO dataset. Other variants

of [38] are less accurate than our fully convolutional network

architecture with Noisy-OR pooling (‘FullyConv, N-OR’).

In Table 1 and 2, we compare three forms of regularization:

adversarial training (‘AT’) [13], virtual adversarial training
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Figure 5. Localization result of VISER on MS COCO validation.

Table 1. Classification and localization mean AP on MS COCO.

Method Classification Localization

Oquab et al. [33] 62.8 41.2

ProNet (proposal) [38] 67.8 43.5

ProNet (chain cascade) [38] 69.2 45.4

ProNet (tree cascade) [38] 70.9 46.4

Bency et al. [3] 54.1 49.2

FullyConn 66.68 –

FullyConv,N-OR 72.52 47.47

FullyConv,N-OR,AT [13] 74.38 49.75

FullyConv,N-OR,VAT [31] 74.30 49.42

FullyConv,N-OR,VISER 75.48 50.64

(‘VAT’) [31], and our Visual Self-Regularization (VISER)

using the YFCC dataset as source of unlabeled images.

Object-in-Context Retrieval: To qualitatively evaluate

VISER, we show several examples of the Regularizer re-

trieved instances in Figure 4. The unlabeled images retrieved

by our approach have high similarity with the queried labeled

image. Furthermore, most of the objects in the labeled im-

ages also appear in the retrieved images which demonstrates

the effectiveness of our label propagation approach.

Figure 1 shows the results of our VISER approach on the

‘Bus’ category. We visualize the t-SNE [27] grid map [20]

of the whole set of images labeled as ‘Bus’ which includes

instances from both the labeled images in the MS COCO

and unlabeled instances from the YFCC dataset. To produce

the t-SNE visualization we take the output of the penultimate

layer of our network as explained in Section 3. A different

background color (blue vs. green) is assigned to images

depending on whether they are from the labeled or unlabeled

set. Notice that it is challenging to determine the color corre-

sponding to each dataset as photos are from a similar domain.

It suggests that there are many images in the large unlabeled

web resources that can potentially be used to populate the

fully annotated datasets with more examples.

Figure 5 shows qualitative performance of “FCN,N-

OR,VISER” for multi-label localization. We visualize the
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Figure 6. Generalization comparison on a synthetic data. Black

bordered samples are training and rest of instances are test set. The

contour shows the p(y = 1|x, θ), from p = 0 (blue) to p = 1 (red).

Table 2. Classification and localization mean AP on Visual Genome.

Method Classification Localization

FullyConn 9.94 –

FullyConv,N-OR 12.35 7.55

FullyConv,N-OR,AT [13] 13.96 9.05

FullyConv,N-OR,VAT [31] 13.95 9.06

FullyConv,N-OR,VISER 14.82 9.74

Table 3. Classification error on test synthetic dataset (lower is better).

cross entropy dropout [37] AT [13] VAT [31] VISER

Error(%) 9.24±0.65 9.26±0.71 8.96±0.85 8.94±0.39 8.51±0.49

object localization score maps with high probability localiza-

tion regions shown in green and localized objects displayed

by red dots. Several examples of the localization score maps

produced by “FCN,N-OR” and “FCN,N-OR,VISER” are

shown in Figure 3. We see that “FCN,N-OR,VISER” can

locate both small and big objects more accurately.

Classification on Synthetic Data: To evaluate the ability

of our algorithm to leverage unlabeled data to regularize

learning, we generate a synthetic two-class dataset with a

multimodal distribution as shown via contour visualization

of the estimated model distribution in Figure 6 . The dataset

contains 16 training instances (each class has 8 modes with

random mean and covariance for each mode and 1 random

sample per mode is selected), 1000 unlabeled and 1000 test

samples. We linearly embed the data in 100 dimensions. We

use a neural network with two fully connected layers of size

100, each followed by a ReLU activation and optimized via

the cross-entropy loss. We compare the generalization be-

havior of VISER with the following regularization methods:

dropout [37], adversarial training [13], and virtual adversar-

ial training (VAT) [31]. As Table 3 summarizes misclassifi-

cation test error over 50 runs, our proposed VISER learns a

better local class distribution as adversarial samples follow

the true distribution of the data and are less biased to the

training instances, compared to the baselines.

5. Conclusion and Future Work

We presented a simple yet effective method to leverage

a large unlabeled set accompanied with a small labeled set

to train more generalizable representations. Our VISER ap-

proach is able to find Regularizer examples from a large

unlabeled set and can achieve significant improvement for

visual classification and object localization. In future work,

our performance can be further improved by incorporating

user provided data such as ‘tags’. Also, our method can be

applied for domains beyond visual recognition.
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