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Abstract

Batch Normalization is a widely used tool in neural net-

works to improve the generalization and convergence of

training. However, on small datasets due to the difficulty

of obtaining unbiased batch statistics it cannot be applied

effectively. In some cases, even if there is only a small la-

beled dataset available, there are larger unlabeled datasets

from the same distribution. We propose using such unla-

beled examples to calculate batch normalization statistics,

which we call Unsupervised Batch Normalization (UBN).

We show that using unlabeled examples for batch statistic

calculations results in a reduction of the bias of the statis-

tics, as well as regularization leveraging the data manifold.

UBN is easy to implement, computationally inexpensive and

can be applied to a variety problems. We report results on

monocular depth estimation, where obtaining dense labeled

examples is difficult and expensive. Using unlabeled sam-

ples, and UBN, we obtain an increase in accuracy of more

than 6% on the KITTI dataset, compared to using tradi-

tional batch normalization only on the labeled samples.

1. Introduction

Large-scale labeled data and modern learnable represen-

tations have driven progress on many computer vision prob-

lems in the last decade. The dependency on labeled data is

a fundamental bottleneck for many vision problems, as ob-

taining ground truth annotations can either be extremely ex-

pensive (e.g. pixel-wise annotations for semantic segmenta-

tion) or require specialized equipment and controlled envi-

ronments (e.g. depth estimation, 3D pose estimation, optical

flow).

In these cases, research often resorts to different strate-

gies. A common approach is to pre-train from scratch a

deep network on “realistic” synthetic data and then fine-

tune on the available labeled data. This strategy is com-

monly used for example by state-of-the-art optical flow

methods [24]. While this method alleviates overfitting, it re-

quires creating such realistic data, and does not provide the

opportunity to leverage the availability of unlabeled data.

While data may be difficult and expensive to label, some-

times additional unlabeled data samples (e.g. images from

the same distribution) can be easily available for free. An-

other popular technique is transfer learning, where large

models are pre-trained on self-supervised tasks (e.g. [32])

and then fine-tuned on the small amount of labeled data

available. Although the pre-training stage helps the opti-

mization starting point, the fine-tuning stage still risks over-

fitting to the small amount of labeled data. Another effec-

tive strategy is semi-supervised learning [34], which aims at

learning both from labeled and unlabeled data at the same

time. This approach is successful but is usually not general,

and requires specific adaptation to each vision problem.

In this paper we propose a method that is general, does

not require adaptation to any new vision problem, leverages

additional unlabeled data and does not require fine-tuning.

In particular, we adapt the widely used batch normalization

(BN) technique to use unlabeled data.

BN is widely used on many architectures to normalize

the statistics of the features, and therefore stabilize the opti-

mization process. However, these statistics can also overfit

to the labeled dataset and not reflect the statistics that would

normalize the actual dataset. This would cause new images

to appear as out of distribution examples for the model.

Instead, we use unlabeled samples, which typically are a

much larger number than the labeled ones, to compute the

normalization statistics, in a process we call Unsupervised

Batch Normalization (UBN). We test our method in the

problem of monocular depth estimation, and obtain more

than 6% improvement over the baseline of using vanilla

batch normalization. We hope that the simplicity of our

method will make it a useful component of future learning

systems.

2. Related Work

Normalization methods. Batch normalization [13] is the

most standard normalization method in the state-of-the-

art classification architectures on the ImageNet LSVRC

[25, 30]. Recently, new alternatives have been developed

to extend its scope in different ways and making BN more

general. Batch Renormalization [12] enables training with
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smaller batch sizes and correlated batches by calculating

moving averages of batch statistics during training. Mode

Norm [6] enables the use of BN for multi-modal data. This

is done by calculating multiple batch statistics and adap-

tively normalizing examples through a gating function and

calculating weighted normalization statistic for each exam-

ple. Instance Norm [28] has been used for style transfer and

normalizes the style of the content image [11] by calculat-

ing statistics over each channel and sample in the dataset.

Adaptive Instance Norm [11] transfers style between two

images by calculating the batch statistics form one exam-

ple and applying them to another image. Weight Norm

[22] conditions the optimization problem by reparameter-

izing the weight values into magnitude and direction while

Layer Normalization [2] calculates normalization statistics

per example for feature maps in each layer to enable nor-

malization in recurrent models.

While all these variants make BN more usable and sta-

ble, to our knowledge, our is the first to extend BN to lever-

age unlabeled data.

Understanding Batch Normalization. While BN has been

widely and successfully used, there remains some questions

about why and when it works. The initial explanation of

Ioffe and Szegedy [13] that BN reduces internal co-variate

shift has been questioned and explored in recent work.

For example, Bjorck et. al. [4] argues that BN enables

training with larger learning rates by preventing exploding

and vanishing gradients. They also show that unnormal-

ized networks have ill-conditioned activations due to ran-

dom initialization which results in large singular values of

the activation matrices and predictions which are indepen-

dent from the inputs. Similarly Santurkar et. al. [23] ar-

gue that the loss landscape of the normalized networks are

smoother. Luo et. al. [18] showed that batch normaliza-

tion applies population normalization with data dependant

gamma decay that promotes uncorrelated features.

Monte Carlo Batch Normalization [27] shows that un-

certainty estimates can be obtained from networks with BN

layers by sampling batch statistics.

Training on small datasets. Training the classification net-

works on ImageNet requires millions of balanced labeled

images which many other vision problems lack. Many

semi-supervised methods that are designed for classifica-

tion problems [3, 29, 17, 26] are not readily applicable

to regression due to the difficulty in generating pseudo-

labels and augmentation strategies. Training unsupervised

methods like geometric consistency based unsupervised

training[16, 9, 1] with supervised training in order to mit-

igate labeled data requirements has also results in problem

specific solutions. While pre-training is a widely used tech-

nique in segmentation and detection [5] when the target

tasks is not similar to the source tasks the transfer learn-

ing has limited success [31]. Another approach is to use

Figure 1. Unsupervised Batch Norm disentangles the normaliza-

tion from the weight updates by separating them into 2 steps. In

the first step a batch is sampled from Dataset U and Dataset L

and the normalization statistics are updated. In the second step the

sampled batch from Dataset L is used to updated the weights of

the network.

synthetic data to pre-train the networks and fine-tune on

real data. For tasks like optical flow [24] and depth esti-

mation [15, 19, 10] synthetic data is much more accessi-

ble and does not contain the various artifacts and sampling

noises that real data has. However, this approach suffers

from the domain shift problem where the data distribution

of synthetic and real data can differ.

3. Method

Since our method is a simple modification of the stan-

dard BN method, we start recalling BN and then describe

our UBN method.

3.1. Batch Normalization

Given an input batch of height H and width W with N

samples and C channels x ∈ R
N×C×H×W , BN normalizes

the mean and standard deviation for each individual feature

channel c during training:

BN(x)c = γc

(

xc − µ(xc)

σ(xc)

)

+ βc (1)

where γ, β ∈ R
C are affine parameters learned from data;

µ, σ are the mean and standard deviation, computed across

batch size and spatial dimensions independently for each

feature channel.

The moving average of the mean µ̂ and standard devia-

tion σ̂ are updated using a momentum rate λ during training

and used to normalize feature maps during testing.

µ̂c = λµ̂c + (1− λ)µ(xc) (2)

σ̂c = λσ̂c + (1− λ)σ(xc) (3)

3.2. Unsupervised Batch Normalization

UBN is based on updating first the batch statistics than

the weights. Given an batch x ∈ L from labeled dataset L

and a batch y ∈ U from unlabeled dataset U the first step



Figure 2. Results of classifying with BN and UBN using the Spi-

ral dataset, with 25 labeled points of each class (filled) and 200

unlabeled points per class which (hollow). Using UBN (left) the

model can interpolate between these points while BN (right) learns

islands around labeled examples.

builds a combined batch n = {x, y} and makes a forward

pass to update the normalization statistics. The second step

makes forward-backward pass while using x and the up-

dated normalization statistics calculated at the earlier step.

1

UBN normalizes the mean and standard deviation for

each individual feature channel with:

UBN(xc) = γ

(

xc − µ(nc)

σ(nc)

)

+ β (4)

where µ(nc), σ(nc) are the mean and standard deviation,

computed across batch size and spatial dimensions indepen-

dently for each feature channel from the combined batch n.

The µ̂c, σ̂c values are calculated similarly to BN using a

moving average.

3.3. Analysing UBN with a Toy Example

We illustrate the principles behind UBN and how it dif-

fers from BN using a toy example. We train a simple 5-

layer fully connected network using BN layers on the Spiral

Dataset1, with 50 labeled examples and 400 unlabeled ex-

amples. Using this simple dataset allows us to do a deeper

analysis which would not be straightforward using the depth

estimation task.

We see from Fig. 2 that supervised training with BN

learns the distribution of the labeled examples well and

therefore learns accurate decision boundaries. However,

those decision boundaries do not reflect the true data dis-

tribution. Instead, using UBN the network learns to align

its decision boundary with the data manifold and learns to

interpolate between the labeled examples by utilizing the

batch statistics of unlabeled examples. In the coming sec-

tions we will examine the mechanism behind UBN through

this example.

3.3.1 Bias in Batch Statistics

Batch statistics are calculated from labeled examples in

BN. When there is only a limited number of labeled exam-

1http://playground.tensorflow.org

Figure 3. Histogram of hidden representations during training of

the regularly sampled points (left column) the labeled points (mid-

dle column) and the unlabeled points (right column) after first (first

row) second (second row) and third (third row) Batch Normaliza-

tion layers of a random channel.

ples, this may cause the normalization statistics to be biased

and end up hurting the model performance. We recorded

the feature distributions from different layers of regularly

spaced points, labeled points and unlabeled points while the

network normalization statistics using the unlabeled exam-

ples. 3.

We have observed from the histogram of feature maps

that the distribution of unlabeled and labeled examples are

drastically different from each other. Calculating batch

statistics with respect to only the labeled examples will

cause a significant amount of bias in the normalization val-

ues. We postulate that the difficulty of obtaining correct

batch statistics will be an important cause for the failure of

Deep Learning methods in problems where the data is lim-

ited. Our method alleviates this problem by calculating the

normalization values with respect to a larger variety of ex-

amples that better reflect the true data distribution.

3.3.2 Regularization in UBN

Our understanding is that the regularizing effect of UBN

and similarly of BN comes from the noise that is induced

by changing batch norm statistics which makes the network

invariant to this type of noise. This specific noise is also

different from simpler random variations that is applied to

gradients [21] and feature maps [7] of the network since it

comes from the actual data distribution and extends the data

boundaries in the manifold that is predicted by the network.

Other method for injecting learned noises are also not appli-

cable in the semi-supervised setting where the small number

of labels doesn’t allow for such networks to be trained.

We visualized the uncertainty that is induced by chang-

ing batch statistics by making multiple predictions using the



Figure 4. Uncertainty in the

decision boundaries when

unlabeled batch statistics are

changed.

Figure 5. We visualize the data

driven implicit augmentation

via the noise that is induced by

changing batch statistics.

same inputs while updating the batch statistics [27]. This

gives us a distribution of prediction from which we can cal-

culate the standard deviation of our predictions. We observe

that the uncertainty of the network follows the data mani-

fold and aligns well with incorrect predictions and regions

where there are no data examples 4.

We analyse the induced noise of changing batch statis-

tics by making a forward pass of the network using labelled

examples saving the network predictions updating the batch

statistics and updating the inputs using back propagation in

the feature space until the predictions are the same with the

earlier batch statistics. This gives a distribution of starting

points that have the same effect as changing the batch statis-

tics. We observe that the augmentation follows the data

manifold except for regions where the decision boundary is

too close the the data manifold where in that case it pushes

the decision boundary away from the labeled examples 5.

Thus, Batch normalization layers apply an implicit augmen-

tation that is dependant on the data manifold.

4. Experiments

KITTI dataset [8] contains stereo RGB images at

256x832 resolution and ground truth depth maps collected

from Velodyne HDL-64E rotating 3D laser scanner at 10Hz.

We have utilized the Kitti Raw dataset with 42304 training

images and 2480 testing images.

The architecture for our method is based based on the

SfMLearner architecture [33] which uses a modified ver-

sion of the DispNet architecture [20]. It is a fully convolu-

tional encoder-decoder architecture with skip connections

and predictions in multiple resolutions. The building block

of the architecture consists of 3x3 convolution operation,

BN layers and a ReLU activation. The loss is calculated in

different resolution by scaling the depth maps to match the

prediction resolutions. The last layer before a prediction a

sigmoid activation is used. The result of the sigmoid func-

tion is than scaled, shifted and inverted to obtain the depth

prediction. The depth prediction Di for a feature map Xi

using a scaling factor of s > 0 and a minimum disparity

Figure 6. UBN shows a larger improvement as the number of la-

beled images decreases.

value m such that 0 < m < 1 can be calculated as follows

D̂i =
1

s ∗ sigm(Xi) +m
(5)

The network is trained with a learning rate of 0.0002 us-

ing the ADAM optimizer [14] for 160 epochs with batch

size of 128. The scaling parameter s is 0.4 and the minimum

disparity value m is 0.0125 (max depth 80m) throughout the

experiments.

In order to evaluate the effect of unlabeled examples on

the BN statistics we compare the performance of the depth

prediction network on the KITTI dataset where a certain

fraction of the depth maps are missing while we keep the

number of images the same.

Removing depth annotation in this way let us keep the

variation in the dataset stable while reducing the total num-

ber of annotated examples drastically. The missing depth

maps are designed to mimic a depth sensor with lower frame

rate.

For the metrics we used accuracy δ with threshold τ :

δ = max( D̂i

Di

, Di

D̂i

) < τ for τ = 1.25.

UBN shows progressively larger improvement as the

number of labeled examples shrink 6 and outperforms the

supervised BN training. If the number of labeled images is

close to the unlabeled images the two methods become ef-

fectively the same which makes our method more suitable

for problems with limited labels.

5. Conclusion

We have shown that UBN reduces the bias in batch statis-

tics and applies a regularization that utilizes the data man-

ifold. Our method is easy to implement, computationally

inexpensive and is effective in problems where obtaining

annotations is difficult.
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