
A Simple Discriminative Dual Semantic Auto-encoder for Zero-shot

Classification

Yang Liu

State Key Laboratory of ISN,

Xidian University, China

liuyangxidian@gmail.com

Jin Li

Interactive Entertainment Group,

Tencent Inc., China

j.lixjtu@gmail.com

Xinbo Gao

State Key Laboratory of ISN, School of Electronic Engineering,

Xidian University, China

xbgao@mail.xidian.edu.cn

Abstract

Most existing ZSL models focus on searching the map-

ping between visual space and semantic space directly.

However, few models study whether the human-designed se-

mantic information is discriminative enough to recognize

different categories. On the other hand, one-way mapping

typically suffers from the project domain shift problem. In-

spired by the encoder-decoder paradigm, we propose a nov-

el solution to ZSL based on learning a Discriminative Du-

al Semantic Auto-encoder (DDSA). DDSA aims to build an

aligned space to bridge the visual space and the semantic

space by learning two bidirectional mappings, which pro-

vides us the required discriminative information about the

visual and semantic features in the aligned space. The key

to the proposed model is that we implicitly exact the princi-

pal information from visual and semantic space to construct

aligned features, which is not only semantic-preserving but

also discriminative. Extensive experiments on five bench-

mark data sets demonstrate the effectiveness of the pro-

posed approach.

1. Introduction

Most existing ZSL methods pay more attention to direct-

ly learn an one-way mapping between the visual and the

semantic space, but neglect the function of the reconstruc-

tion, which may lead to the domain shift problem [14]. Re-

cently, Liu et al. [12] proposed a Graph and Auto-encoder

based Feature Extraction (GAFE) model which brings the

idea of auto-encoder into ZSL. However, GAFE ignores that

whether the human-designed semantic attributes are dis-

criminative enough to recognize different categories. More-

over, the variations within each attribute may be quite large,

making it difficult to learn an appropriate classifier. Thus,

the learned mapping by GAFE cannot preserve the underly-

ing discriminative information hidden in the data.

To handle the above problems, a Discriminative Dual

Semantic Auto-encoder (DDSA) is proposed in this paper.

The framework intends to connect the three spaces i.e. vi-

sual space, aligned space and semantic space together by

encoder-decoder paradigm. The established aligned space

can remove the irrelevant information in the visual space.

Moreover, the discriminative attribute correlations are also

implicitly considered in the aligned space.

• The irrelevant information can be removed from the

visual space, which is more constructive to establish a

reconstruction relationship with the semantic space.

• The aligned attributes can be viewed as the combina-

tion of different attributes, thus the aligned space can

preserve the semantic information.

• The seen class classifier is utilized to make the aligned

attributes discriminative enough to pull the data from

the same class together and push those from different

classes away from each other.

2. Approach

2.1. Problem Definition

Suppose there are n labeled samples with c seen class-

es {X,S, Y } and nu unlabeled samples with cu unseen

classes {Xu,Su,Yu}. X ∈ Rd×n and Xu ∈ Rd×nu are

d-dimensional visual features in the seen and unseen data,

while the corresponding labels are Y and Yu, respective-

ly. The seen and unseen classes have no label overlap, i.e.,
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Y ∩Yu = ∅. S ∈ Rk×n and Su ∈ Rk×nu are k-dimensional

semantic representations of instances in the seen and unseen

data sets. In the semantic-based classification task, we aim

to learn a classifier f : Xu → Yu, where the samples in Xu

are completely unavailable during training.

2.2. Framework

We propose to learn aligned attributes which can build

up the relationship between seen and unseen classes by d-

ual auto-encoders: The first one is visual space↔aligned

space: learn an auto-encoder between visual space and

aligned space. The second one is aligned space↔semantic

space: learn an auto-encoder between aligned space and se-

mantic space.

We use A ∈ Rm×n to represent the aligned space. To

remove the irrelevant information from the visual space, a

linear transformation W ∈ Rm×d is utilized to build up

the relationship between aligned space and semantic space.

Then the first auto-encoder can be formulated as:

min
W,A

‖WX −A‖2F +
∥

∥WTA−X
∥

∥

2

F (1)

To preserve the original semantic information, a linear

mapping Q ∈ Rm×k is utilized to build up the relationship

between aligned attributes and original attributes. Thus, the

second auto-encoder between aligned space and semantic

space aims to solve the following function:

min
A,Q

‖QS −A‖2F +
∥

∥QTA− S
∥

∥

2

F (2)

To handle more effective recognition task, the aligned at-

tributes should be discriminative. In other words, we hope

to find discriminative attribute combinations to classify d-

ifferent categories. Thus we adopt the classifiers of seen

classes to make the aligned attributes more discriminative.

Specifically, a mapping P ∈ Rc×m is learned from the

aligned space. In summary, we define the objective func-

tion of DDSA as follows:

arg min
W,Q,P,A

‖WX −A‖2F +
∥

∥WTA−X
∥

∥

2

F

+α(‖QS −A‖2F +
∥

∥QTA− S
∥

∥

2

F
) + β ‖PA−H‖2F

s.t. ‖pi‖
2

2
≤ 1, ∀i,

(3)

where H = [h1, h2, · · · , hn] ∈ Rc×n and hi =
[0 · · · 0, 1, 0 · · · 0] ∈ Rc is a one-hot vector which repre-

sents the class label of seen sample xi. P can be viewed as

an classifier in the aligned space. The last term in Eq. (3)

aims to make the aligned attributes discriminative enough

to classify different categories.

2.3. Optimization

Obviously, Eq. (3) is not convex for W , Q, P and A

simultaneously, but it is convex for each of them separate-

ly. Thus, we employ an alternating optimization method to

solve the objective function. In particular, we alternate be-

tween the following subproblems:

Step 1: Update W while fixing the other variables. The

subproblem is formulated as:

W ∗ = argmin
W

‖WX −A‖2F +
∥

∥WTA−X
∥

∥

2

F
. (4)

To optimize it, we just need to take a derivative of upper

formula and set it to zero. Then we can obtain the formula-

tion as:

(

AAT
)

W +W
(

XXT
)

= 2AXT . (5)

Obviously, the Eq. (5) is a Sylvester equation [3] put

forward by Bartels and Stewart which can be simply solved

by a single line of code in MATLAB1 .

Step 2: Update Q while fixing other variables. The sub-

problem is formulated as:

Q∗ = argmin
Q

‖QS −A‖2F +
∥

∥QTA− S
∥

∥

2

F
. (6)

This problem can be solved in the same way as Eq. (5).

The solution for Q is solved by following Sylvester func-

tion:
(

AAT
)

Q+Q
(

SST
)

= 2AST . (7)

Step 3: Update P while fixing other variables. The sub-

problem is formulated as:

P ∗ = argmin
P

‖PA−H‖2F

s.t. ‖pi‖
2

2
≤ 1, ∀i.

(8)

The above problem can be optimized by the Lagrange

dual. Thus the analytical solution for Eq. (8) is:

P =
(

HAT
) (

AAT + Λ
)−1

, (9)

where Λ is a diagonal matrix constructed by all the La-

grange dual variables.

Step 4: Update A while fixing other variables. The sub-

problem is formulated as:

A∗ = argmin
A

‖M −NA‖2F , (10)

where

M =













WX

X

αQS

αS

βH













, N =













I

WT

αI

αQT

βP













, (11)

1W = sylvester(AAT , XXT , 2AXT );
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and I ∈ Rm×m is the m-dimensional identity matrix. Tak-

ing a derivative of Eq. (10) and set it zero, we get the closed-

form solution for A is:

A =
(

NTN
)−1

NTM (12)

In conclusion, the procedure of optimizing the objective

function Eq. (3) is listed in Algorithm 1. In experiments,

the optimization process always converges after tens of it-

erations.
Algorithm 1: DDSA model for zero-shot classification

Input: Data matrix X , semantic matrix S, parameter α

and β.

Initialize: Q,P,A randomly

repeat:

1. Update W by solving Sylvester Eq. (5).

2. Update Q by solving Sylvester Eq. (7).

3. Update P by Eq. (9).

4. Update A by Eq. (12).

until converge.

Output: W,Q,P,A.

Verification The classification can be performed in visu-

al space or semantic space. In our experiment, we perform

the task in visual space. The learned W and Q project se-

mantic prototypes Su to the visual space. Then the label of

the testing sample Xi
u can be classified by Nearest Neigh-

bour (NN) search with the help of following equation:

predict label (Xi
u) = argmin

j

d
(

Xi
u,W

TQSj
u

)

(13)

where Xi
u is the i-th sample of unseen samples. Sj

u is the

semantic feature of the j-th unseen class. d (·, ·) represents

the Euclidean distance between two vectors.

Table 1: Details of datasets, where s/u means seen/unseen

Dataset visual dim s/u classes s/u samples

SUN 2000 645/72 10320/1440
CUB 2000 150/50 7057/2967

AWA1 2000 40/10 19832/5685
AWA2 2000 40/10 23527/7913
aPY 2000 20/12 5932/7924

3. Experiments

In this section, We validate our proposed specific linear

and deep methods on five widely-used data sets and com-

pared with some state-of-the-art models.

3.1. Datasets and Setting

Five widely-used ZSL benchmark data sets are used to

verify the effectiveness of the proposed framework. The

statistics of all data sets are shown in Table 1.

For a fair comparison, the features and the semantics pro-

vided by [20] are used in all experiments. Specifically, the

image features are extracted by the 101-layered ResNet [7]

and the attribute vectors are utilized as the class semantic-

s. Parameters α and β in our objective function are fine-

tuned in the range [0.1,10] using the validation splits. Fi-

nally, we set the dimension of the aligned space is 1200, i.e.

m = 1200.

Table 2: ZSL results on SUN, CUB, AWA1, AWA2 and

aPY datasets. The results report average per-class Top-1

accuracy in %.

Method SUN CUB AWA1 AWA2 aPY
DEVISE [6] 56.5 52.0 54.2 59.7 39.8
CONSE [15] 38.8 34.3 45.6 44.5 26.9

D CMT [17] 39.9 34.6 39.5 37.9 28.0
e SP-AEN [5] 59.2 55.4 - 58.5 24.1
e PSR [2] 61.4 56.0 - 63.8 38.4
p DCN [11] 61.8 56.2 65.2 - 43.6

CCSS [10] 56.8 44.1 56.3 63.7 35.5
fCLSWGAN [21] 58.5 57.7 64.1 - -

DAP [9] 39.9 40.0 44.1 46.1 33.8
IAP [9] 19.4 24.0 35.9 35.9 36.6

S SSE [23] 51.5 43.9 60.1 61.0 34.0
h LATEM [19] 55.3 49.3 55.1 55.8 35.2
a SJE [1] 53.7 53.9 65.6 61.9 32.9
l ESZSL [16] 54.5 53.9 58.2 58.6 38.3
l SYNC [4] 56.3 55.6 54.0 46.6 23.9
o SAE [8] 40.3 33.3 53.0 54.1 8.3
w LESAE [13] 60.0 53.9 66.1 68.4 40.8

GAFE [12] 62.2 52.6 67.9 67.4 44.3
DDSA 63.3 53.2 68.3 69.1 46.1

3.2. Effectiveness of the Proposed Framework

The proposed aligned space is associated with the visual

space and the semantic space. To demonstrate the effec-

tiveness of each component, we compare four different ap-

proaches and the ZSL results on SUN data set are shown

in Figure 1. (1) learning one auto-encoder between vi-

sual space and the aligned space with discriminative con-

straint (VD) (i.e. 1, 2, 5 term in Eq. (3)). (2) learning

one auto-encoder between semantic space and the aligned

space with discriminative constraint (SD) (i.e. 3, 4, 5 term

in Eq. (3)). (3) learning two auto-encoders between visu-

al/semantic space and the aligned space without discrim-

inative constraint (VS) (i.e. 1, 2, 3, 4 term in Eq. (3)).

(3) learning two auto-encoders between visual/semantic s-

pace and the aligned space with discriminative constraint

(DDSA) (i.e. Eq. (3)).

By comparing the performance of VD, SD and DDSA,

we infer that adopting dual auto-encoders is successful for

the ZSL task. Moreover, the performance of VS and DDSA

reflects imposing the discriminative constraint in the objec-

tive function can also improve recognition accuracy.
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Table 3: GZSL results on SUN, CUB, AWA1, AWA2 and aPY data sets. ts = Top-1 accuracy of the test unseen-class samples,

tr = Top-1 accuracy of the test seen-class samples, H = harmonic mean (CMT*: CMT with novelty detection). We measure

Top-1 accuracy in %.

SUN CUB AWA1 AWA2 aPY
Method ts tr H ts tr H ts tr H ts tr H ts tr H

DEVISE [6] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2
D CMT [17] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8
e CMT* [17] 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 8.7 89.0 15.9 10.9 74.2 19.0
e CONSE [15] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
p PSR [2] 20.8 37.2 26.7 24.6 54.3 33.9 - - - 20.7 73.8 32.3 13.5 51.4 21.4

DAP [9] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
IAP [9] 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4

SSE [23] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4
LATEM [13] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2

S SJE [1] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9
h ESZSL [16] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6
a SYNC [4] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3
l SAE [8] 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9
l GFZSL [18] 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0
o ZSKL [22] 19.8 29.1 23.6 19.9 52.5 28.9 18.3 79.3 29.8 17.6 80.9 29.0 11.9 76.3 20.5
w LESAE [13] 21.9 34.7 26.9 24.3 53.0 33.3 19.1 70.2 30.0 21.8 70.6 33.3 12.7 56.1 20.1

GAFE [12] 19.6 31.9 24.3 22.5 52.1 31.4 25.5 76.6 38.2 26.8 78.3 40.0 15.8 68.1 25.7
DDSA 22.3 33.9 26.9 25.1 53.9 34.3 26.3 77.1 39.2 28.7 82.8 42.6 20.4 62.1 30.7

Figure 1: Comparisons of four approaches on SUN data set.

3.3. ZSL and GZSL Results

Comparing the experimental results, we have several in-

teresting observations as follows:

According to Table 2, for ZSL, our model achieves the

best results on all data sets except the CUB data set. Specif-

ically, the accuracy of DDSA on the aPY data set increase

4.1% compared the strongest competitor. On other three da-

ta sets, the advantage of the DDSA is also obvious. It should

be contributed by the learned aligned space. With the help

of discriminative aligned attributes, the classification per-

formance of unseen classes can be improved further. Fur-

thermore, CUB is a fine-grained data set where most class-

es are very similar, so less discriminative structure could be

obtained by the DDSA. In contrast, some generative models

such as fCLSWGAN or DCN can learn more complicated

classifiers to enhance the discriminative property.

According to Table 3, for GZSL, DDSA achieves the

highest “ts” and “H” value almost on all data sets, which

demonstrates that the discriminative dual auto-encoder

structure also benefits the GZSL task. Moreover, it is easy

to see that the “ts” value and the “H” value for those base-

lines with big “tr” value are generally very small. The main

reason is that a very big “tr” value reflects the over-fitting

training for the seen classes, i.e. the trained model in these

methods cannot be generalized to new classes.

4. Conclusions

In this paper, we propose a novel ZSL model called Dis-

criminative Dual Semantic Auto-encoder (DDSA). The pro-

posed model aims to learn an aligned attribute space to re-

move the irrelevant information hidden in the visual space

and preserve the semantic information. Furthermore, the

aligned attribute space is connected with the similarity s-

pace, which makes the aligned attribute space discrimina-

tive to recognize different classes. Empirical results on

five widely-used data sets show DDSA outperforms exist-

ing ZSL models on five benchmarks and the convergence

analysis also shows the stability of the proposed algorithm.
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