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Abstract

Object part segmentation is an important problem for

many applications, but generating the annotations to train

a part segmentation model is typically quite labor-intensive.

Recently, Fang et al. [6] augmented object part segmenta-

tion datasets by using keypoint locations as weak supervi-

sion to transfer a source object instance’s part annotations

to an unlabeled target object. We show that while their ap-

proach works well when the source and target objects have

clearly visible keypoints, it often fails for severely articu-

lated poses. Also, their model does not generalize well

across multiple object classes, even if they are very simi-

lar. In this paper, we propose and evaluate a new model for

transferring part segmentations using keypoints, even for

complex object poses and across different object classes.

1. Introduction

While much work has studied segmenting objects from

image backgrounds, the more challenging problem of fine-

grained object part segmentation would benefit many appli-

cations from fine-grained object classification [22], to pose

estimation [3, 18], to object re-identification [4], etc. The

goal of part segmentation is to produce pixel-level semantic

annotations that indicate individual object parts.

Recent work using deep learning has shown impressive

performance on object part segmentation for both rigid and

non-rigid objects [7, 8, 12, 15]. Most of these papers re-

quire large quantities of annotated training images with

fine-grained, pixel-wise part segmentation masks, which

can be extremely labor-intensive to produce.

Recently, Fang et al. [6] showed that it is possible to gen-

erate pixel-level part annotations for an unlabeled target ob-

ject instance by using keypoints to propagate part segmen-

tations from a labeled source object instance of the same

class. This significantly accelerates creating pixel-wise part

segmentation masks, since manually annotating keypoint

locations is significantly less labor-intensive. While the idea

is promising, their work requires that the source and tar-

get objects have clearly visible keypoints and very similar

poses. Such constraints restrict the usage of their model

for many scenarios, e.g., when there are very few anno-

tated source objects and the target objects have very dif-

ferent poses from the source objects.

We thus propose a new model which first directly gener-

ates a pseudo-part segmentation only from the object key-

points, and then later combines it with appearance infor-

mation for improved object part segmentation. In contrast

to [6], which requires the source and target instances to have

the same number of visible keypoints, our approach can

use instances with varying numbers of visible keypoints.

Also, as our model directly learns a pose-to-part genera-

tion model, it can better generalize to novel poses in the

target dataset. Moreover, we also use the fact that many ob-

ject classes share similar semantic parts, even if their over-

all appearances are quite different, and thus can be used to

augment the annotated dataset for improved performance.

For example, while different quadruped (four-legged) an-

imals have widely different sizes and appearances, many

share similar body parts and body structures. Thus we can

augment the annotated dataset of individual quadruped ani-

mal part segmentations by considering different quadruped

animals, such as dogs, cats, horses, sheep, etc., as a single

class (i.e. quadruped) and improve the part segmentation

performance for all of them.

In summary, we propose a new approach for transferring

object part annotations from source objects to target objects

using keypoint guidance. Through extensive experiments,

we show that our approach can handle large variations in the

source and target objects, and produce better-quality part

segmentation results than existing approaches.

2. Related Work

Part Segmentation With Pose. The strong spatial rela-

tionship between object keypoints and parts is used in sev-

eral papers to improve the accuracy of both pose and part

predictions. Xia et al. [20] combined intermediate semantic

part score maps with pose estimates to refine part segmen-

tation results. Nie et al. [13] proposed a mutual feature-

sharing mechanism between two separate pose and part pre-
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Figure 1: Pipeline of our approach. The Pose-to-Part mod-

ule first takes the keypoint heatmaps Ki of the current ob-

ject as input to generate estimated initial part segmentations

P̃i. Then P̃i and Ki are concatenated and passed to the Vi-

sual Evidence module, which uses both the input image Ii
and structural information in the initial part segmentations

to produce the final segmentation result.

diction networks to improve each others’ accuracy. The

most relevant work to ours is that of Fang et al. [6] showing

that part segmentation of one object can be transferred to

another object of the same class using pose guidance.

Weakly Supervised Semantic Segmentation. Using

weak supervision for semantic segmentation is a highly

studied topic. Class labels [1, 5, 23], point supervision [2],

scribbles [11], and bounding boxes [9, 10] are among the

most common weak supervisory cues for semantic segmen-

tation. Recently Yang et al. [21] proposed an iterative re-

finement approach to transform pose-based part priors to

full human body part segmentations. However, there is lit-

tle work that explores using keypoints for generalized multi-

class object part segmentation.

3. Our Approach

Our task is to segment parts of an object instance, given

only the image and 2D keypoint locations of that instance at

inference time. During training, we are given images with

both keypoint and part annotations. Assume all training and

test objects share a maximum of p body parts and k key-

points. Denote a training instance as si = {Ii,Ki, Pi},

i = 1...N , where Ii ∈ Rh×w×3 is an input image, Ki ∈
Rh×w×k is the heatmap generated from the set of k 2D

keypoint annotations, and Pi ∈ Rh×w×p is the correspond-

ing pixel-level part segmentation map. Let N be the to-

tal number of training images. Consider a test instance as

x = {I,K}. Our goal is to use the provided keypoint an-

notations to transfer part segmentation labels from the fully

annotated training set to a weakly labeled test set.

Our model consists of two main parts: the Pose-to-Part

module and the Visual Evidence module. The Pose-to-Part

module learns to convert the keypoints Ki of a training in-

stance si to an estimated pseudo part segmentation as sim-

ilar as possible to the actual part annotation Pi of that in-

stance. The Visual Evidence module takes the target image

as input and combines the image features with the pseudo

part segmentation and the target keypoints Ki to generate

the final part segmentation result. An overview of the com-

plete approach is in Figure 1.

3.1. Pose­to­Part Module

The goal of this module is to estimate part segmentations

of unseen objects using keypoint annotations only. Key-

points provide useful structural information that can be di-

rectly used to estimate part segmentation. Considering that

a test object can have quite different shape and number of

visible keypoints than the training objects, learning such a

model can help to produce generalized part annotations of

test objects using their poses. This avoids the constraint

of [6] that requires strictly similar poses for the source and

target objects.

Pose-to-Part is a U-Net-like [14] network consisting of a

fully convolutional encoder-decoder network with skip con-

nections. The encoder reduces the spatial dimensions of

the input so that the network can understand the relative lo-

cations of the keypoints and the decoder then generates a

higher-resolution version of the part annotations.

3.2. Visual Evidence Module

While the Pose-to-Part module can estimate part anno-

tations for the target object, these estimates may be inac-

curate due to occlusion, different sizes of the parts, very

sparse keypoints, etc. Thus we incorporate visual evidence

in addition to the structural evidence from the Pose-to-Part

module, by introducing a Visual Evidence network which

takes three inputs: (1) the input Image, Ii, (2) the keypoint

heatmap, Ki, and (3) the pseudo part annotation output, P̃i,

from the Pose-to-Part module.

The Visual Evidence network is also a fully-

convolutional encoder-decoder network with skip con-

nections. The network first encodes Ii as a convolutional

feature map and then passes it through a series of learnable

deconvolution layers to predict the final part segmentation

output. We also generate multi-scale channel-wise concate-

nated maps Ki and P̃i, and then concatenate them with the

visual features at each stage of the decoder module. This

allows both the visual and structural features to refine each

other and produce a better joint part segmentation result

than either could do alone.

3.3. Training

The network is trained end-to-end using two loss func-

tions. The first loss is calculated between the final output of

the Pose-to-Part network P̃i and the ground truth part seg-

mentation,

Ltrans =
∑

i

∑

j

e[P̃i(j), Pi(j)], (1)



where j is the pixel index. Pi(j) is the ground truth part

annotation for target i, and e indicates the per-pixel cross

entropy loss.

The second loss Lseg is used at the end of the Visual

Evidence module to calculate the loss for the final part seg-

mentation result,

Lseg =
∑

i

∑

j

e[V j(Ii,Ki, P̃i; θ), Pi(j)], (2)

where V is the Visual Evidence module, and Ii and Ki are

the image and keypoint heatmaps of the i-th target. The

final loss combines both of these,

L = λtrans ∗ Ltrans + λseg ∗ Lseg, (3)

where λtrans and λseg are weights.

4. Experiments

We present findings from extensive experiments to eval-

uate the effectiveness of the proposed method.

4.1. Dataset

Pascal Part [19] is a part segmentation dataset with

pixel-wise object part annotations, keypoint locations, and

bounding box annotations. The dataset includes five

quadruped animals, Cat, Cow, Dog, Horse, and Sheep.

We use the subset of images having at least one of these

objects. We use the bounding box labels to crop the ob-

jects, discarding bounding boxes where there is overlap

with another bounding box with an IoU of more than 0.05.

We also discard bounding boxes that have any side smaller

than 32 pixels or for which the object has less than 5 key-

points. After applying this filter, we get in total 2872 im-

ages of quadrupeds from these five classes (245 Sheep,

404 Horse, 233 Cow, 1097 Dog, 893 Cat images). While

the dataset contains more detailed part annotations, we fol-

low the previous work [6] and only consider four parts for

each animal: head, torso, legs, and tail.

4.2. Implementation Details

For the Pose-to-Part network, we first convert the key-

point annotations into heatmaps using a Gaussian function

with σ = 7. The encoder of the Pose-to-Part network has

5 downsampling residual blocks and the decoder has 5 up-

sampling residual blocks. The upsampling blocks use Pix-

elShuffle layers [16] for the upsample operations. For the

Visual Evidence module, we use the encoder-decoder net-

work with skip-connections from [17]. The encoder con-

sists of an ImageNet-pretrained VGG-16 network, and the

decoder consists of a series of 5 upsampling blocks with

learnable deconvolution layers. All the layers in the image

evidence are learned during training. We train the full net-

work end-to-end and use λtrans = 0.01 and λseg = 1. We

use batch size 24 and resize the input images and the ground

truth part segmentations to 256× 256 during training.

4.3. Baselines

RefineNet is the affine transformation-based approach

proposed by Fang et al. [6]. It requires nearest neighbors

based on pose similarity to perform the morphing for body

part parsing. We follow their settings to train the model.

Transform is our Pose-to-Part module. For this base-

line, we disable the Visual Evidence module and consider

P̃tc
′ as our final output.

TernausNet [17] is the basic encoder-decoder network

used as our Visual Evidence module. We only consider the

image as input without keypoint locations for this baseline.

4.4. Evaluation on Pascal Part Dataset

We first train on one animal class and test on the same

animal class, as in [6]. We randomly choose 80% of the

images for training and 20% for testing on each class. All

experiments use 5-fold cross-validation. Figure 2 presents

the results using intersection-over-union (IoU) as the eval-

uation metric. The figure shows that across all animal

classes, our model outperforms most baselines on particular

body parts, and outperforms all baselines averaged across

all body parts. This confirms that the Pose-to-Part module

is indeed adding useful information to the network.

We find that RefineNet [6] has the worst performance

among all the baselines. RefineNet can achieve 39.80%,

36.85%, 32.38%, 31.09%, 28.23%, 17.27% on Sheep,

Horse, Cow, Dog, and Cat respectively, in terms of

IoU averaged across all parts. In contrast, our full model

achieves 49.83%, 60.16%, 51.48%, 59.50%, and 58.84%

on Sheep, Horse, Cow, Dog, and Cat. From qualitative

results we observe that RefineNet often struggles to predict

accurate pixel labels (Figure 3a). Since it heavily relies on

source and target objects having similar poses, it fails to

make accurate predictions if the same keypoints are not vis-

ible in the source and target objects. These results suggest

that our model performs better because it can better utilize

keypoint annotations than RefineNet.

Transform, our second baseline, performs slightly bet-

ter than RefineNet but still fails to segment the small parts

(such as tail). It always performs much better than Re-

fineNet for head, probably because the head has more key-

point annotations than the other parts. Dense keypoints re-

sult in better pseudo-part annotation generation from the

Pose-to-Part module. This indicates that more keypoint an-

notations can help to improve the performance of this mod-

ule. Our full model performs much better than the Trans-

form baseline, indicating that both the Pose-to-Part module

and Visual Evidence modules play crucial roles in produc-

ing high-quality part segmentation results.

TernausNet [17], our third baseline, performs much bet-

ter than RefineNet and Transform, suggesting that appear-

ance is highly important for recognizing object parts. Al-

though our model sometimes performs similarly or only
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Figure 2: Evaluation on Pascal Part dataset in terms of 4-

part parsing. For the first five plots (Sheep through Cat),

we train on one animal class and test on the same animal.

For the last case (Quadruped), we combine all the images

from the five classes and consider them as a single class

(Quadruped) for both training and testing. Parts are BG

for background, HD for head, TS for torso, LG for legs, TL

for tail, and Avg is average of all. Best viewed in color.

slightly better than TernausNet in terms of average IoU,

it always produces better results for the smallest part (i.e.,

tail), especially for animals like Dog and Cat. These parts

and classes have the most articulated poses and thus are

among the most challenging.

Interestingly, all of these baseline models perform sig-

nificantly better on Horses, presumably because Horse

has less pose diversity than the other classes.

An advantage of our approach is that we can trans-

fer part segmentations across object classes, which could

lead to better results by effectively augmenting the anno-

tated dataset with more diversity in terms of animal sizes,

shapes, and poses. We evaluate this by considering all

quadruped animal classes as a single class. As shown in

Figure 2, our model achieves 63.69%, which is significantly

higher than our results on any of the individual classes

(which ranged from 49.83% to 60.16%). This indicates

that our model can utilize the part annotations from multi-

ple quadruped animal classes. In contrast, the performance

for RefineNet dropped significantly, to 17.27%. Our results

on Quadruped also significantly outperform those of Ter-

nausNet (60.00%), suggesting that our model is better at

generalization.

Qualitative results of our models and the baselines are

presented in Figures 3a and 3b. We see that after consider-

ing all animals as Quadruped, our model’s performance

improves significantly compared to the baseline models.

5. Conclusion

In this paper, we explore the problem of object part seg-

mentation with limited data. We propose a novel approach

to transfer part annotation from a labeled set to an unla-

(a) Considering each animal class individually

(b) Considering all animals as a single class, Quadruped

Figure 3: Qualitative comparison on Pascal Part dataset.

beled set using keypoint annotations as transfer guidance.

We show that our approach can help to produce better part

segmentation for both the single object class and joint ob-

ject class settings. We hope our work will lead to more

research on the problem of generalized part segmentation

across multiple classes.
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