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Abstract

In this paper, we propose a learning algorithm for train-

ing deep neural networks when there is not sufficient la-

beled data. To improve the generalization capabilities of the

deep model, we adopt a learning scheme to train two related

tasks simultaneously. One is the original task (target), and

the other is an auxiliary task (source). In order to create

a related auxiliary task, we leverage an available knowl-

edge graph to query for semantically related concepts that

are grounded in labeled images; hence we call our method

KGAuxLearn. We jointly train the target and source tasks

in a multi-task architecture. We evaluate our method on

two fine-grained visual categorization benchmarks: Oxford

Flowers 102 and CUB-200-2011. Our experiments demon-

strate that the error rate reduced by at least 2.1% over fine-

tuning for both datasets. We also improve the error rate by

1.36% and 2.93% over using randomly selected concepts

as an auxiliary task for Oxford Flowers 102 and CUB-200-

2011, respectively. In addition, comparing our method with

auxiliary data selection methods that do not use a knowl-

edge graph, the error rate improves by 0.69% and 2.57%
on Oxford Flowers 102 and CUB-200-2011, respectively.

1. Introduction

Deep neural networks (DNNs) have been achieving

state-of-the-art performances on a wide range of problems

in vision, language, and speech areas [16, 21, 25]. A

large part of DNNs’ success is owed to the availability of

massive amount of labeled data [15, 18]. However, label-

ing samples can be prohibitively expensive and time con-

suming such that it is considered one of its main bottle-

necks. As one solution, there has been a growing interest

in knowledge transfer methodologies such as transfer learn-

ing [28, 17, 36] and multi-task learning (MTL) [2, 42, 3].

The objective of MTL is to improve the performance of all

related tasks while learning them in parallel. According to

Caruana [8], MTL results in better performance than trans-

fer learning because it “improves generalization by leverag-

ing the domain-specific information contained in the train-

ing signals of related tasks.” In essence, MTL introduces

an inductive bias that prefers hypotheses that can explain

multiple tasks, which limits overfitting [6, 5].

In this paper, we introduce a fast multi-task learning-

based framework for fine-grained visual categorization, a

problem which often suffers from a lack of labeled data.

Previous work has demonstrated the value of selecting aux-

iliary data for additional tasks to cope with limited labeled

data. Ge et al. [13] used expensive image-by-image sim-

ilarity computations. Zhang et al. [41] used a meta learn-

ing approach that requires repeatedly training on different

tasks in order to learn which auxiliary data to select. How-

ever, neither method takes advantage of high-level semantic

knowledge. We show that we can use existing high-level

semantic knowledge in the form of a knowledge graph to

guide the selection.

In our framework, we have two tasks: target (the origi-

nal learning task) and source (the auxiliary task to improve

generalization on the target task). Knowledge transfer ap-

proaches such as MTL and transfer learning have better pers

[8]. In order to find related tasks to the target data, we

use ConceptNet, a semantic network of structured knowl-

edge, which consists of more than 8 million concepts and

21 million relations [32]. In particular, our source task will

be the collection of all of the retrieved concepts from the

knowledge graph. For example, for the class name “rose”

in Oxford Flowers 102 [27], the extracted related concepts

include “blossom,” “petal,” “flower,” “floribunda,” “multi-

flora,” “rose bowl,” and more. Note that there are a few

non-related retrieved concepts that can be seen as noise. Af-

ter extracting related concepts from the knowledge graph,

we construct our source task by collecting images corre-

sponding to those concepts from ImageNet 22K, which con-

tains 14M images and 22K categories [10]. Then, we

jointly train our deep network using both target and source

tasks. Our framework architecture consists of a shared con-

volutional neural network followed by two parallel task-

specific fully connected classifiers. Shared layers’ param-



. . .

FCtarget

. . .

FCsource

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

Block

C
o
n
v

C
o
n
v

C
o
n
v

C
o
n
v

Block

…

Convolutional Neural Network

θ

Ѡt

Ѡs

target task 

(Oxford Flowers 102)

source task

ImageNet

Knowledge graph

Figure 1. Illustration of KGAuxLearn. Inputs to the framework

are the target data (such as Oxford Flowers 102) and source data

(related images from ImageNet). After passing through the deep

convolutional neural network, they go to the corresponding fully

connected layers.

eters are updated using both target and source tasks, while

each fully connected layer is updated by its corresponding

task (Figure 1).

We performed our experiments on two fine-grained vi-

sual categorization (FGVC) problems, which aim to distin-

guish subordinate visual categories such as different species

of birds [37] or flowers [27]. There are two major diffi-

culties associated with these datasets: first, the number of

training samples per class is small; and second, visual dis-

tinction between categories is subtle. As a result, training a

high-quality DNN from scratch would be challenging. Our

experiments on these two FGVC datasets show the efficacy

of our proposed method by improving accuracy. Specifi-

cally, on Oxford Flowers 102, we decrease the error rate

by 2.11%, 1.36%, and 0.69% over fine-tuning on the tar-

get task, using randomly selected concepts as the auxiliary

task, and other auxiliary task selection methods, respec-

tively. Similarly, on CUB-200-2011 we improve the error

rate by 2.68%, 2.93%, and 2.57% over the aforementioned

baselines.

2. Related Work

Transfer Learning In transfer learning, we leverage the

knowledge we have learned from some (source) tasks to

the new (target) task to combat data scarcity in addition to

improving accuracy and time complexity [36, 28]. There-

fore, we utilize knowledge learnt from one (or more) re-

lated task(s) to the target task. In traditional machine learn-

ing, transfer learning involves learning several interrelated

problems using SVMs [38], hierarchical Bayesian methods

[30], graphical models [34], Markov logic networks [24],

etc. With the huge success of deep neural networks, trans-

fer learning is fine-tuning a pretrained deep model for a tar-

get task, which improves model performance remarkably,

while reducing the need for labeled data [40, 14]. In par-

ticular, in computer vision tasks, convolutional neural net-

works (CNNs) trained on large datasets such as ImageNet

have been extensively used for transfer learning [19, 9]. For

some target tasks with less labeled data such as fine-grained

visual categorization, fine-tuning on deep neural networks

will lead to overfitting [13]. In this paper, we try to avoid

the overfitting problem by considering transfer learning, but

we found that multi-task learning architecture works better

on these tasks since it incorporates a regularizer in the form

of related auxiliary task, while training the target task.

Multi-Task Learning In multi-task learning, several re-

lated tasks are learned simultaneously in order to take ad-

vantage of useful information embodied in those tasks, and

increase generalization performance of all tasks [8, 36, 43].

It has shown improvements in many applications in various

areas [35, 29, 11, 7, 26, 22, 39, 23, 4]. This paper is closely

related to the multi-task learning paradigm with the aspect

of learning more than one task. The main difference, how-

ever, is that while we train two target and source tasks si-

multaneously, we care about target task accuracy. The main

role of the source task is to regularize the framework by

learning a shared feature representation that benefits the tar-

get task the most.

Our framework is motivated by ideas studied in joint

learning using auxiliary tasks [13, 41]. Ge et al. [13] used

a subset of training images from the original source task

for training. They computed descriptors from filter bank

responses for both target and source tasks, which is compu-

tationally expensive. Zhang et al. [41] introduced a regu-

larized meta-learning objective function in which the regu-

larization is based on an auxiliary data. To select more use-

ful samples from auxiliary data, they computed a score for

each data point using a forward pass through their network.

Then, they fine-tune the model in the second pass, which

makes the framework expensive to adapt. Our framework

is similar to these approaches with respect to using auxil-

iary data to improve the generalization performance of the

model on the target task, but the main difference is the way

we choose the auxiliary data. We straightforwardly use the

semantic knowledge graph to retrieve all of the related con-

cepts to the target task. This is extremely fast and easy to

apply.

3. The Framework

Here is the procedure of our framework (Figure 1):

1. Join knowledge graph to ImageNet: First, we join

the relational knowledge graph, ConceptNet [32], with

the images of ImageNet 22K [10]. This enables us

to query for semantically related concepts that are

grounded in labeled images.



2. Create auxiliary task: Given the target task defined by

classes that are identified with nodes in the knowledge

graph, we select all of the related nodes to construct

our source task. In order to retrieve related concepts,

we use the “related” API endpoint of ConceptNet [1].

This API endpoint uses word embeddings built from

a combination of ConceptNet embeddings with distri-

butional word embeddings (word2vec and Glove) to

create a more robust embedding for each concept [33].

Cosine similarity is used to find related terms for each

node. Finally, using the connection of ConceptNet and

ImageNet 22K we made in step one, we extract images

to obtain auxiliary data.

3. Construct KGAuxLearn architecture: We use a deep

convolutional NN followed by two task-specific fully

connected layers; one for the target (FCtarget) and the

other for the source task (FCsource). The objective

function is:

argmin
θ,ws,wt

Lsource(h
s) + Ltarget(h

t) =

1

n

n
∑

i=1

ℓ
(

ht(xt
i;wt,θ), y

t
i

)

+

1

m

m
∑

i=1

ℓ
(

hs(xs
i ;ws,θ), y

s
i

)

where hs and ht are the hypotheses for source and tar-

get tasks correspondingly. ws,wt are source and tar-

get parameters, and θ is the shared parameters. The

source sample set is Ssource = {(xs
i , y

s
i )}

m
i=1

, and the

target sample set is Starget = {(xt
i, y

t
i)}

n
i=1

, where

m and n are the number of samples in the source and

target tasks respectively.

4. Jointly train target and source tasks: There are three

sets of parameters ws,wt,θ that needed to be learned.

In order to optimize these parameters, we applied an

alternating training procedure, which interleaves up-

dating source and target tasks parameters. In partic-

ular, we alternate optimizing parameter sets {ws,θ}
and {wt,θ}. Note that θ is shared among two tasks;

therefore, when the input is source data, parameter

set {ws,θ} is updated and target-related parameters

FCtarget do not change (since the gradient w.r.t these

parameters is zero). When the input is target data, pa-

rameter set {wt,θ} is updated and source-related pa-

rameters (FCsource) do not change.

4. Experiments

Overview We performed experiments on two fine-grained

visual categorization datasets. For each target task, we

queried related categories using the structural knowledge

graph, ConceptNet, then extracted images of those cate-

gories from ImageNet 22K to construct the source task.

Then, we adjusted a convolutional neural network by adding

two task-specific classifiers on top, and fine-tuned the

model using both target and auxiliary data. We computed

top-1 and mean class accuracies and compared our results

with baselines and other methods using auxiliary data for

learning.

Datasets We evaluated our approach on two fine-grained

visual categorization benchmarks as target tasks: Oxford

Flowers 102 [27] and CUB-200-2011 [37]. Oxford Flow-

ers 102 contains 102 classes; each class has 10 images for

training and 10 images for validation. Total number of test-

ing images is 6,149. CUB-200-2011 consists of 200 bird

species with 5,994 images for training and 5,794 images for

testing.

Implementation In our experiments, we use the 152-

layer ResNet [15] pretrained on ImageNet 1K [31] as a

deep convolutional network. The only difference is that

instead of having one fully connected layer, we have two

fully connected layers for source and target tasks, which

are initialized randomly (Figure 1). During training, target

images are augmented by a combination of random crop,

flip, and rotation procedures, and during inference, images

are resized and center cropped. All images are resized to

224 × 224. After hyperparameter tuning on the validation

set, SGD with momentum 0.9 and initial learning rate 0.01
is used for CUB-200-2011 and Adam is used for Oxford

Flowers 102 with initial learning rate 0.001. We applied a

cosine annealing schedule to update the learning rate during

training. We also freeze ResNet 152 up to layer 6. We set

the maximum number of epochs to 100, and load the model

which has the best target validation accuracy for evaluation.

Our source dataset is ImageNet 22K [10], which organized

according to the WordNet [12] hierarchy.

Training the Model For Oxford Flowers 102, using the

“related” API endpoint of ConceptNet, we extracted 1,006

classes with 825k images in total, and for CUB-200-2011,

we extracted 1,045 classes with approximately 885k train-

ing images. Note the huge difference between the number

of images in source and target tasks: The source task for

Oxford Flowers 102 is at least 800 times larger, and that of

CUB-200-2011 is at least 160 times larger. We therefore set

target task batch size to 8 and source task batch size to 128.

In each iteration, we randomly select 8 samples from target

and 128 samples from source task. Iterations in each epoch

is based on the total number of target task, which means

not all source tasks images are passed through the model in

each epoch. This makes the training process very fast. In

future work, we plan to use more related samples from the

auxiliary data.



Quantitative Analysis To evaluate classification perfor-

mance, we computed top-1 and mean class accuracy. We

defined two baselines: (1) fine-tuning on the target task

only, and (2) choosing random concepts as the source task.

In the former, we just fine-tune the deep convolution net-

work (pretrained on ImageNet 1K) with one fully connected

layer for the target task. In the latter, we use the same

structure as our framework, but instead of selecting a source

task from the knowledge graph, we randomly sample con-

cepts. In order to have a fair comparison, the number of

randomly selected categories is exactly equal to that of the

KGAuxLearn source task. More concretely, for Oxford

Flowers 102, for example, we had retrieved 1,006 related

concepts from knowledge graph to construct source task.

Therefore, for the “random” baseline, we selected 1,006

random concepts to be the source task.

We also compare our method with the results of papers

[13, 41] in which they used joint learning with source task

from ImageNet 1K. We perform all experiments using three

different seeds, and report the results in Tables 1 and 2 (±
in these tables represents standard deviation). For Oxford

Flowers 102, according to Table 1, KGAuxLearn perfor-

mance is higher than the baselines as well as selective joint

fine-tuning introduced in [13]. In [13], their best mean ac-

curacy was 95.8%, while we got 96.49%. Note the com-

putational cost in their framework since they need to com-

pute the similarities of all images descriptor in target data

to those of source data, which is ImageNet 1K. For CUB-

200-2011, as shown in Table 2, our model has better per-

formance than baselines as well as MetaFGNet in [41]. In

[41], their best accuracy (similar to our settings) is reported

80.3% when used ImageNet 1K as source data, while our

model accuracy is 82.87%. Note the simplicity of our

framework compared to [41], as they require one pass to

compute the source task target, and the other pass for fine-

tuning. For both experiments, we outperform over random

auxiliary images as source task. This is significantly impor-

tant as it shows our model is learning a better generalized

representation while learning jointly with related tasks. It

should be noted that in [41], they achieved higher accuracy

when using a subset of L-Bird [20] as auxiliary set for CUB-

200-2011. L-Bird contains more than 4M images from

around 10k bird species. Consequently, obtaining such a

high score is unsurprising when using a more specialized

source task.

Few-Shot Learning Scheme As one future direction, we

would like to extend our framework for few-shot learning

scheme in which there are a handful number of images for

each class. We performed small experiments for such set-

ting when there are 2, 4, 6, 8, and 10 images per class for

the Oxford Flowers 102 dataset. As illustrated in Figure 2,

for all cases, KGAuxLearn outperforms all baselines. This

observation is important as it shows this methodology could

Method Top-1 (%) Mean Acc (%)

Fine-tune 93.51± 0.14 94.38± 0.17
Random Source 94.35± 0.27 95.12± 0.1
Selective Joint [13] N/A 95.8
KGAuxLearn 96.07± 0.20 96.49± 0.19

Table 1. A comparison of classification performance (top-1 and

mean class accuracy with standard deviation) on Oxford Flowers

102. KGAuxLearn outperforms the baselines and the best result

reported in [13] with ImageNet as the source task.

Method Top-1 (%) Mean Acc (%)

Fine-tune 80.19± 0.4 80.37± 0.38
Random Source 79.94± 0.3 80.11± 0.33
MetaFGNet [41] 80.3 N/A
KGAuxLearn 82.87± 0.53 83.00± 0.49

Table 2. A comparison of classification performance (top-1 and

mean class accuracy with standard deviation) on CUB-200-2011.

KGAuxLearn outperforms the baselines and the best result re-

ported in [41] with ImageNet as the source task.

be fit in other related research areas such as few-shot learn-

ing.
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Figure 2. Error rate when there are a small number of images

per class for Oxford Flowers 102 using different approaches.

KGAuxLearn performance is better than baselines in all cases.

5. Conclusions

In this paper, we introduce a training methodology to
improve image classification performance with insufficient
data for training. Inspired from multi-task learning, we cre-
ate a source task, related to the original task, and adjust
a deep neural network to train both tasks in parallel. To
construct the source task, we retrieve related concepts from
a semantic knowledge graph, and then extract correspond-
ing images in ImageNet 22K. Our experiments on two fine-
grained visual categorization benchmarks are promising, il-
lustrating accurate and fast performance.
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