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Abstract

Auto-annotation by an ensemble of models is an efficient

method of learning on unlabeled data. However, wrong or

inaccurate annotations generated by the ensemble may lead

to performance degradation of the trained model. We pro-

pose filtering the auto-labeled data using a trained model

that predicts the quality of the annotation from the degree

of consensus between ensemble models. Using semantic

segmentation as an example, we demonstrate the advantage

of the proposed auto-annotation filtering over training on

data contaminated with inaccurate labels. We show that

the performance of a state-of-the-art model can be achieved

by training it with only a fraction (30%) of the original

manually labeled samples, and replacing the rest with auto-

annotated, quality filtered labels.

1. Introduction

Semi-supervised learning, i.e. using the combination of

a smaller set of labeled data and a larger set of unlabeled

data, is becoming increasingly important with the growing

capacity of trained models and their tasks complexity. En-

sembles of models have been successfully used for auto-

matic annotation of unlabeled data [1, 24]. In this setting,

an ensemble is first formed by multiple instances of a target

model, each trained on labeled data. The ensemble, which

is said to be more accurate than a single model, then labels

the unlabeled data, which is later used in a training proce-

dure. Unfortunately, this self-labeling approach raises one

issue that is often not properly addressed: the annotation

quality. Specifically, using wrong or inaccurate annotations

for training may negatively affect the target model.

In this work, we propose a method for predicting the

quality of the annotations generated by an ensemble. The

approach uses a model trained to assess the quality of the

generated annotation from the degree of consensus between

the models within the ensemble. Then, we propose to re-

fine the auto-labeled data set by discarding samples with

low predicted annotation quality. We show that training on

a refined and reduced set is advantageous over using a lager

set, contaminated with inaccurate labels. Using semantic

segmentation as an example, we demonstrate that the pro-

posed method achieves the same accuracy as a state-of-the-

art model, while using only a fraction (30%) of the labels in

the training set.

The main contributions of this paper are: (a) a method

for automatic filtering of auto-annotations generated by en-

sembles, using a trained model that predicts annotation

quality, and (b) a novel auto-annotation quality control

scheme for semantic segmentation, which filters bad labels

at the pixel level, yielding a refined partial image labeling.

2. Related work

Since it was demonstrated that ensembles of models can

boost the accuracy [7, 4] of a single model, they have been

used extensively to achieve state-of-the-art performance in

various tasks [19, 16, 9]. Using ensembles of models for

self-training was proposed in [1], where knowledge dis-

tillation was performed on unlabeled data by an ensemble

trained on a smaller set of labeled data. The idea of self-

labeling goes back to 1965 [18], and since then was a sub-

ject of research in semi-supervised learning [26]. The ben-

efits of using ensembles for semi-supervised learning are

advocated in [25]. Here we propose a model distillation

regime where the quality of the labels generated by an en-

semble is estimated by an additional, second-level model.

This is closely related to the stacked generalization [22]

meta-learning technique [5]. Unlike the method in [8] that

uses soft labels for knowledge distillation, we train a net-

work to filter out unreliable labels.

We demonstrate the effectiveness of the proposed tech-

nique on the example of semantic segmentation [6]. Prior

work on not fully supervised semantic segmentation in-

clude weakly and partially supervised techniques [10, 14,

21], self-supervision [23] and ensemble knowledge trans-

fer [13]. To the best of our knowledge, this is the first work

that performs semi-supervised training of semantic segmen-

tation model on auto-annotated unlabeled data, generated

by ensembles with quality filtering.
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3. Annotation quality prediction

Let f : X → Y be the target model to be trained. We use

an ensemble of models e = (f1, . . . , fk), fj : X → Y, to

automatically label the unlabeled data for training the target

model f . Models in e are trained on a labeled data set S =
{(x(i), ȳ(i))}, x(i) ∈ X, ȳ(i) ∈ Y. We use the ensemble to

generate labels for the large unlabeled set U = {x(i)} in the

following way:

• Run e : X → Yk on U to generate vectors of labels

L = {(y
(i)
1 , . . . , y

(i)
k )}.

• Apply a fusing function [16] g : Yk → Y to combine

the ensemble labels into a single label: L̂ = {ŷ(i)} =
g(L) = (g ◦ e)(U).

Finally, we train the target model on the generated labeled

set T = {U, L̂} = {(x(i), ŷ(i))}. Generally, some of the au-

tomatically generated labels in L̂ are expected to be wrong.

Therefore, a supposedly better approach would be to re-

move the corresponding data samples from T.

In order to do that, we propose to train a function q,

that predicts the quality of the labels generated by an en-

semble, based on the degree of consensus within it. The

function q : Yk → {0, 1} receives the ensemble output

(y1, . . . , yk) and generates a quality score in {0, 1}. This is

similar to Wolpert’s ensemble stacking approach [22], but

instead of merging ensemble outputs to generate a fused

labeling, the q function predicts the labeling quality for a

fixed fusor g. The function q is trained using a labeled data

set Q = {(x(i), ȳ(i))}. For a data sample (x, ȳ) ∈ Q, the

input for the q model is the ensemble output e(x) and the

ground truth is the indicator function ✶(g◦e)(x)=ȳ . We then

use q to filter the auto-annotated set T by discarding data

samples with low predicted annotation quality to yield a re-

fined labeled data set T∗ = {(x, ŷ) ∈ T | q(e(x)) = 1}.

4. Semi-supervised semantic segmentation

with auto-annotation quality prediction

To demonstrate the proposed approach, we implement a

semi-supervised training of a semantic segmentation model

using auto-annotation with ensemble of models and quality

filtering. We chose the task of semantic segmentation since

creating manual annotations for this task is extremely labor

intensive, resulting in a relatively limited amount of such

annotations. Therefore, highly accurate auto-annotations

could be especially useful for this task.

To populate the ensemble we use both multiple mod-

els and data augmentation, following the data distillation

method presented in [15]. First, we train the same model

multiple (three) times using different parameters initializa-

tion and training samples reshuffling. In addition, each

model is fed six augmented versions of the input image:

two horizontal flips × three scales (x0.5, x1.0, and x1.5).

In the experiments described in the next section we

merge ensemble results into a single label using a sim-

ple softmax averaging [17, 20, 11, 12]. We refer to a

collection of such labels as unfiltered auto annotations.

The fusing function g is defined as g(σ1, . . . , σk) =

argmaxi∈[1,...,C]

∑k

j=1 σj , where C is the number of

classes in the semantic segmentation model, and σj ∈ RC

is a softmax class probability vector generated by the j-th

model of an ensemble of size k.

Interestingly, since semantic segmentation models can

be trained on a partially labeled image, we do not necessar-

ily need to accept or discard the image labeling as a whole.

Instead, we can do it selectively, by making a decision per

pixel. Pixels with unreliable labeling are marked as a spe-

cial ”ignore” class in the labels mask and do not contribute

to the gradient back-propagation during the training.

We implement q using a convolutional neural network

(CNN) that receives k × C input channels - (σ1, . . . , σk)
and outputs a quality mask in {0, 1}. It has 4 hidden conv-

ReLU layers. The first layer has 40 output channels while

the rest of them have 20.

5. Experiments

In this section, we demonstrate the strength of the pro-

posed quality prediction approach. We show that a model

trained on a combination of manually labeled data and qual-

ity filtered auto-annotations achieves better performance

than its unfiltered counterpart. In fact, we show that quality

filtering allows replacing a significant amount of manually-

annotated images by auto-annotated images, without any

degradation in accuracy. The experiments are performed

using the DeepLab model [2], a state of the art network for

semantic segmentation. The training protocols follow [2].

We evaluate our approach on the pixel-level semantic la-

beling task of Cityscapes data set [3]. This data set has

19 semantic labels (and additional void labels that are not

used for evaluation), and consists of 5000 images, which are

split into training, validation and test sets of sizes 2975, 500,

and 1525 respectively. We report mIoU (mean IoU) scores

and IoU scores of each one of the 19 classes following

the Cityscapes definitions. Our experiments involve several

data splits. In all these splits, all the 19 classes are repre-

sented: Cityscapes full, Cityscapes small, and Cityscapes

tiny training sets consisting of 100%, 30% and 15% of the

labeled training images, respectively. In Cityscapes extra

set, we sample 3600 images from the 20000 coarsely anno-

tated Cityscapes data set. We do not use any available labels

from this data set, but only the images themselves.

5.1. Training with and without quality prediction

We start by showing that a model trained on manually

labeled data + quality filtered auto-annotations outperforms



Figure 1. Columns - left to right: (1)

Original image, (2) unfiltered auto-

annotations, (3) quality filtered auto-

annotations, (4) ground truth annota-

tion. Rows: three different examples.

Black pixels in the fourth columns rep-

resent void classes that are not counted

as part of the 19 classes and do not con-

tribute to the mIoU score. Black pix-

els in the third column represent pixels

that are masked out by the quality fil-

ter.

a model trained on manually labeled data + unfiltered auto-

annotations by 0.8% in terms of mIoU.

First, we trained a DeepLab network on the Cityscapes

tiny training set 3 times. In our experiments, the best net-

work in this setting obtained mIoU of 74.0% on the vali-

dation set. Then, we produced unfiltered auto-annotations

for the Cityscapes extra set by fusing the ensemble’s results.

The ensemble consists of the 3 trained models together with

6 augmentations associated with each model. We proceed

by training two additional models. The first is a DeepLab

model trained on a data set that includes the Cityscapes tiny

training set and the unfiltered auto-annotations described

above. The network’s mIoU on validation set is 75.5%.

Next, we refine the auto-annotations by applying the qual-

ity filter, described in section 3. This quality filter is also

trained on the Cityscapes tiny training set. Finally, we train

a model on a data set which consists of the Cityscapes tiny

training set and the quality filtered auto-annotations. This

leads to an additional improvement of 0.8% in mIoU, reach-

ing 76.3%. Thus, we obtain an overall improvement of

2.3% in mIoU on the validation set (from 74.0% to 76.3%).

We chose the tiny training set for this experiment, as in

this scenario the auto-annotated data forms large portion of

the training data. In fact, the auto-annotated data forms

roughly 90% of the training data used for the training pro-

cedures depicted in the paragraph above. This mimics the

real world scenario in which available unlabeled data sets

are much larger than their manually-labeled counterparts.

Our approach shows that such data sets can be utilized ef-

fectively to improve the performance of a trained network.

Performing a class-wise IoU examination of the described

experiment (Table 1) leads to two conclusions:

Conclusion #1: a model trained on manually labeled

data + quality filtered auto-annotations outperforms a model

trained on manually labeled data + unfiltered auto annota-

tions on each one of the 19 classes. Indeed, in Table 1, the

values in the fifth column surpass the values in the fourth

one. This demonstrates the benefit of the quality filter. The

largest gain is demonstrated for the rarest classes (lower

rows), with 4% gain to the rarest class (train).

Conclusion #2: the proposed approach performs sig-

nificantly better on underrepresented classes, compared to

a model trained on manually labeled data only, adding up

to ∼20% to the IoU in such classes. This conclusion is

obtained by comparing the third and the fifth columns in

Table 1. Specifically, rows (classes) in which the IoU of

the model trained on manual labels + quality filtered auto-

annotations surpasses the IoU of the model trained on man-

ual annotations only are highlighted in green. Those that

perform the same are highlighted in yellow. One can see

that in 14 out of 19 classes, the performance of the former

model is at least as good as the latter. In 11 out of these

classes, the performance improved. The most significant

improvement is obtained in under-represented classes like

train (19.7%), bus (7.8%), truck (9.6%), and fence (4.9%).

We now experiment with manually-labeled training sets

of various sizes. Specifically, we show that adding qual-

ity filtered auto-annotated data improves the model’s perfor-

mance in all cases, with the largest improvement achieved

for the smallest manually-labeled training set. Following

the same procedure described earlier, we train a model first

on manually labeled data only, and then on manually la-

beled data + quality filtered auto-annotated data. We repeat

the experiment 3 times by reducing the manually labeled

training set from 100%, to 30% and, finally, to 15%. These

results on are summarized in Table 2. Specifically, the accu-

racy of the network trained on the Cityscapes small training

set+auto-annotated data is 77%, which is identical to the

accuracy of the network trained on Cityscapes full training

set. This demonstrates that using our approach with only

30% of the available manual annotations, leads to the same

performance as training with the entire manually annotated

training set (saving 70% of manual annotations).

5.2. Performance of the quality filter

In this section, we shed some light on the performance

of the quality filter itself. Columns 6-7 in Table 1 re-

port the precision rates of the filtered and unfiltered auto-

annotations respectively, computed on the ground truth la-

bels. These columns show that indeed the quality filter im-

proves the precision of the annotations for all classes, lead-

ing to the reported improvement in IoU (columns 4-5).



Class
Ground truth
occurrences

IoU per class Precision
Retention

Manual Manual + unfiltered Manual + filtered filtered unfiltered

building 500 91.7% 91.6% 91.7% 97.0% 95.7% 97.5%

sidewalk 499 81.8% 82.4% 83.1% 94.5% 89.9% 86.5%

pole 499 63.3% 61.2% 62.2% 90.8% 81.3% 70.6%

road 498 97.7% 97.7% 97.8% 99.7% 99.1% 97.9%

vegetation 493 92.1% 92.0% 92.1% 96.5% 95.4% 97.5%

traffic sign 487 76.5% 76.0% 76.5% 95.3% 92.4% 89.5%

car 486 94.7% 93.7% 94.0% 98.0% 97.4% 97.7%

sky 473 94.5% 94.9% 94.9% 98.1% 97.3% 98.1%

person 453 81.0% 79.3% 79.8% 93.2% 90.2% 92.3%

fence 394 54.1% 57.8% 59.0% 87.6% 81.9% 82.9%

bicycle 392 75.0% 74.0% 74.8% 91.2% 85.4% 84.7%

traffic light 385 67.6% 65.5% 65.9% 90.5% 86.7% 86.6%

terrain 351 61.4% 63.2% 63.3% 88.0% 83.8% 89.0%

wall 339 49.1% 49.6% 49.8% 85.8% 80.4% 90.4%

rider 303 59.8% 59.7% 60.3% 84.3% 78.2% 83.7%

truck 187 70.6% 78.3% 80.2% 96.3% 90.2% 90.8%

motorcycle 178 61.4% 60.8% 63.1% 93.1% 86.3% 82.2%

bus 161 79.2% 85.8% 87.0% 92.4% 90.4% 95.8%

train 95 55.2% 70.9% 74.9% 96.2% 90.9% 86.9%

Table 1. Per-class performance on validation set following the experiment from section 5.1. The first column lists the 19 classes in the

Cityscapes data set. The second column indicates the number of images in the validation set (out of 500) that contain the specified class.

Classes are ordered from the most common (first row) to the rarest (last row). Columns 3 to 5 depict IoU per class. Classes in which the

performance of the model trained on manual annotations + quality filtered auto-annotations surpasses the performance of the model trained

on manual annotations only are highlighted in green. Those that perform the same are highlighted in yellow. Columns 6 and 7 display

annotation precision (relative to the ground truth) of unfiltered and filtered auto-annotations. The last column displays filter retention rates.

# manual labels Labeled data only

Labeled+quality

filtered data

Full set (100%) 77.0% 77.6%

Small set (30%) 75.0% 77.0%

Tiny set (15%) 74.0% 76.3%

Table 2. mIoUs on the validation set.

Retention rates (the percentage of pixels that are retained

after applying the quality filter) are indicated in the right-

most column in the table. Overall, 96.2% of the pixels are

retained. These results, in combination with the results in

section 5.1, show that by applying our quality filter we can

improve model’s performance while retaining most of the

pixels (only 3.8% of the pixels are masked out).

In Figure 1, we provide a visual indication for the per-

formance of the quality filter. This figure compares: (i) the

RGB images, (ii) unfiltered auto annotations, (iii) filtered

auto-annotations, and (iv) manual labels (ground truth).

One can see that the quality filter identified correctly a sub-

stantial amount of errors. For example, a major part of the

car’s hood is masked out by the filter. The filter also cor-

rectly masked out the misclassified parts of the wall in the

top and middle examples – see the purple area (second col-

umn), that is correctly filtered out (third column). In the

bottom example, the misclassified area on the left car is cor-

rectly masked out by the quality filter, as well as an area on

the right wall. In all three examples, additional more subtle

masked out areas can be found.

6. Discussion and Conclusions

The accuracy gain due to the proposed quality filtering

procedure is higher for ”less experienced” teacher ensem-

bles: the more mistakes the teacher makes, the more errors

the quality filter can fix, leading to a trade-off between the

requested auto-annotation quality and the amount of gener-

ated training data. While in our experiments we used a fixed

quality threshold, we would like to explore the influence of

the quality-quantity trade-off on the trained model accuracy.

We can further enhance the training process by iterating

over the ”train the teachers ensemble”, ”auto-annotate the

unlabeled data”, and ”train the target model” steps. An-

other interesting research direction is using ensemble stack-

ing (instead of softmax averaging) for the fusing function g

and building a joint multi-task model for g and q together.

To conclude, we propose a generic method for quality

prediction of automatic annotations generated by an ensem-

ble of models. We adapt the proposed approach to semantic

segmentation by doing label quality filtering at pixel level.

We show that refining the auto-annotated training set by dis-

carding data samples with low predicted label quality im-

proves the trained model accuracy. We demonstrate that the

performance of the state-of-the-art model can be achieved

by training it with only a fraction (30%) of the original

manually labeled data set, and replacing the rest with the

auto-annotated, quality filtered labels.
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