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Abstract

Auto-annotation by an ensemble of models is an efficient
method of learning on unlabeled data. However, wrong or
inaccurate annotations generated by the ensemble may lead
to performance degradation of the trained model. We pro-
pose filtering the auto-labeled data using a trained model
that predicts the quality of the annotation from the degree
of consensus between ensemble models. Using semantic
segmentation as an example, we demonstrate the advantage
of the proposed auto-annotation filtering over training on
data contaminated with inaccurate labels. We show that
the performance of a state-of-the-art model can be achieved
by training it with only a fraction (30%) of the original
manually labeled samples, and replacing the rest with auto-
annotated, quality filtered labels.

1. Introduction

Semi-supervised learning, i.e. using the combination of
a smaller set of labeled data and a larger set of unlabeled
data, is becoming increasingly important with the growing
capacity of trained models and their tasks complexity. En-
sembles of models have been successfully used for auto-
matic annotation of unlabeled data [1, 24]. In this setting,
an ensemble is first formed by multiple instances of a target
model, each trained on labeled data. The ensemble, which
is said to be more accurate than a single model, then labels
the unlabeled data, which is later used in a training proce-
dure. Unfortunately, this self-labeling approach raises one
issue that is often not properly addressed: the annotation
quality. Specifically, using wrong or inaccurate annotations
for training may negatively affect the target model.

In this work, we propose a method for predicting the
quality of the annotations generated by an ensemble. The
approach uses a model trained to assess the quality of the
generated annotation from the degree of consensus between
the models within the ensemble. Then, we propose to re-
fine the auto-labeled data set by discarding samples with
low predicted annotation quality. We show that training on
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arefined and reduced set is advantageous over using a lager
set, contaminated with inaccurate labels. Using semantic
segmentation as an example, we demonstrate that the pro-
posed method achieves the same accuracy as a state-of-the-
art model, while using only a fraction (30%) of the labels in
the training set.

The main contributions of this paper are: (a) a method
for automatic filtering of auto-annotations generated by en-
sembles, using a trained model that predicts annotation
quality, and (b) a novel auto-annotation quality control
scheme for semantic segmentation, which filters bad labels
at the pixel level, yielding a refined partial image labeling.

2. Related work

Since it was demonstrated that ensembles of models can
boost the accuracy [7, 4] of a single model, they have been
used extensively to achieve state-of-the-art performance in
various tasks [19, 16, 9]. Using ensembles of models for
self-training was proposed in [I], where knowledge dis-
tillation was performed on unlabeled data by an ensemble
trained on a smaller set of labeled data. The idea of self-
labeling goes back to 1965 [18], and since then was a sub-
ject of research in semi-supervised learning [26]. The ben-
efits of using ensembles for semi-supervised learning are
advocated in [25]. Here we propose a model distillation
regime where the quality of the labels generated by an en-
semble is estimated by an additional, second-level model.
This is closely related to the stacked generalization [22]
meta-learning technique [5]. Unlike the method in [8] that
uses soft labels for knowledge distillation, we train a net-
work to filter out unreliable labels.

We demonstrate the effectiveness of the proposed tech-
nique on the example of semantic segmentation [6]. Prior
work on not fully supervised semantic segmentation in-
clude weakly and partially supervised techniques [10, 14,

], self-supervision [23] and ensemble knowledge trans-
fer [13]. To the best of our knowledge, this is the first work
that performs semi-supervised training of semantic segmen-
tation model on auto-annotated unlabeled data, generated
by ensembles with quality filtering.



3. Annotation quality prediction

Let f : X — Y be the target model to be trained. We use
an ensemble of models e = (f1,...,fx),f; : X = Y, to
automatically label the unlabeled data for training the target
model f. Models in e are trained on a labeled data set S =
{(zD, g}, 2 € X, () € Y. We use the ensemble to
generate labels for the large unlabeled set U = {z(¥} in the
following way:

e Rune : X — Y* on U to generate vectors of labels
L={" - u)}
e Apply a fusing function [16] g : Y¥ — Y to combine

~

the ensemble labels into a single label: L = {7V} =
g(L) = (goe)(U).
Finally, we train the target model on the generated labeled
set T = {U,L} = {(=,§")}. Generally, some of the au-
tomatically generated labels in L are expected to be wrong.
Therefore, a supposedly better approach would be to re-
move the corresponding data samples from T.

In order to do that, we propose to train a function g,
that predicts the quality of the labels generated by an en-
semble, based on the degree of consensus within it. The
function ¢ : Y¥ — {0, 1} receives the ensemble output
(y1,-..,yr) and generates a quality score in {0, 1}. This is
similar to Wolpert’s ensemble stacking approach [22], but
instead of merging ensemble outputs to generate a fused
labeling, the ¢ function predicts the labeling quality for a
fixed fusor g. The function g is trained using a labeled data
set Q = {(z,5")}. For a data sample (z,7) € Q, the
input for the ¢ model is the ensemble output e(z) and the
ground truth is the indicator function 1 (4o¢)(s)—5- We then
use ¢ to filter the auto-annotated set T by discarding data
samples with low predicted annotation quality to yield a re-
fined labeled data set T* = {(z,9) € T | q(e(x)) = 1}.

4. Semi-supervised semantic segmentation
with auto-annotation quality prediction

To demonstrate the proposed approach, we implement a
semi-supervised training of a semantic segmentation model
using auto-annotation with ensemble of models and quality
filtering. We chose the task of semantic segmentation since
creating manual annotations for this task is extremely labor
intensive, resulting in a relatively limited amount of such
annotations. Therefore, highly accurate auto-annotations
could be especially useful for this task.

To populate the ensemble we use both multiple mod-
els and data augmentation, following the data distillation
method presented in [15]. First, we train the same model
multiple (three) times using different parameters initializa-
tion and training samples reshuffling. In addition, each
model is fed six augmented versions of the input image:
two horizontal flips x three scales (x0.5, x1.0, and x1.5).

In the experiments described in the next section we
merge ensemble results into a single label using a sim-
ple softmax averaging [17, 20, 11, 12]. We refer to a
collection of such labels as unfiltered auto annotations.
The fusing function ¢ is defined as g(o1,...,0%) =
argmax;cr, . ¢ E?Zl oj, where C is the number of
classes in the semantic segmentation model, and o; € RC
is a softmax class probability vector generated by the j-th
model of an ensemble of size k.

Interestingly, since semantic segmentation models can
be trained on a partially labeled image, we do not necessar-
ily need to accept or discard the image labeling as a whole.
Instead, we can do it selectively, by making a decision per
pixel. Pixels with unreliable labeling are marked as a spe-
cial ”ignore” class in the labels mask and do not contribute
to the gradient back-propagation during the training.

We implement g using a convolutional neural network
(CNN) that receives k x C' input channels - (o1,...,0%)
and outputs a quality mask in {0, 1}. It has 4 hidden conv-
ReLU layers. The first layer has 40 output channels while
the rest of them have 20.

5. Experiments

In this section, we demonstrate the strength of the pro-
posed quality prediction approach. We show that a model
trained on a combination of manually labeled data and qual-
ity filtered auto-annotations achieves better performance
than its unfiltered counterpart. In fact, we show that quality
filtering allows replacing a significant amount of manually-
annotated images by auto-annotated images, without any
degradation in accuracy. The experiments are performed
using the DeepLab model [2], a state of the art network for
semantic segmentation. The training protocols follow [2].

We evaluate our approach on the pixel-level semantic la-
beling task of Cityscapes data set [3]. This data set has
19 semantic labels (and additional void labels that are not
used for evaluation), and consists of 5000 images, which are
split into training, validation and test sets of sizes 2975, 500,
and 1525 respectively. We report mloU (mean loU) scores
and IoU scores of each one of the 19 classes following
the Cityscapes definitions. Our experiments involve several
data splits. In all these splits, all the 19 classes are repre-
sented: Cityscapes full, Cityscapes small, and Cityscapes
tiny training sets consisting of 100%, 30% and 15% of the
labeled training images, respectively. In Cityscapes extra
set, we sample 3600 images from the 20000 coarsely anno-
tated Cityscapes data set. We do not use any available labels
from this data set, but only the images themselves.

5.1. Training with and without quality prediction

We start by showing that a model trained on manually
labeled data + quality filtered auto-annotations outperforms



Figure 1. Columns - left to right: (1)
Original image, (2) unfiltered auto-
annotations, (3) quality filtered auto-
annotations, (4) ground truth annota-
tion. Rows: three different examples.
Black pixels in the fourth columns rep-
resent void classes that are not counted
as part of the 19 classes and do not con-
tribute to the mloU score. Black pix-
els in the third column represent pixels
that are masked out by the quality fil-
ter.

a model trained on manually labeled data + unfiltered auto-
annotations by 0.8% in terms of mloU.

First, we trained a DeepLab network on the Cityscapes
tiny training set 3 times. In our experiments, the best net-
work in this setting obtained mloU of 74.0% on the vali-
dation set. Then, we produced unfiltered auto-annotations
for the Cityscapes extra set by fusing the ensemble’s results.
The ensemble consists of the 3 trained models together with
6 augmentations associated with each model. We proceed
by training two additional models. The first is a DeepLab
model trained on a data set that includes the Cityscapes tiny
training set and the unfiltered auto-annotations described
above. The network’s mloU on validation set is 75.5%.
Next, we refine the auto-annotations by applying the qual-
ity filter, described in section 3. This quality filter is also
trained on the Cityscapes tiny training set. Finally, we train
a model on a data set which consists of the Cityscapes tiny
training set and the quality filtered auto-annotations. This
leads to an additional improvement of 0.8% in mloU, reach-
ing 76.3%. Thus, we obtain an overall improvement of
2.3% in mloU on the validation set (from 74.0% to 76.3%).

We chose the tiny training set for this experiment, as in
this scenario the auto-annotated data forms large portion of
the training data. In fact, the auto-annotated data forms
roughly 90% of the training data used for the training pro-
cedures depicted in the paragraph above. This mimics the
real world scenario in which available unlabeled data sets
are much larger than their manually-labeled counterparts.
Our approach shows that such data sets can be utilized ef-
fectively to improve the performance of a trained network.
Performing a class-wise IoU examination of the described
experiment (Table 1) leads to two conclusions:

Conclusion #1: a model trained on manually labeled
data + quality filtered auto-annotations outperforms a model
trained on manually labeled data + unfiltered auto annota-
tions on each one of the 19 classes. Indeed, in Table 1, the
values in the fifth column surpass the values in the fourth
one. This demonstrates the benefit of the quality filter. The
largest gain is demonstrated for the rarest classes (lower
rows), with 4% gain to the rarest class (train).

Conclusion #2: the proposed approach performs sig-

nificantly better on underrepresented classes, compared to
a model trained on manually labeled data only, adding up
to ~20% to the ToU in such classes. This conclusion is
obtained by comparing the third and the fifth columns in
Table 1. Specifically, rows (classes) in which the IoU of
the model trained on manual labels + quality filtered auto-
annotations surpasses the IoU of the model trained on man-
ual annotations only are highlighted in green. Those that
perform the same are highlighted in yellow. One can see
that in 14 out of 19 classes, the performance of the former
model is at least as good as the latter. In 11 out of these
classes, the performance improved. The most significant
improvement is obtained in under-represented classes like
train (19.7%), bus (7.8%), truck (9.6%), and fence (4.9%).

We now experiment with manually-labeled training sets
of various sizes. Specifically, we show that adding qual-
ity filtered auto-annotated data improves the model’s perfor-
mance in all cases, with the largest improvement achieved
for the smallest manually-labeled training set. Following
the same procedure described earlier, we train a model first
on manually labeled data only, and then on manually la-
beled data + quality filtered auto-annotated data. We repeat
the experiment 3 times by reducing the manually labeled
training set from 100%, to 30% and, finally, to 15%. These
results on are summarized in Table 2. Specifically, the accu-
racy of the network trained on the Cityscapes small training
set+auto-annotated data is 77%, which is identical to the
accuracy of the network trained on Cityscapes full training
set. This demonstrates that using our approach with only
30% of the available manual annotations, leads to the same
performance as training with the entire manually annotated
training set (saving 70% of manual annotations).

5.2. Performance of the quality filter

In this section, we shed some light on the performance
of the quality filter itself. Columns 6-7 in Table 1 re-
port the precision rates of the filtered and unfiltered auto-
annotations respectively, computed on the ground truth la-
bels. These columns show that indeed the quality filter im-
proves the precision of the annotations for all classes, lead-
ing to the reported improvement in IoU (columns 4-5).



Ground truth IoU per class Precision .
Class occurrences Manual | Manual + unfiltered | Manual + filtered || filtered | unfiltered Retention
building 500 91.7% 91.6% 91.7% 97.0% 95.7% 97.5%

! ! !
pole 499 [ @33% |612% | e22% | 908% | 813% | 706% |
! ! !

vegetation | 493 92.1% | 92.0% 92.1% 96.5% | 95.4% 97.5%
traffic sign | 487 76.5% | 76.0% 76.5% 95.3% | 92.4% 89.5%
car 486 94.7% 93.7% 94.0% 98.0% | 97.4% 97.7%
person 453 81.0% | 79.3% 79.8% 93.2% | 90.2% 92.3%
bicycle 392 75.0% | 74.0% 74.8% 91.2% | 85.4% 84.7%
traffic light | 385 67.6% 65.5% 65.9% 90.5% | 86.7% 86.6%

Table 1. Per-class performance on validation set following the experiment from section 5.1. The first column lists the 19 classes in the
Cityscapes data set. The second column indicates the number of images in the validation set (out of 500) that contain the specified class.
Classes are ordered from the most common (first row) to the rarest (last row). Columns 3 to 5 depict IoU per class. Classes in which the
performance of the model trained on manual annotations + quality filtered auto-annotations surpasses the performance of the model trained
on manual annotations only are highlighted in green. Those that perform the same are highlighted in yellow. Columns 6 and 7 display
annotation precision (relative to the ground truth) of unfiltered and filtered auto-annotations. The last column displays filter retention rates.

Labeled+quality
# manual labels | Labeled data only filtered data
Full set (100%) 77.0% 77.6%
Small set (30%) 75.0% 77.0%
Tiny set (15%) 74.0% 76.3%

Table 2. mloUs on the validation set.

Retention rates (the percentage of pixels that are retained
after applying the quality filter) are indicated in the right-
most column in the table. Overall, 96.2% of the pixels are
retained. These results, in combination with the results in
section 5.1, show that by applying our quality filter we can
improve model’s performance while retaining most of the
pixels (only 3.8% of the pixels are masked out).

In Figure 1, we provide a visual indication for the per-
formance of the quality filter. This figure compares: (i) the
RGB images, (ii) unfiltered auto annotations, (iii) filtered
auto-annotations, and (iv) manual labels (ground truth).
One can see that the quality filter identified correctly a sub-
stantial amount of errors. For example, a major part of the
car’s hood is masked out by the filter. The filter also cor-
rectly masked out the misclassified parts of the wall in the
top and middle examples — see the purple area (second col-
umn), that is correctly filtered out (third column). In the
bottom example, the misclassified area on the left car is cor-
rectly masked out by the quality filter, as well as an area on
the right wall. In all three examples, additional more subtle
masked out areas can be found.

6. Discussion and Conclusions

The accuracy gain due to the proposed quality filtering
procedure is higher for “’less experienced” teacher ensem-
bles: the more mistakes the teacher makes, the more errors
the quality filter can fix, leading to a trade-off between the
requested auto-annotation quality and the amount of gener-
ated training data. While in our experiments we used a fixed
quality threshold, we would like to explore the influence of
the quality-quantity trade-off on the trained model accuracy.

We can further enhance the training process by iterating
over the “train the teachers ensemble”, “auto-annotate the
unlabeled data”, and “train the target model” steps. An-
other interesting research direction is using ensemble stack-
ing (instead of softmax averaging) for the fusing function g
and building a joint multi-task model for g and ¢ together.

To conclude, we propose a generic method for quality
prediction of automatic annotations generated by an ensem-
ble of models. We adapt the proposed approach to semantic
segmentation by doing label quality filtering at pixel level.
We show that refining the auto-annotated training set by dis-
carding data samples with low predicted label quality im-
proves the trained model accuracy. We demonstrate that the
performance of the state-of-the-art model can be achieved
by training it with only a fraction (30%) of the original
manually labeled data set, and replacing the rest with the
auto-annotated, quality filtered labels.
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