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Abstract

Utilizing synthetic data for semantic segmentation can

significantly relieve human efforts in labelling pixel-level

masks. A key challenge of this task is how to alleviate the

data distribution discrepancy between the source and target

domains, i.e. reducing domain shift. The common approach

to this problem is to minimize the discrepancy between fea-

ture distributions from different domains through adversarial

training. However, directly aligning the feature distribution

globally cannot guarantee consistency from a local view

(i.e. semantic-level). To tackle this issue, we propose a

semi-supervised approach named Alleviating Semantic-level

Shift (ASS), which can promote the distribution consistency

from both global and local views. We apply our ASS to two

domain adaptation tasks, from GTA5 to Cityscapes and from

Synthia to Cityscapes. Extensive experiments demonstrate

that: (1) ASS can significantly outperform the current unsu-

pervised state-of-the-arts by employing a small number of

annotated samples from the target domain; (2) ASS can beat

the oracle model trained on the whole target dataset by over

3 points by augmenting the synthetic source data with anno-

tated samples from the target domain without suffering from

the prevalent problem of overfitting to the source domain.

1. Introduction

Due to the development and use of deep learning tech-

niques, major progress has been made in semantic seg-

mentation, one of the most crucial computer vision tasks

[2, 3, 29, 4, 6, 14, 13]. However, the current advanced al-

gorithms are often data hungry and require a large amount

of pixel-level masks to learn reliable segmentation mod-

els. Therefore, one problem arises – annotating pixel-level

masks is costly in terms of both time and money. For ex-

ample, Cityscapes [7], a real footage dataset, requires over

7,500 hours of human labor on annotating the semantic seg-

mentation ground truth.

To tackle this issue, unsupervised training methods [5,

21, 22, 28, 24] were proposed to alleviate the burdensome

Source Target (a) (b) (c)

Figure 1: Domain adaptation. (a) Global adaptation. (b)

Semantic-level adaptation. (c) Ideal result.

annotating work. Specifically, images labeled from other

similar datasets (source domain) can be utilized to train a

model and adapted to the target domain by addressing the

domain shift issue. For the semantic segmentation task on

Cityscapes dataset specifically, previous works [19, 20] have

created synthetic datasets which cost little human effort to

serve as the source datasets.

While evaluating the previous unsupervised or weakly-

supervised methods for semantic segmentation [22, 27, 26,

12, 11, 25, 18], we found that there is still a large perfor-

mance gap between these solutions and their fully-supervised

counterparts. By delving into the unsupervised methods, we

observe that the semantic-level features are weakly super-

vised in the adaptation process and the adversarial learning is

only applied on the global feature representations. However,

simply aligning the features distribution from global view

cannot guarantee consistency in local view, as show in Figure

1 (a), which leads to poor segmentation performance on the

target domain. To address this problem, we propose a semi-

supervised learning framework – Alleviating Semantic-level

Shift (ASS) model – for better promoting the distribution

consistency of features from two domains. In particular, ASS

not only adapts global features between two domains but

also leverages a few labeled images from the target domain

to supervise the segmentation task and the semantic-level

feature adaptation task. In this way, the model can ease the

inter-class confusion problem during the adaptation process

(as shown in Figure 1 (b)) and ultimately alleviate the do-

main shift from local view (as shown in Figure 1 (c)). As a

result, our method 1) is much better than the current state-of-

the-art unsupervised methods by using a very small amount
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Figure 2: Structure overview. c is the number of classes for adaptation. W and H are the width and height of the input image

respectively. n is the number of feature channels of the feature map.

of the labeled target domain images; 2) addresses the preva-

lent problem that semi-supervised models typically overfit

to the source domain [23], and outperforms the oracle model

trained with the whole target domain dataset by utilizing the

synthetic source dataset and labeled images from the target

domain.

2. Related Works
Semantic segmentation. This task requires segment the

pixels of images into semantic classes. Deeplab [2, 3, 4] is

such a series of deep learning models that attained top on the

2017 Pascal VOC [8] semantic segmentation challenge. It

uses Atrous Spatial Pyramid Pooling (ASPP) module which

combines multi-rate atrous convolutions and the global pool-

ing technique to enlarge the field of view on the feature map

and therefore deepen the model’s understanding of the global

semantic context. Deeplab v2 has laconic structure and good

performance in extracting images features and can be easily

trained. Therefore, it is selected as the backbone network for

our work.

Domain adaptation. This task requires transfer and ap-

ply the useful knowledge of the model trained on the off-

the-shelf dataset to the target task dataset [9]. A typical

structure for the domain adaptation is Generative Adver-

sarial Networks (GAN) [10]. It consists of a discriminator

that distinguishes which domain the input feature maps are

from, and a generator that generates the feature maps to

fool the discriminator. The discriminator thereby supervises

the generator to minimize the discrepancy of the feature

representations from the two domains.

3. Method: Alleviating Semantic-level Shift

We randomly select a subset of images from the target

domain with ground truth annotations, and denote this set of

images as {ITL
}. We denote the whole set of source images

and the set of unlabeled target images as {IS} and {ITU
}

respectively. As shown in Figure 2, our domain adaptation

structure has four modules: the feature generation module

G, the segmentation classification module CH , the global

feature adaptation module GA and the semantic-level adap-

tation module SA. We denote the output feature maps of G

by F , the ground truth label maps by Y and the downsam-

pled label maps (of the same height and width as F ) as y.

We use H , W to denote the height and width of the input

image, h, w to denote those of F , and h′, w′ to denote those

of the confidence maps output by the discriminator of GA.

C is the class set, c is the number of classes, and n is the

channel number of F . When testing the model, we forward

the input image to G and use CH to operate on F to predict

the semantic class that each pixel belongs to. The following

sections will introduce the details of each module.

3.1. Segmentation

We forward F to a convolutional layer to output the score

maps with c channels. Then, we use a bilinear interpolation

to upsample the score maps to the original input image size

and apply a softmax operation channel-wisely to get score

maps P . The segmentation loss Lseg is calculated as

Lseg(I) = −

∑

H,W

∑

k∈C

Y (H,W,k) log(P (H,W,k)) (1)

3.2. Global Feature Adaptation Module

This module adapts F from the source domain to the

target domain. we input the source image score maps Ps

to the discriminator Dg of GA to conduct the adversarial



training. We define the adversarial loss as:

Lgadv(Is) = −

∑

h′,w′

log(Dg(Ps)
(h′,w′,1)) (2)

We define 0 as the source domain pixel and 1 as the target

domain pixel for the output of Dg. Therefore, this loss

will force G to generate features closer to the target domain

globally. To train Dg, we forward Ps and Ptu to Dg in

sequence. The loss of Dg is calculated as:

Lgd(P ) = −

∑

h′,w′

((1− z) log(Dg(Ps)
(h′,w′,0))

+z log(Dg(Pt)
(h′,w′,1)))

(3)

where z = 0 if the feature maps are from the source domain

and z = 1 if the feature maps are from the target domain.

3.3. Semantic­level Adaptation Module

This module adapts the feature representation for each

class in the source domain to the corresponding class feature

representation in the target domain to alleviate the domain

shift from semantic-level.

3.3.1 Fully connected semantic adaptation (FCSA)

We believe that the feature representation for a specific class

at each pixel should be close to each other. Thereby, we can

average these feature vectors across the height and width to

represent the semantic-level feature distribution, and adapt

the averaged feature vectors to minimize the distribution dis-

crepancy between two domains. The semantic-level feature

vector Vk of class k is calculated as

V k =

∑
h,w y(h,w,k)F (h,w,:)

∑
h,w y(h,w,k)

(4)

where k ∈ C, V k
∈ R

n. Then we forward these semantic-

level feature vectors to the semantic-level feature discrimi-

nator Ds for adaptation, as shown in Figure 2. Ds only has

2 fully connected layers, and outputs a vector of 2c channels

after a softmax operation. The first half and the last half

channels correspond to classes from the source domain and

the target domain respectively. Therefore, the adversarial

loss can be calculated as

Lsadv(Is) = −

∑

k∈C

log(Ds(V
k
s )(k+c)) (5)

To train Ds, we let it classify the semantic-level feature

vector to the correct class and domain. The loss of Ds can

be calculated as:

Lsd(V ) = −

∑

k∈C

((1− z) log(Ds(V
k)(k))

+z log(Ds(V
k)(k+c)))

(6)

where z = 0 if the feature vector is from the source domain

and z = 1 if it is from the target domain.

3.3.2 CNN semantic adaptation (CSA)

We observe that it is hard to extract the semantic-level fea-

ture vectors, because we have to use the label maps to filter

pixel locations and generate the vectors in sequence. There-

fore, inspired from the previous design, we come up with

a laconic CNN semantic-level feature adaptation module.

The discriminator uses convolution layers with kernel size

1× 1, which acts as using the fully connected discriminator

to operate on each pixel of F , as shown in Figure 2. The

output has 2c channels after a softmax operation where the

first half and the last half correspond to the source domain

and the target domain respectively. Then, the adversarial

loss can be calculated as:

Lsadv(Is) = −

∑

h,w

log(Ds(Fs)
(h,w,k+c)) (7)

where k is the pixel ground truth class. To train the discrimi-

nator, we can use the loss as follows:

Lsd(F ) = −

∑

h,w

((1− z) log(Ds(F )(h,w,k))

+z log(Ds(F )(h,w,k+c)))

(8)

3.4. Adversarial Learning Procedure

Our ultimate goal for G is to have a good semantic seg-

mentation ability by adapting features from the source do-

main to the target domain. Therefore, the training objective

for G can derive from Eqn (1) as

L(Is, Itl) = λseg(Lseg(Is) + Lseg(Itl))

+λgadvLgadv(Is) + λsadvLsadv(Is)
(9)

where λ is the weight parameter. The two discriminators

should be able to distinguish which domain the feature maps

are from, which enables the features to be adapted in the

right direction. We can simply sum up the two discriminator

losses as the training objective for discriminative modules.

L(Fs, Ftu , Ftl) = λgd(Lgd(Fs) + Lgd(Ftu))

+λsd(Lsd(Fs) + Lsd(Ftl))
(10)

In summary, we will optimize the following min-max crite-

rion to let our model perform better in segmentation task by

adapting the features extracted from the source domain more

alike the ones extracted from the target domain.

max
Dg,Ds

min
G

L(Is, Itl)− L(Fs, Ftu , Ftl) (11)

4. Implementation

4.1. Network Architecture

We follow [22] to build the network structures for the

backbone network, the classification module (CH) and the



Table 1: GTA5 → Cityscapes: performance contributions of

adaptation modules. The oracle model is only trained with

the given number of Cityscapes labeled images.

# City Oracle GA GA+FCSA GA+CSA Improve

0 - 42.4 - - -

50 39.5 50.0 50.2 50.1 +10.6

100 43.6 53.5 54.1 54.2 +10.6

200 47.1 54.4 56.4 56.0 +8.9

500 53.6 56.5 59.9 60.2 +6.6

1000 58.6 58.0 63.8 64.5 +5.9

2975 (all) 65.9 59.71 68.8 69.1 +3.2

Table 2: parameters analysis

# City λ = 1 λ = 0.2 λ = 0.04 λ = 0.008

100 54.11 53.87 53.68 53.96

500 59.76 59.29 59.89 59.74

(a): λsadv for fully connected semantic-level adaptation module

# City λ = 1 λ = 0.1 λ = 0.01 λ = 0.001

500 59.76 59.46 60.16 59.67

(b): λsadv for CNN semantic-level adaptation module

Table 3: SYNTHIA → Cityscapes: performance contribu-

tions of adaptation modules.

# City Oracle GA GA+CSA Improve

0 - 46.7 - -

50 52.6 60.7 57.4 +8.1

100 57.6 62.1 58.3 +4.5

200 60.8 64.8 64.5 +4.0

500 66.5 69.1 69.8 +3.3

1000 70.7 71.8 73.0 +2.3

2975 (all) 73.8 75.0 77.1 +3.3

global adaptation module (GA). For FCSA, we use two

fully connected layers with channel number of 1024 and put

a Leaky ReLU [16] of 0.2 negative slope between them, and

twice the class number for the output. For CSA, we use two

convolutional layers with the kernel size of 1×1, stride of

1 and channel number of 1024 and twice the class number

for the output. We insert a Leaky ReLU [16] layer with 0.2

negative slope between the two convolutional layers.

4.2. Network Training

We optimize Eqn (11) in an adversarial strategy. We first .

We use Stochastic Gradient Descent (SGD) with Nesterov’s

method [1] with momentum 0.9 and weight decay 5× 10−4

to optimize the segmentation network . Following [2], we

set the initial learning rate to be 2.5×10−4 and let it polyno-

mially decay with the power of 0.9. We use Adam optimizer

[15] with momentum 0.9 and 0.99 for all the discriminator

networks. We set the initial learning rate to be 10−4 and

follow the same polynomial decay rule.

5. Experiments
We validate the effectiveness of our proposed method by

transferring our model from a synthetic dataset (GTA5 [19]

or SYNTHIA [20]) to a real-world image dataset Cityscapes

[7]. The Cityscapes dataset contains 2975 images for train-

(a)                    (b)                     (c)                    (d)                    (e)                     (f) (g)                

Figure 3: (a) image; (b) ground truth; (c) oracle model

trained with the whole Cityscapes dataset; (d) unsupervised;

(e) ours+200city; (f) ours+1000city; (g) ours+wholecity

ing and 500 images for validation with 19-class fine-grained

semantic annotations. following [22], we first trained our

model on the GTA5 dataset containing 19466 images and

Cityscapes training set images and tested on the Cityscapes

validation set for the whole 19 classes. The result is shown

in Table 1. First, notice that the current state-of-the-art un-

supervised model achieves 48.5 in mIoU [17]. Our model

can beat it by adding 50 Cityscapes images into the train-

ing process. This proves our argument that the model can

have significant improvement by adding a few target domain

information. Second, the contribution of GA module dis-

appears or is negative when the labeled Cityscapes images

reach a number of 1000 or more compared to the oracle

models. This is because the model with weak adaptation

supervision overfits to the source domain so that it does not

help much by adding relatively few more target images for

the training process. However, the models GA + FCSA

and GA+ CSA both have on-par improvements if trained

with over 50 Cityscapes labeled images. We argue that this

is due to the strong adaptation supervision. Shown in Table

2, we observe that the CSA and FCSA structures are not

very sensitive to the hyperparameters. We also provide some

visualization results in Figure 3. Because CSA is more la-

conic than FCSA, we only compare the model GA+CSA

with the other baseline models on transferring from Synthia

dataset containing 9400 images to Cityscapes dataset. We

compare the mIoU of 13 classes shared between SYNTHIA

and Cityscapes [22] as shown in Table 3. The results can

further support our arguments above.

6. Conclusion

This paper proposes a semi-supervised learning frame-

work to adapt the global feature and the semantic-level fea-

ture from the source domain to the target domain for the

semantic segmentation task. As a result, with a few labeled

target images, our model outperforms current state-of-the-

art unsupervised models by a great margin. Our model can

also beat the oracle model trained on the whole dataset from

target domain by utilizing the synthetic data with the whole

target domain labeled images without suffering from the

prevalent problem of overfitting to the source domain.
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