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Abstract

Few-shot learning is an important research topic in im-
age classification, which aims to train robust classifiers to
categorize images coming from new classes where only a
few labeled samples are available. Recently, metric learn-
ing based methods have achieved promising performance,
and in those methods a distance metric is learned to di-
rectly compare query images against training samples. In
this work, we consider finer information from image fea-
ture maps and propose a new approach. Specifically, we
newly develop Relative Position Network (RPN) based on
the attention mechanism to compare different pairs of ac-
tivation cells from each query and training images, which
captures their intrinsic correspondences. Moreover, we
introduce Relative Map Network (RMN) to learn a dis-
tance metric based on the attention maps obtained from
RPN, which better measures the similarity between query
and training images. Extensive experiments demonstrate
the effectiveness of our proposed method. Our codes will
be released at https://github.com/chrisyxue/
RMN-RPN-for—-FSL.

1. Introduction

Till now, deep neural networks have achieved state-of-
the-art performance on visual recognition tasks like im-
age classification, object detection and semantic segmen-
tation [4]. And the success of robust deep neural net-
works [11] mostly depend on abundant labeled instances
with diverse visual variations. However, in practical ap-
plications, real-world problems with insufficient volume of
training data has considerably impacted the performance of
deep neural networks in a negative way. To deal with that,
few-shot learning has been proposed to identify new classes
from a few training samples and images, and significant
progress has been made [21, 19] in the literature. How-
ever, the overfitting problem still remains challenging, due

to lack of training data in new classes. Although the tech-
niques of data augmentation and regularisation can alleviate
the overfitting problem, they cannot fully solve it.

Previous work has been proposed to learn a transferable
deep metric for comparing the relationship between support
samples and query samples [19]. However, it is doubted
that whether the manual metric function is the best way to
measure the similarity between any two samples. Relation
networks [20] use a CNN block to learn a similarity score
by simply inputting the concatenation of two samples re-
gardless of the difference of positions and maps. Motivated
by [20], in this work, we come up with a simple frame-
work that learns the difference between maps and the im-
portance of positions. Specifically in proposed framework,
we develop two modules: Relative Position Network (RPN)
and Relative Map Network (RMN). RPN compares differ-
ent pairs of activation cells from each support and query
images based on the attention mechanism, which better cap-
tures their intrinsic correspondences. And RMN learns a
distance metric based on the attention maps obtained from
RPN in order to measure the similarity between images.
Our contributions can be summarized as follows:

1. We propose a new framework for few-shot learning,
which is based on metric learning and the attention
mechanism.

2. Two modules, Relative Position Network (RPN) and
Relative Map Network (RMN), are developed to better
capture intrinsic correspondences between images, as
well as to better measure the image similarity.

3. We conduct extensive experiments on the benchmark
datasets, and promising results clearly show the effec-
tiveness of our proposed framework.

2. Related Work

Few-shot Learning is to learn the concept from limited
examples, and require an effective representation learning
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Figure 1. The overall architecture of our proposed framework. There are three parts of our method: a feature extractor, Relative Position
Network (RPN), and Relative Map Network (RMN). The feature extractor extracts feature maps from images. RPN generates different
weights to each position of feature maps during comparing process, based on attention mechanism. RMN is a new relation module in

application for more efficient concatenation of feature maps.

with good ability to generalize information. For all ex-
isting methods [22], they can be divided into two cate-
gories: metric-based approaches [21] and gradient-based
approaches [1]. The metric-based approaches are more re-
lated to our work which aims more at learning representa-
tions that can minimize the intra-class distances while max-
imizing the distance between different classes during few-
shot learning [24]. In our work, we focus more on the re-
lation network [20] and use the new method to learn the
metric to help the model learn better from few samples.
Metric Learning plays a very crucial role in many visual
tasks, as the performance of the deep learning models relies
heavily on choosing a good metric. In few-shot learning, the
the prior metric approaches [16, 21, 19] often result in com-
plexity that metric need to be changed manually until the
performance reached the ideal extent. In our work, instead
of trying all the metrics to reach the state-of-the-art perfor-
mance, we applied approaches based on meta-learning to let
the model learn the best metric automatically.

Attention Mechanism is quite popular in many areas, such
as image caption, voice recognition and machine translat-
ing [25, 18, 14]The attention mechanism prove to be useful
in many computer vision related tasks. However, most ap-
proaches [5, 23] based on attention will only focus on the
attention in individual images. In our work, we use the at-
tention from different images to help compare the difference
which will help the models learn important information.

3. Methodology
3.1. Problem Definition

For the task of few-shot classifier learning, the given
datasets contain support set and query set. The support set
contains C different image classes and K labeled samples
per class, and few-shot learning aims to classify each un-

labeled sample in query set according to the support set.
This setting is called C-way K-shot classification. Follow-
ing the setting of [21], we use two datasets meta training
set Dy, and meta testing set Dyc.(Dy,. N Dy = 0). In this
strategy of training, an episodic training paradigm is used
to minimize the generalization error of Dy,.. We divided
the episodic in two steps, For N-way, sample N classes in
meta-training set Dy, randomly,as classes in Dy, is equal to
N. For K-shot, samples x; in C' randomly, which serve as
support set S = {(z;,y;)}21(m = K x |C]), and query
set Q = {(z4,y:)}1-1(n = B x|C|) is collected randomly
for each class in C. (Q N .S = ().

In this work, we adopt support set .S as the measure cri-
terion and use the query set ) to optimize the parameters
of the model. The support set S and query set () can also
be abstracted in testing set D by taking the same measure
proposed above to evaluate the performance. The training
strategy is applied in our few-shot experiment(Section 4),
and we also consider the settings of one-shot(/ = 1) and
five-shot(K = 5).

3.2. Relative Position Network

In Relative Position Network, considering different posi-
tions of a image may have different representative informa-
tion, we think each position of feature maps must be treated
differently during comparing process. Therefore, we come
up with a new structure named Relative Position Network
(RPN).

By generating different weights to the positions in fea-
ture maps, the Relative Position Network based on atten-
tion mechanism can determine which positions is impor-
tant for model to compare. The structure of RPN is shown
in Figure 1 as above. Samples z° and 2@ are collected
from the support set .S’ from query set (), respectively. And
M,s and M, o denote the feature maps of them. In the



support set, the position vector vfj € R™*! is the vector
which locates in the i row and j column in feature maps
M,s € Rb*nxwxh \where bn,w,h represent the batch size,
channels, wideness and height of the feature maps. Simi-
larly, we can define the position vector in query set by the
same rules. To map the concatenation of two position vector
[vf}, Ugj] into a relative position vector and earn the intra-
vector relationships of the relative position vector, We for-
malize as follows:

s,q _ s ,Q
Vz‘,jq = H([Ui,j’ Ui,j]) ey
w = W2 . J(Wl . ij’q) (2)

where H () is an encoder that can map the concatenation of
two position vector {v;, vf’gj} into a relative position vec-
tor. And V> € R", W € R**" and Wy € R¥*™ are the
parameters of the meta learner, r is a scale ratio we need to
fix in our experiments, and o denotes a ReL U function Note
that 7> must be a integer.

Attid‘ = ’U)T‘/:j’q 3)

Mo := Mo + Att @ M e C))

® indicates element-wise production operation and Att; ;
reprerented a relative position score. And Eq.3 and Eq 4
take the attention operating only for query set, as the sup-
port set takes the role as criterion during comparing process.
Also, a controlled set of experiments had done to demon-
strate this assumption.

3.3. Relative Map Network

The original relation network simply concatenates the
feature maps from support set and query set regardless of
embodying the comparison principle adequately. Inspired
by the structure of [7], we proposed a new relation module
named Relative Map Network (RMN) to slove this prob-
lem. The structure can be shown in Figure 1. Our goal is
to enable the network to compare these images individually
and independently, since each single map in feature maps is
different. So for the first step, the module selects two single
maps from feature maps M . and M} Q separately, where
i € {1,2,3...n} represents the i-th channel of the feature
maps. Then the embedding models G = {G},,G3,..G% )
are trained to learn the parameters ¢; in the process. Each
embedding model Gfm correspond inputting feature maps
M and M} o to learn a distance p;between these fea-
ture maps, instead of designing a distance metric mea-
sure manually [9, 21]. Moreover, to compare the essen-
tial feature maps, a single full-connected layer is designed
to compute a weighted sum Pg g of every single output
GY, (Mg, M), which is considered as the final similarity

Table 1. Mean accuracies (%) of different methods on the Minilm-
ageNet dataset. Results are obtained over 600 test episodes with
95% confidence intervals.

Model MinilmageNet (5-way)

1-shot 5-shot
MATCHING NETS [21] 43.56+0.84  55.31+0.73
META LSTM [15] 43.444+0.77  60.60+0.71
MAML [3] 48.70£1.84  63.11£0.92
PROTOTYPICAL NETS [19] 49.42+0.78  68.20+0.66
META SGD [12] 50.47£1.87 64.03+0.94
RN [20] 50.44+0.82  65.32+0.70
GNN [17] 50.33+0.36  66.41£0.63

PABN [6] 51.87 65.37
TPN [13] 52.78+£0.27  66.59£0.28

EGNN(No Trans) [8] - 66.85
R2-D2 [2] 51.80£0.20 68.4+0.20
Ours 53.35+£0.77 69.35+£ 0.61

score between M, and M, . This process can be repre-
sented as in Eq 5:

Ps g = Sig(z winpi(M;S,MiQ» )

i=1

w; denotes the weight needed to learn, and Sig presents
the sigmoid function that can map the final score into the
numerical range between 0 and 1.

In episodic training, following relation network [20], we
use the mean square error (MSE) loss, which can be repre-
sented as follows:

2. X

(zs5,y5)€S (2qQ,yqQ)EQ

MSE = (Ps,@ — 1(ys == yq))*
(6)
ys and y¢ denote the targets of xg and z.

4. Experiments
4.1. Datasets

We evaluate our proposed approach with existing state-
of-the-art baselines on the benchmark datasets (i.e., CIFAR-
100 and minilmageNet).

Mini-Imagenet [21]is a dataset containing 60,000 colorful
images coming from 100 classes, with 600 images in each
class. In our experiments, we resize each image to a size
of 84 x 84. Moreover, we use the same splits of [19], who
employ 64 classes for meta-training, 16 for meta-validation
and 20 for meta-testing.

CIFAR-FS [2] is randomly sampled from CIFAR-100 [10]
by applying the same criteria as minilmagenet. The input
size we use is 32 x 32, which is smaller than minilmagenet.

4.2. Implementation Details

Data augmentation: In our experiments, we use the ran-
dom group of random resize crop, random vertical flip, ran-



Table 2. Mean accuracies (%) of different methods on the CIFAR-
FS dataset. Results are obtained over 600 test episodes with 95%
confidence intervals.

Model CIFAR-FS (5-way)

1-shot 5-shot
MAML [3] 589+1.9 71.5+1.0
PROTOTYPICAL NETS [19] 55.5+0.7 72.0£0.6
RN [20] 55.0£1.0 69.3£0.8

GNN [17] 61.9 75.3
R2-D2 [2] 62.3+0.2 77.440.2

Ours 61.43 76.16

dom horizontal flip, and color jittering to achieve data aug-
mentation. And we only apply data augmentation to query
samples in the training set, as that support set is the criterion
in metric learning which is better to keep stable.

Feature extraction: Our feature extractor contains four
blocks. The first two blocks are the same as the blocks in
relation network [20], which contain a convolution layer, a
batch norm layer, a ReLU function and a max pooling layer
which can change the size of feature maps into half. In
the last two blocks, we use blocks as same as the blocks in
ResNet [4].

RMN and RPN: In RMN, we use the combination of a con-
volution layer with 3 x 3 kernel without padding, a batch
norm layer and a ReLU function, and two hidden layers for
full connection layers. In RPN, we set the scale ratio for
meta learner as % Note that We initialize all networks ran-
domly without involving additional datasets.
Optimization: As an optimizer, Adam is used as the same
as [20]. The learning rate is initially set to 0.001 and later
reduces to 0.5 times if the average accuracy over 300 vali-
dation episodes does not increase. The model is trained in
a procedure with 5000 meta-training episodes, 300 meta-
validation episodes and 600 meta-testing episodes. The to-
tal number of meta-training episodes is set as 500000.

4.3. Results and Analysis

Comparisons: We present the results of different meth-
ods on the MinilmageNet and CIFAR-FS datasets in Ta-
bles 1 and 2). We observe that our method outperforms
other competitors by a noticeable margin on MinilmageNet,
which clearly demonstrates the effectiveness of our method.
However, although our method performs much better than
GNN [17] on MinilmageNet, their results on CIFAR-FS are
just comparable, possibly due to the dataset difference.
Ablation study and Visualization: To prove that our in-
dividual modules RPN and RMN can truly work, we take
the ablation study in our framework. The results of this ex-
periment show that both RPN and PMN can enhance the
performance of relation network.

In the evaluation of RPN, we use the combination of a
feature extractor, a relative position network and a relation

Figure 2. Visualization results of RPN in Mini-ImageNet.

module which is same as RN [20]. As for RMN, we use the
same feature extractor and RMN.

All of the results can be shown in Table 3. Note that
the numbers of RN w.r.t. K = 1 and 5 are directly from
the original paper of RN [20], while the results w.r.t. K =
3,7 and 10 are produced ourselves by using the publicly
available open source code.

Table 3. Ablation study w.r.t. average accuracies (%) over 600
test episodes with 95% confidence intervals MinilmageNet in task
5-way K-shot about ablation study, where K = 1, 3,5, 7 and 10.
Ave Acc | 5-1 5-3 5-5 5-7 5-10
RN [20] | 50.44 | 60.63 | 65.32 | 67.73 | 69.81
RPN 52.43 | 62.96 | 67.03 | 69.51 | 72.01
RMN 50.54 | 63.12 | 68.28 | 70.49 | 72.12
Ours 53.35 | 63.94 | 69.35 | 70.87 | 73.17

Furthermore, we show some visualization results in Fig 2
as an evidence to prove that our attention module RPN is
workable. The samples from two categories are sampled
from Mini-ImageNet.

5. Conclusion

In this paper, we propose a metric learning based method
for few-shot learning. Unlike existing metric learning
based work, we improve the learning of distance metrics
by considering finer information of features maps of im-
ages through deep convolutional neural networks. Specif-
ically, we develop a new module called Relative Position
Network (RPN) based on the attention mechanism to more
effectively compare different pairs of activation cells from
the feature maps of query and supportimages. Moreover, we
introduce Relative Map Network (RMN) to learn a distance
metric based on those attention maps in order to better eval-
uate the similarity between images. Extensive experiments
on benchmark datasets demonstrate the effectiveness of our
proposed method over other state-of-the-art baselines.
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