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Abstract

In this paper, we report a novel deep neural network
framework for prediction of chemo-sensitivity in ovarian
cancer patients. The proposed model is based on Multiple
Instance Learning (MIL) and a novel variant of Learning
using Privileged Information (LUPI). LUPI allows
knowledge transfer from highly informative privileged
features that are available only at training time to give
improved generalization performance on input space
features which are available in both training and inference.
The proposed model is trained on image patches from
Hematoxylin and Eosin (H&E) stained multi-gigapixel
whole-slide images (WSIs, the input space) of ovarian
cancer tissue sections and their associated gene expression
profiles, the privileged feature space. Through cross-
domain knowledge transfer with a novel combination of
MIL and LUPI, we achieve improved generalization with a
limited number of labeled examples in the input space.
Informed by the privileged space model output based on
relatively expensive and time-consuming gene expression
profiles in its training, the proposed LUPI model can
generate accurate predictions using routine WSI data alone
at the time of inference. The proposed method paves the
way for further applications of LUPI in computational
pathology and medical image analysis by cross-domain
learning especially in cases with a limited number of
labeled examples in training.

1. Introduction

Conventional machine learning methods require that all
features used in its training are also available at test time.
For example, if we use medical imaging data from two
different domains (such as radiology and histopathology
images) for training a machine learning model, then data
from both these domains must be available at test time for
prediction as well. Originally proposed by Vapnik and
Izmailov [1], [2], Learning using Privileged Information
(LUPI) allows overcoming this limitation through cross-
domain knowledge transfer in the training phase of machine
learning models. LUPI is ideally suited for scenarios in
which certain highly informative features, called privileged

space features, are available during training only, whereas
the input space features are available for both training and
testing examples. For instance, consider the development of
an image-based object classification system. If three
dimensional (3D) models of different objects are available
at training time together with their corresponding 2D
images, then these 3D features can be used as privileged
space information for improving prediction accuracy of the
image based object classification model without requiring
3D feature input at test time. From a machine learning
perspective, LUPI allows knowledge from privileged space
features to improve the decision boundary in the input
feature space [1], [3]. Another way of looking at LUPI is by
considering it as a means of knowledge distillation from a
“teacher” model trained over privileged space features to a
“student” model that operates in the input space only [4].
LUPI has been applied in a number of useful machine
learning applications [5]-[9].

In this work, we report a novel algorithm for LUPI based
prediction of response to chemotherapy using both whole
slide images of tumor biopsies as well as gene expression
profiles. Computational analysis of histopathology images
is an active area of research due to its importance in the
diagnosis of cancer as well as treatment selection for cancer
patients [10]-[13]. In addition to tumor grading and
profiling,  computational  pathology also allows
development of machine learning models for prediction of
response to various cancer treatments such as
chemotherapy [14]-[16]. For this purpose, a multi-
gigapixel whole slide image (WSI) is first obtained by
digitizing the tissue slide from the cancerous tissue
specimen. After collecting a training WSI dataset from a
number of cancer patients together with information about
their response to chemotherapy, a machine learning model
can be built for predicting chemosensitivity [17]. In
addition to the WSI data, gene expression profiles can also
be used for predicting response to chemotherapy [18]-[20].
Typically, gene expression profiling presents a more
detailed molecular picture for drug response prediction in
comparison to WSI analysis but it is significantly more
expensive and time consuming [15]. It is important to note
that collection of large cohorts of WSI and genetic profiling
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data is very expensive and requires data-efficient machine
learning models. In this work, we overcome this challenge
through LUPI. Furthermore, due to computational
constraints, WSI-based prediction requires that the multi-
gigapixel WSI be broken down into patches and weak
labels at the WSI-level be used for effective learning at the
patch level. In this work, we have achieved this through

Multiple Instance Learning. The main contributions of this

work are listed below:

e We propose a novel method of knowledge distillation
based LUPI for chemosensitivity prediction. It can
predict whether an Ovarian Carcinoma (OvCa) patient
will respond to adjuvant chemotherapy or not by using
both gene expression information as well as WSI data
in training while requiring only WSI data at test time.
To the best knowledge of the authors, this is the first
such cross-domain model in computational pathology.

e Our WSI based pipeline uses multiple instance learning
to generate prediction labels at the WSI level using
patches drawn from a given WSI.

e In contrast to existing LUPI implementations which are
limited to classification tasks only, the LUPI model
proposed in this paper can be applied to regression and
survival prediction as well as to other cross-domain
learning problems.

e We show that the use of LUPI significantly improves
the accuracy of WSI-based chemosensitivity prediction
over a large 220 patient dataset from The Cancer
Genome Atlas (TCGA).

2. Materials and Methods

2.1. Problem formulation

In this work, our objective is to develop a machine learning
method for predicting the response of an ovarian cancer
patient to adjuvant chemotherapy (sensitive or resistant).
For this purpose, we have used a dataset of 220 cancer
patients with known chemosensitivity. This dataset is taken
from a study aimed at survival prediction for ovarian cancer
patients using gene expressions data by Liu et al. [15]. For
each patient, pre-processed gene expression levels for a
total of ~14,000 genes are available together with WSIs of
the tissue slides scanned at 20x magnification from TCGA
[21]. The average size of the images in this dataset is
~40,000x40,000 pixels. In line with the work in [15], the
patients have been labeled according to their response to
platinum chemotherapy treatment: a negative label (chemo-
resistant) is assigned to a patient if disease symptoms
reappear within 6 months of treatment whereas a patient is
labeled as chemo-sensitive (positive) if a period of more
than 6 months has elapsed since the last chemotherapy
treatment and there is no evidence of recurrence within a 6

month follow-up period involving no additional treatment
sessions. This dataset contains 154 positive and 66 negative
examples. Formally, this dataset can be written as a set
{(x},x;,¥)|i =1..N}, where, x; and x; represent the
gene expression profile and WSI corresponding to a single
patient, respectively, and y; € {+1,—1} is the associated
label.

In their study, Liu et al. showed that gene expression
analysis can be used for survival prediction with high
accuracy. However, acquiring gene expression profiles for
a given patient can be expensive and time consuming. WSI
based analysis does not require an additional sequencing or
profiling facility and can be done in conjunction with tumor
grade assessment on diagnostic slides at no extra cost.
Hence, an image-based predictor of chemosensitivity is
desirable for routine practice. In this work, we propose a
novel variant of learning using privileged information
(LUPD) model that considers gene expression profile as
privileged information and WSI data as input space data for
improved accuracy of chemosensitivity prediction using
WSI data alone. Before moving to the description of the
proposed LUPI model, we first discuss how gene
expression profiling and WSI can be independently
employed for chemosensitivity prediction.

2.2. Prediction using gene expression data

The gene expression data for each patient in the dataset
comprises of expression levels for ~14,000 genes with an
averaged activity level of different genes in the sample. In
their survival prediction study, Liu et al. identified a subset
of 227 genes that are predictive of survival of an ovarian
cancer patient after being given adjuvant chemotherapy
[15]. We used the same subset of 227 genes as input
features to develop a classical machine learning model
(Radial Basis Function Kernel Support Vector Machine (
SVM) to predict chemo-sensitivity. This choice is
motivated by the fact that a simple model with low VC
dimension can be useful for privileged space predictions
[1]. Mathematically, the output of the SVM model for a
given gene expression profile feature vector x; can be
written as f;(x}).

2.3. Prediction using histology WSI data

For the input space WSI image data, which is high-
resolution (each image of the order of 100Kx80K pixels),
we developed a Multiple Instance Learning (MIL) based
Convolutional Neural Network (CNN) model to predict
chemo-sensitivity in ovarian cancer patients. Before
training the model, we performed the following
preprocessing over the WSIs.

2.3.1  Preprocessing

The IBM pipeline for histopathology image analysis has
been employed for segmenting the tissue region from the
background based on ‘activity’ in terms of nuclei pixels
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Figure 1- LUPI based chemosensitivity prediction model. In training, gene expression profile and WSI data are used as privileged
and input space features, respectively, to train an input space model. In testing, the trained model can then generate predictions
using WSI data alone.

[22]. After background removal, the WSI is divided into
tiles of size 1,536x2,048 pixels. Each tile is then scored
based on its tissue content and top 3 tiles from each image
are selected for downstream analysis. Since WSIs are prone
to color variations due to staining and scanning conditions
of tissue samples, we performed stain normalization over
all images using the method proposed by Rakhlin ez al. [23].
Each tile extracted from the WSIs is then further divided
into 12 smaller, non-overlapping patches of 512x512
pixels. Consequently, each WSI is represented by a total of
36 patches which are used for training purposes.

2.3.2  Patch Classification

We have used a Convolutional Neural Network (CNN) to
model the problem of chemo-sensitivity prediction from
WSI data. Specifically, a standard convolutional neural
network consisting of 5 convolutional blocks with a fully
connected layer of 4,096 neurons following by a single
output neuron is utilized for binary classification at the
patch level. Each of the 5 convolution blocks has two 3x3
convolution layers followed by a single 2x2 convolutional
layer with batch normalization and rectified linear unit
activation in each layer. The 5 convolutional blocks have
16, 32, 64, 128 and 256 convolution filters for each layer in
them. The choice for this neural network architecture has
been inspired by its effectiveness in the the breast cancer
histology image classification study by Nazeri et al. [24].
The neural network can generate a prediction score for a
single patch of a WSI. The neural network is trained with a
multiple instance learning based loss function described in
the next section.

2.3.3  Multiple Instance Learning

One of the issues associated with the WSI data is that labels
are available for each patient and not for individual patches
in the WSI. Thus, we need to aggregate the patch level

predictions to a slide level label. We overcome this
aggregation problem using Multiple Instance Learning
(MIL). Multiple Instance Learning is used to solve machine
learning problems where labels are not associated with
individual instances but with groups of instances called
bags [25]. Several neural network based solutions have
been proposed in the literature for modeling MIL [26]—[30].
Here, each WSI is considered as a single bag with each
patch as an instance in the bag to model tumor
heterogeneity [31]. In order to train the aforementioned
CNN with MIL, all patches belonging to a WSI are passed
to the CNN one-by-one and the highest scoring patch
(based on prediction score) in a WSI is used for computing
the loss function and weight updates, i.e., the prediction
score of a WSI is computed as the score of the maximum
scoring patch in it or f(x;) = rjré%x f(pj;w))

Mathematically, the MIL training of the CNN can be
expressed as the following optimization problem [30]:
N

1
w' = arglinmNZ [vi, max f (pj; w))
<

where f(pj;w) indicates the output of the CNN with
weight parameters w for a patch p; from bag B; of 36
patches in WSI represented by x;, I(y,s) = max (0,1 —
ys) is the hinge loss function and N denotes the number of
patients in the training dataset.

2.4. Learning using Privileged Information (LUPI)

In this work, we model chemosensitivity prediction as a
learning using privileged information problem. In LUPI,
privileged space features are assumed to be more
informative, however, they are available during training
only. The input space features are available during both



training and testing phases. A teacher or privileged space
model f;(x;) € F, is trained using privileged features x;
and then knowledge from the teacher is distilled to a student
model f;(x;) € F,. The student model uses input space
features x; only to generate predictions for inference. We
have developed a LUPI model that performs distillation or
transfer of knowledge from a trained privileged space
model to an input space model. This is achieved by training
the input space student model by minimizes the following
objective based on a custom LUPI meta-loss function:

1 N
f, = a;i&li“ﬁ;(l — exp (=TL(f (D), yO)I(F (X0, v)
+ exp (=T G, YO G, i (&D))

Here, [(f;(x}),y;) represents the loss value of the
privileged space model for the i example, [(f;(x;),y;) is
the loss between the input space model score and the actual
label and l(f(xi),ft (x}‘)) is the loss between the
predictions of the input space and the privileged space
model. The non-negative hyperparameter T controls the
extent of knowledge transfer: smaller values of T
encourage the input space model to mimic the privileged
space model, whereas, for larger values of T or the cases
where the privileged space model has high error, the input
space model tries to learn from the true labels instead. In
contrast to existing LUPI implementations which are
restricted to classification, the proposed LUPI model can be
used for regression and other machine learning tasks as well
depending upon the choice of the loss function. For further
details on the formulation of the above loss function and the
role of the knowledge transfer control parameter T, the
interested reader is referred to our manuscript [32].

The learning scheme of LUPI used in this work is illustrated
in Figure 1. As discussed earlier, we treat gene expression
profile-based features as privileged information and the
corresponding RBF-SVM model as the privileged space
model. The MIL CNN model for WSI-based
chemosensitivity prediction is used as the input space
model. The input (or WSI) space model generates a
prediction score for a given WSI based on the score of the
maximum scoring patch in the given image, i.e., f;(x;) =
rjrée}g)'( fs(pj). The same MIL CNN model architecture is then

trained as a student model using the meta-loss function
described above with knowledge distillation from the
privileged space model. This results in a LUPI model that
uses both input and privileged space information in its
training while still being able to generate predictions with
the input features alone at test time.

2.5. Implementation & Performance Evaluation

In order to analyze the performance of the input space
(WSI-based), privileged space (gene expression profile
based) and LUPI models, we use 5-fold stratified cross-
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Figure 2- Average ROC curves for privileged, input space and

LUPI models.

validation with the same division of examples into folds for
the three models. The average and standard deviation of the
area under the receiver operating characteristic curve
(AUC-ROC) is used as the performance metric. The
hyperparameters for the RBF-SVM and the LUPI CNN
models are selected based on a small validation set of 10
cases. The code for the proposed model is available at the
URL: https://github.com/asfandasfo/LUPI

3. Results and Discussion

Averaged ROCs for the three models across 5-fold cross-
validation are shown in the Figure 2. The privileged space
model trained over gene expression profiles shows better
performance with average AUC-ROC of 0.8 (standard
deviation or SD: 0.03) as compared to 0.72 (SD: 0.10) for
the WSI or input model trained. The LUPI based model that
uses WSIs as input with knowledge transferred from the
privileged space model produces an average AUC of 0.79
(SD: 0.07). The performance of LUPI model is not only
consistently and substantially better than the simple input
space model across each fold, it is also comparable to the
performance for the privileged space model, demonstrating
effectiveness of the proposed LUPI model for
chemosensitivity prediction using only WSI data at test
time.

4. Conclusions and Future Work

We have shown that learning using privileged information
can be effectively applied to improve the generalization
performance for prediction of chemosensitivity in OvCa
patients by cross-domain knowledge distillation from gene
expression profiling to whole slide imaging. We have also
shown that LUPI allows efficient use of data in the input
space by cross-domain learning. This work can form the
basis of further applications of LUPI knowledge distillation
in computational pathology and cross-domain medical
image analysis. Future work can be focused on identifying
associations between gene expression profiles and WSI
features and validation of the proposed method on larger
datasets.
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