
   

 

 

 

Abstract 

In this paper, we report a novel deep neural network 

framework for prediction of chemo-sensitivity in ovarian 

cancer patients. The proposed model is based on Multiple 

Instance Learning (MIL) and a novel variant of Learning 

using Privileged Information (LUPI). LUPI allows 

knowledge transfer from highly informative privileged 

features that are available only at training time to give 

improved generalization performance on input space 

features which are available in both training and inference. 

The proposed model is trained on image patches from 

Hematoxylin and Eosin (H&E) stained multi-gigapixel 

whole-slide images (WSIs, the input space) of ovarian 

cancer tissue sections and their associated gene expression 

profiles, the privileged feature space. Through cross-

domain knowledge transfer with a novel combination of 

MIL and LUPI, we achieve improved generalization with a 

limited number of labeled examples in the input space. 

Informed by the privileged space model output based on 

relatively expensive and time-consuming gene expression 

profiles in its training, the proposed LUPI model can 

generate accurate predictions using routine WSI data alone 

at the time of inference. The proposed method paves the 

way for further applications of LUPI in computational 

pathology and medical image analysis by cross-domain 

learning especially in cases with a limited number of 

labeled examples in training. 

1. Introduction 

Conventional machine learning methods require that all 

features used in its training are also available at test time. 

For example, if we use medical imaging data from two 

different domains (such as radiology and histopathology 

images) for training a machine learning model, then data 

from both these domains must be available at test time for 

prediction as well. Originally proposed by Vapnik and 

Izmailov [1], [2], Learning using Privileged Information 

(LUPI) allows overcoming this limitation through cross-

domain knowledge transfer in the training phase of machine 

learning models. LUPI is ideally suited for scenarios in 

which certain highly informative features, called privileged 

space features, are available during training only, whereas 

the input space features are available for both training and 

testing examples. For instance, consider the development of 

an image-based object classification system. If three 

dimensional (3D) models of different objects are available 

at training time together with their corresponding 2D 

images, then these 3D features can be used as privileged 

space information for improving prediction accuracy of the 

image based object classification model without requiring 

3D feature input at test time. From a machine learning 

perspective, LUPI allows knowledge from privileged space 

features to improve the decision boundary in the input 

feature space [1], [3]. Another way of looking at LUPI is by 

considering it as a means of knowledge distillation from a 

“teacher” model trained over privileged space features to a 
“student” model that operates in the input space only [4]. 

LUPI has been applied in a number of useful machine 

learning applications [5]–[9]. 

In this work, we report a novel algorithm for LUPI based 

prediction of response to chemotherapy using both whole 

slide images of tumor biopsies as well as gene expression 

profiles. Computational analysis of histopathology images 

is an active area of research due to its importance in the 

diagnosis of cancer as well as treatment selection for cancer 

patients [10]–[13]. In addition to tumor grading and 

profiling, computational pathology also allows 

development of machine learning models for prediction of 

response to various cancer treatments such as 

chemotherapy [14]–[16]. For this purpose, a multi-

gigapixel whole slide image (WSI) is first obtained by 

digitizing the tissue slide from the cancerous tissue 

specimen. After collecting a training WSI dataset from a 

number of cancer patients together with information about 

their response to chemotherapy, a machine learning model 

can be built for predicting chemosensitivity [17]. In 

addition to the WSI data, gene expression profiles can also 

be used for predicting response to chemotherapy [18]–[20]. 

Typically, gene expression profiling presents a more 

detailed molecular picture for drug response prediction in 

comparison to WSI analysis but it is significantly more 

expensive and time consuming [15]. It is important to note 

that collection of large cohorts of WSI and genetic profiling 
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data is very expensive and requires data-efficient machine 

learning models. In this work, we overcome this challenge 

through LUPI. Furthermore, due to computational 

constraints, WSI-based prediction requires that the multi-

gigapixel WSI be broken down into patches and weak 

labels at the WSI-level be used for effective learning at the 

patch level. In this work, we have achieved this through 

Multiple Instance Learning. The main contributions of this 

work are listed below: 

• We propose a novel method of knowledge distillation 

based LUPI for chemosensitivity prediction. It can 

predict whether an Ovarian Carcinoma (OvCa) patient 

will respond to adjuvant chemotherapy or not by using 

both gene expression information as well as WSI data 

in training while requiring only WSI data at test time. 

To the best knowledge of the authors, this is the first 

such cross-domain model in computational pathology. 

• Our WSI based pipeline uses multiple instance learning 

to generate prediction labels at the WSI level using 

patches drawn from a given WSI. 

• In contrast to existing LUPI implementations which are 

limited to classification tasks only, the LUPI model 

proposed in this paper can be applied to regression and 

survival prediction as well as to other cross-domain 

learning problems. 

• We show that the use of LUPI significantly improves 

the accuracy of WSI-based chemosensitivity prediction 

over a large 220 patient dataset from The Cancer 

Genome Atlas (TCGA). 

2. Materials and Methods 

2.1. Problem formulation 

In this work, our objective is to develop a machine learning 

method for predicting the response of an ovarian cancer 

patient to adjuvant chemotherapy (sensitive or resistant). 

For this purpose, we have used a dataset of 220 cancer 

patients with known chemosensitivity. This  dataset is taken 

from a study aimed at survival prediction for ovarian cancer 

patients using gene expressions data by Liu et al. [15]. For 

each patient, pre-processed gene expression levels for a 

total of ~14,000 genes are available together with WSIs of 

the tissue slides scanned at 20× magnification from TCGA 

[21]. The average size of the images in this dataset is 

~40,000×40,000 pixels. In line with the work in [15], the 

patients have been labeled according to their response to 

platinum chemotherapy treatment: a negative label (chemo-

resistant) is assigned to a patient if disease symptoms 

reappear within 6 months of treatment whereas a patient is 

labeled as chemo-sensitive (positive) if a period of more 

than 6 months has elapsed since the last chemotherapy 

treatment and there is no evidence of recurrence within a 6 

month follow-up period involving no additional treatment 

sessions. This dataset contains 154 positive and 66 negative 

examples. Formally, this dataset can be written as a set {(𝒙𝑖∗, 𝒙𝑖, 𝑦𝑖)|𝑖 = 1 … 𝑁} , where, 𝒙𝑖∗  and 𝒙𝑖  represent the 

gene expression profile and WSI corresponding to a single 

patient, respectively, and 𝑦𝑖 ∈ {+1, −1}  is the associated 

label.  

In their study, Liu et al. showed that gene expression 

analysis can be used for survival prediction with high 

accuracy. However, acquiring gene expression profiles for 

a given patient can be expensive and time consuming. WSI 

based analysis does not require an additional sequencing or 

profiling facility and can be done in conjunction with tumor 

grade assessment on diagnostic slides at no extra cost. 

Hence, an image-based predictor of chemosensitivity is 

desirable for routine practice. In this work, we propose a 

novel variant of learning using privileged information 

(LUPI) model that considers gene expression profile as 

privileged information and WSI data as input space data for 

improved accuracy of chemosensitivity prediction using 

WSI data alone. Before moving to the description of the 

proposed LUPI model, we first discuss how gene 

expression profiling and WSI can be independently 

employed for chemosensitivity prediction. 

2.2. Prediction using gene expression data 

The gene expression data for each patient in the dataset 

comprises of expression levels for ~14,000 genes with an 

averaged activity level of different genes in the sample. In 

their survival prediction study, Liu et al. identified a subset 

of 227 genes that are predictive of survival of an ovarian 

cancer patient after being given adjuvant chemotherapy 

[15]. We used the same subset of 227 genes as input 

features to develop a classical machine learning model 

(Radial Basis Function Kernel Support Vector Machine ( 

SVM) to predict chemo-sensitivity. This choice is 

motivated by the fact that a simple model with low VC 

dimension can be useful for privileged space predictions 

[1]. Mathematically, the output of the SVM model for a 

given gene expression profile feature vector 𝒙𝑖∗ can be 

written as 𝑓𝑡(𝒙𝑖∗). 

2.3. Prediction using histology WSI data 

For the input space WSI image data, which is high-

resolution (each image of the order of 100K×80K pixels), 

we developed a Multiple Instance Learning (MIL) based 

Convolutional Neural Network (CNN) model to predict 

chemo-sensitivity in ovarian cancer patients. Before 

training the model, we performed the following 

preprocessing over the WSIs.  

2.3.1 Preprocessing 

The IBM pipeline for histopathology image analysis has 

been employed for segmenting the tissue region from the 

background based on ‘activity’ in terms of nuclei pixels 



   

 

 

[22]. After background removal, the WSI is divided into 

tiles of size 1,536×2,048 pixels. Each tile is then scored 

based on its tissue content and top 3 tiles from each image 

are selected for downstream analysis. Since WSIs are prone 

to color variations due to staining and scanning conditions 

of tissue samples, we performed stain normalization over 

all images using the method proposed by Rakhlin et al. [23]. 

Each tile extracted from the WSIs is then further divided 

into 12 smaller, non-overlapping patches of 512×512 

pixels. Consequently, each WSI is represented by a total of 

36 patches which are used for training purposes. 

 

2.3.2 Patch Classification 

We have used a Convolutional Neural Network (CNN) to 

model the problem of chemo-sensitivity prediction from 

WSI data. Specifically, a standard convolutional neural 

network consisting of 5 convolutional blocks with a fully 

connected layer of 4,096 neurons following by a single 

output neuron is utilized for binary classification at the 

patch level. Each of the 5 convolution blocks has two 3×3 

convolution layers followed by a single 2×2 convolutional 

layer with batch normalization and rectified linear unit 

activation in each layer. The 5 convolutional blocks have 

16, 32, 64, 128 and 256 convolution filters for each layer in 

them. The choice for this neural network architecture has 

been inspired by its effectiveness in the the breast cancer 

histology image classification study by Nazeri et al. [24]. 

The neural network can generate a prediction score for a 

single patch of a WSI. The neural network is trained with a 

multiple instance learning based loss function described in 

the next section. 

  

2.3.3 Multiple Instance Learning 

One of the issues associated with the WSI data is that labels 

are available for each patient and not for individual patches 

in the WSI. Thus, we need to aggregate the patch level 

predictions to a slide level label. We overcome this 

aggregation problem using Multiple Instance Learning 

(MIL). Multiple Instance Learning is used to solve machine 

learning problems where labels are not associated with 

individual instances but with groups of instances called 

bags [25]. Several neural network based solutions have 

been proposed in the literature for modeling MIL [26]–[30].  

Here, each WSI is considered as a single bag with each 

patch as an instance in the bag to model tumor 

heterogeneity [31]. In order to train the aforementioned 

CNN with MIL, all patches belonging to a WSI are passed 

to the CNN one-by-one and the highest scoring patch 

(based on prediction score) in a WSI is used for computing 

the loss function and weight updates, i.e., the prediction 

score of a WSI is computed as the score of the maximum 

scoring patch in it or 𝑓(𝒙𝒊) = max𝑗∈𝐵𝑖 𝑓(𝒑𝒋; 𝒘)) . 

Mathematically, the MIL training of the CNN can be 

expressed as the following optimization problem [30]: 𝒘∗ = argmin𝒘 1𝑁 ∑ 𝑙(𝑦𝑖𝑁
𝑖=1 , max𝑗∈𝐵𝑖 𝑓(𝑝𝑗; 𝒘)) 

where 𝑓(𝒑𝒋; 𝒘)  indicates the output of the CNN with 

weight parameters 𝒘  for a patch 𝒑𝒋  from bag 𝐵𝑖  of 36 

patches in WSI represented by 𝒙𝑖 ,  𝑙(𝑦, 𝑠) = max (0,1 −𝑦𝑠) is the hinge loss function and N denotes the number of 

patients in the training dataset. 

2.4. Learning using Privileged Information (LUPI) 

In this work, we model chemosensitivity prediction as a 

learning using privileged information problem.  In LUPI, 

privileged space features are assumed to be more 

informative, however, they are available during training 

only. The input space features are available during both 

 
Figure 1- LUPI based chemosensitivity prediction model. In training, gene expression profile and WSI data are used as privileged 

and input space features, respectively, to train an input space model. In testing, the trained model can then generate predictions 

using WSI data alone. 

 



   

 

 

training and testing phases. A teacher or privileged space 

model 𝑓𝑡(𝒙𝒊∗) ∈ ℱ𝑡  is trained using privileged features 𝒙𝒊∗ 

and then knowledge from the teacher is distilled to a student 

model 𝑓𝑠(𝒙𝒊) ∈ ℱ𝑠 . The student model uses input space 

features 𝒙𝒊 only to generate predictions for inference. We 

have developed a LUPI model that performs distillation or 

transfer of knowledge from a trained privileged space 

model to an input space model. This is achieved by training 

the input space student model by minimizes the following 

objective based on a custom LUPI meta-loss function: 𝑓𝑠 = argmin𝒇∈ℱ𝑠
1𝑁 ∑(1 − exp (−𝑇𝑙(𝑓𝑡(𝒙𝒊∗), 𝑦𝑖))𝑙(𝑓(𝒙𝑖), 𝑦𝑖)𝑁

𝑖=1+  exp (−𝑇𝑙(𝑓𝑡(𝒙𝒊∗), 𝑦𝑖))𝑙(𝑓(𝒙𝑖), 𝑓𝑡(𝒙𝒊∗)) 

Here, 𝑙(𝑓𝑡(𝒙𝒊∗), 𝑦𝑖)  represents the loss value of the 

privileged space model for the 𝑖th example, 𝑙(𝑓𝑠(𝒙𝑖), 𝑦𝑖) is 

the loss between the input space model score and the actual 

label and 𝑙(𝑓(𝒙𝑖), 𝑓𝑡(𝒙𝒊∗))  is the loss between the 

predictions of the input space and the privileged space 

model. The non-negative hyperparameter 𝑇  controls the 

extent of knowledge transfer: smaller values of 𝑇 

encourage the input space model to mimic the privileged 

space model, whereas, for larger values of 𝑇 or the cases 

where the privileged space model has high error, the input 

space model tries to learn from the true labels instead. In 

contrast to existing LUPI implementations which are 

restricted to classification, the proposed LUPI model can be 

used for regression and other machine learning tasks as well 

depending upon the choice of the loss function. For further 

details on the formulation of the above loss function and the 

role of the knowledge transfer control parameter 𝑇 , the 

interested reader is referred to our manuscript [32].   

The learning scheme of LUPI used in this work is illustrated 

in Figure 1. As discussed earlier, we treat gene expression 

profile-based features as privileged information and the 

corresponding RBF-SVM model as the privileged space 

model. The MIL CNN model for WSI-based 

chemosensitivity prediction is used as the input space 

model. The input (or WSI) space model generates a 

prediction score for a given WSI based on the score of the 

maximum scoring patch in the given image, i.e., 𝑓𝑠(𝒙𝑖) =max𝑗∈𝐵𝑖 𝑓𝑠(𝑝𝑗). The same MIL CNN model architecture is then 

trained as a student model using the meta-loss function 

described above with knowledge distillation from the 

privileged space model. This results in a LUPI model that 

uses both input and privileged space information in its 

training while still being able to generate predictions with 

the input features alone at test time.  

2.5. Implementation & Performance Evaluation  

In order to analyze the performance of the input space 

(WSI-based), privileged space (gene expression profile 

based) and LUPI models, we use 5-fold stratified cross-

validation with the same division of examples into folds for 

the three models. The average and standard deviation of the 

area under the receiver operating characteristic curve 

(AUC-ROC) is used as the performance metric. The 

hyperparameters for the RBF-SVM and the LUPI CNN 

models are selected based on a small validation set of 10 

cases. The code for the proposed model is available at the 

URL: https://github.com/asfandasfo/LUPI  

3. Results and Discussion 

Averaged ROCs for the three models across 5-fold cross-

validation are shown in the Figure 2. The privileged space 

model trained over gene expression profiles shows better 

performance with average AUC-ROC of 0.8 (standard 

deviation or SD: 0.03) as compared to 0.72 (SD: 0.10) for 

the WSI or input model trained. The LUPI based model that 

uses WSIs as input with knowledge transferred from the 

privileged space model produces an average AUC of 0.79 

(SD: 0.07). The performance of LUPI model is not only 

consistently and substantially better than the simple input 

space model across each fold, it is also comparable to the 

performance for the privileged space model, demonstrating 

effectiveness of the proposed LUPI model for 

chemosensitivity prediction using only WSI data at test 

time. 

4. Conclusions and Future Work 

We have shown that learning using privileged information 

can be effectively applied to improve the generalization 

performance for prediction of chemosensitivity in OvCa 

patients by cross-domain knowledge distillation from gene 

expression profiling to whole slide imaging. We have also 

shown that LUPI allows efficient use of data in the input 

space by cross-domain learning. This work can form the 

basis of further applications of LUPI knowledge distillation 

in computational pathology and cross-domain medical 

image analysis. Future work can be focused on identifying 

associations between gene expression profiles and WSI 

features and validation of the proposed method on larger 

datasets.  

 
Figure 2- Average ROC curves for privileged, input space and 

LUPI models. 
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