
Rethinking Segmentation Guidance for Weakly Supervised Object Detection

Ke Yang∗1 Peng Zhang∗2 Peng Qiao2 Zhiyuan Wang1 Huadong Dai1

Tianlong Shen1 Dongsheng Li2 Yong Dou2

1Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, China
2National University of Defense Technology, China

Abstract

Weakly supervised object detection aims at learning ob-

ject detectors with only image-level category labels. Most

existing methods tend to solve this problem by using a mul-

tiple instance learning detector which is usually trapped to

discriminate object parts, rather than the entire object. In

order to select high-quality proposals, recent works lever-

age objectness scores derived from weakly-supervised seg-

mentation maps to rank the object proposals. Base our ob-

servation, this kind of segmentation guided method always

fails due to neglect of the fact that objectness of all propos-

als inside the ground-truth box should be consistent. In this

paper, we propose a novel object representation named Ob-

jectness Consistent Representation (OCR) to meet the con-

sistency criterion of objectness. Specifically, we project the

segmentation confidence scores into two orthogonal direc-

tions, namely vertical and horizontal, to get the OCR. With

the novel object representation, more high-quality propos-

als can be mined for learning a much stronger object detec-

tor. We obtain 54.6% and 51.1% mAP scores on VOC 2007

and 2012 datasets, significantly outperforming the state-

of-the-arts and demonstrating the superiority of OCR for

weakly supervised object detection.

1. Introduction

Fully supervised networks need plenty data which provide

precise location and category annotations of the objects.

However, precise object-level annotations are always ex-

pensive in human resource and huge data volume is required

by training accurate object detection models. To alleviate

this issue, Weakly Supervised Object Detection (WSOD) is

a good alternative. WSOD uses only image-level category

labels so that significant cost of preparing training data can
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Figure 1. Motivation of our proposed method. (a) For ex-

isting segmentation to objectness scoring methods, as the box

becomes larger, the classification score decreases quickly even

though the box has not exceed the box border of the object, e.g.

1.00→0.73→0.65. (b) We project the segmentation score to t-

wo orthogonal directions to get our Objectness Consistent Rep-

resentation (OCR). With the new representation, the score keep-

s consistent until the box exceeds the real object border, e.g.

1.00→1.00→1.00.

be saved. Due to the lack of accurate annotations, this prob-

lem has not been well handled and the performance is still

far from the fully supervised methods.

To localize objects with weak supervision information,

one popular solution is to apply Multiple Instance Learn-

ing (MIL) for mining high-confidence region proposal-

s [3, 7, 12] with positive image-level annotations. However,

MIL usually discovers the most discriminative part of the

target object (e.g. the head of a cat) rather than the entire

object region. This inability of mining the complete object

severely limits the performance of WSOD.

Recently, weakly supervised semantic segmentation

methods [8, 15, 1, 2] have demonstrated very promising

performance. Diba et al. [4] for the first time leveraged se-

mantic segmentation to aid WSOD. They proposed a weak-



ly cascaded convolutional network that leverages segmenta-

tion knowledge to filter noisy proposals with low objectness

scores and achieves competitive detection results. Diba et

al. selected proposals undering the purity criterion which

means most pixels inside the box should have high confi-

dence scores. High purity can only guarantee that the box is

located around the target object, but is unable to filter high-

response boxes of object parts.

In order to mine boxes of complete objects, in addition

to the purity criterion, Wei et al. [16] propose a new criteria,

i.e. completeness, to evaluate the objectness scores of ob-

ject candidates. High completeness requires that very few

pixels are with high confidence scores in the surrounding

context of the target box.

We argue that their solutions [4, 16] are sub-optimal

as they ignore the objectness calculation disparity between

pixel-level object representation and box-level representa-

tion. They averaged the pixel-level segmentation confi-

dence scores inside the box to estimate the objectness score

for that box, which leads to sub-optimal performance. As

shown in Figure 1(a), as the box becomes larger, the average

confidence score of the box decreases quickly even though

the box has not exceed the box border of the object, which

is definitely harmful to the selection of high-quality tighter

boxes.

We attribute the above problem to the inconsistency of

objectness scoring. To solve the above problem, besides the

two criteria above, we propose a new criterion, i.e. consis-

tency, for objectness score calculation of proposals. Con-

sistency means the scores for each box should be consis-

tent, as long as the box is within the box border of the

object. Considering the consistency criterion, we devise a

novel object representation, named Objectness Consisten-

t Representation (OCR), to help select high-quality candi-

date boxes from large amount object proposals. Specifical-

ly, we project the segmentation confidence scores to two

orthogonal directions, i.e. horizontal and vertical, to get the

OCR. With the new representation, the scores keep consis-

tent as long as the boxes do not exceed the border of objec-

t, as shown in Figure 1(b). Our proposed OCR is gener-

ic and can be easily integrated into any WSOD network

by constructing a weakly supervised semantic segmenta-

tion branch to produce category-specific segmentation con-

fidence map. We apply object proposal selection with our

OCR to the popular baselines of weakly supervised objec-

t detection, the experiment results on public datasets show

that we significantly outperform the state-of-the-arts.

2. Method

We show the overall architecture of the proposed ap-

proach in Figure 2. It consists of three key branches, i.e.,

weakly supervised semantic segmentation branch, segmen-

tation guidance branch and object detection branch. In
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Figure 2. Architecture of our proposed network. (1) Generate se-

mantic segmentation confidence maps using image-level labels.

(2) Generate the new object representations from semantic seg-

mentation confidence maps. (3) Calculate objectness scores of

proposals and select the proposals with top objectness scores. (4)

Feed the extracted RoI features into a MIL network and mining

object boxes from the selected top-ranking proposals.

particular, the weakly supervised semantic segmentation

branch is employed to generate class-specific pixel-wise

predictions (i.e. segmentation confidence maps) with only

image-level labels. Then the segmentation confidence maps

are passed through the segmentation guidance branch. For

segmentation confidence maps inside each proposals, OCRs

are calculated. OCRs are then employed to evaluate object-

ness scores of all proposals. The proposals are ranked by

the objectness scores. Finally, we select the top-ranking

proposals for object detection branch to further improved

object detector. The remainder of this section introduces

the three branches in detail.

2.1. Weakly Supervised Semantic Segmentation

In order to verify the individual effect of objectness s-

coring methods, we fix the segmentation confidence map-

s to reduce external influences. Specifically, we choose a

weakly supervised semantic segmentation network to gen-

erate semantic segmentation results in advance. When train-

ing the object detector, the network directly takes the pre-

computed segmentation results as inputs. Please note that

we use the same segmentation results for all compared seg-

mentation guided methods. AffinityNet proposed by Ahn et

al. [2] is used to produce the weakly supervised semantic

segmentation results.

2.2. Detection Branch

We only have image-level labels indicating whether an

object category appears. To train a standard object detector

with regression, it is necessary to mine instance-level su-

pervision such as bounding-box annotations. Therefore, we

need to introduce a MIL branch to initialize the pseudo GT

annotations. There are a couple of possible choices such as

[3, 17, 12]. We choose to adopt OICR network [12] and

an enhanced version [17]. For details, please refer to these

papers.



Methods mAP

MIL 41.3

MIL+WCCN[4] 39.7(-1.6)

MIL+TS2C[16] 42.3(+1.0)

MIL+OCR 46.3(+5.0)

MILreg[17] 47.3

MILreg+OCR 50.6(+3.3)

Table 1. Ablation study: The upper part shows AP performance

(%) on PASCAL VOC 2007 test. In the brackets are the gaps to

the MIL or MILreg counterpart.

Segmentation Methods AffinityNet[2] IRNet[1]

MIL+WCCN[4] 39.9 39.7

MIL+TS2C[16] 42.1 42.3

MIL+OCR 45.3 46.3

Table 2. mAP Performance (%) under different segmentation

branches on PASCAL VOC 2007 test.

IoU thresholds 0.5 0.7 ratio(%)

MIL+WCCN[4] 39.7 18.5 46.6

MIL+TS2C[16] 42.3 21.5 50.8

MIL+OCR 46.3 26.3 56.8

Table 3. mAP Performance (%) under different IoU thresholds on

PASCAL VOC 2007 test.

Methods mAP

WSDDN[3] 34.8

ContextLocNet[7] 36.3

OICR[12] 41.2

WCCN[4] 42.8

TS2C[16] 44.3

MIL-OICR+OCR(Ours) 46.3

MIL-OICRreg+OCR(Ours) 50.6

WSDDN-Ens.[3] 39.3

OICR-Ens.+FRCNN[12] 47.0

WCCN+FRCNN[4] 43.1

WSRPN-Ens.+FRCNN[13] 50.4

Multi-Evidence[6] 51.2

W2F+RPN+FSD2[18] 52.4

WS-JDS FRCNN[10] 52.5

Ours-Ens. 54.6

Table 4. Comparison of AP performance (%) on PASCAL VOC

2007 test. The upper part shows results by single-phase approach-

es. The lower part shows results by multi-phase approaches.

Methods mAP

ContextLocNet[7] 35.3

OICR[12] 37.9

WCCN[4] 37.9

TS2C[16] 40.0

MIL-OICR+OCR(Ours) 44.1

MIL-OICRreg+OCR(Ours) 48.3

MELM[6] 42.4

OICR-Ens.+FRCNN[12] 42.5

TS2C+FRCNN[16] 44.0

WSRPN-Ens.+FRCNN[13] 45.7

W2F+RPN+FSD2[18] 47.8

WS-JDS FRCNN[10] 46.1

Ours-Ens. 51.1

Table 5. Comparison of AP performance (%) on PASCAL VOC

2012 test. The upper part shows results by single-phase approach-

es. The lower part shows results by multi-phase approaches.

2.3. Segmentation Guidance Branch

MIL detector can mining positive boxes from about two

thousand proposals and subsequent classifiers and regres-

sor can refine the selection and location of boxes. The re-

finement operation of OICR highly relies on the quality of

initial object candidates from the multiple instance classi-

fication module. If the MIL detector fails to retrieve rea-

sonable object proposals candidates as the pseudo GTs, the

following refinement will fail too. To reduce the risk of such

failure, Wei et al. [16] and Diba et al. [4] design their ob-

jectness rating approachs from the segmentation confidence

maps. However, their solutions are sub-optimal and insuffi-

cient as they ignore the consistency property of objectness

calculation.

Given a segmentation map and the object proposals R =
(R1, R2, ..., Rn) of input image I, we can get the segmenta-

tion maps of the object proposals S = (S1, S2, ..., Sn) and

Si ∈ R
Mi×Ni×(C+1), where Mi and Ni is the height and

width of the i-th object proposal, C is the object category

number. What we need to do is computing the objectness s-

cores OSi of the object proposals from segmentation maps:

OSi = F (Si) , (1)

where F is the objectness calculation function. F is the

key factor of a good objectness scoring method. Next we

introduce three different types of F .

Average strategy Considering only the purity property,

Diba et al. [4] use a simple average strategy:

OSi = Avg(Si). (2)

It is obvious that simply averaging can not determine

whether an object is complete. The objectness score of a

small box inside the segmentation maps will get a very high

score, but this box is clearly not an ideal candidate. This

strategy only considers the purity property.

Segmentation Context In order to get proposal candi-

dates with much complete objects, Wei et al. [16] select the

boxes that have high objectness scores inside the boxes and

low objectness scores in the surrounding context regions:

OSi = Avg(Si)−Avg(Ŝi), (3)

where Ŝi is the surrounding context regions of Si. When

the box is close the border of an object, especially for the

one with strange or irregular shape, the context confidence

(i.e. Avg(Ŝi)) is negligible and OSi starts to decrease when

the box becomes larger even though the box is still inside

the object border. In order to completely solve this prob-

lem, we need consistent objectness scoring as long as the

box is inside the object boundary. Consistent Objectness

We propose to project Si to the directions that are parallel

to the bounding boxes to get the objectness consistent rep-

resentation OCRi:

OCRi = {Sx
i , S

y
i }, (4)

where S
y
i ∈ R

Mi×1×(C+1) and Sx
i ∈ R

1×Ni×(C+1) are the

projections of Si in the horizontal and vertical directions,

respectively. Specifically, Sx
i and Sx

i are calculated by:

{Sx
i = Maxx(Si), S

y
i = Maxy(Si)}, (5)



where Maxx and Maxy means maximize operation in the

horizontal and vertical directions, respectively. The OSi

can be calculated by:

OSi = (Avg(Sx
i ) +Avg(Sy

i ))−

(Avg(Ŝx
i ) +Avg(Ŝy

i )),
(6)

Now the OSi meets the three criteria. All the object pro-

posals R = (R1, R2, ..., Rn) are ranked according to the

objectness scores OSi. Then following Wei et al. [16], the

top two hundred proposals are sent to the MIL detector. The

MIL detector mines object boxes from these top-ranking

proposals. During the testing stage, only detection branch

WCCN

TS2C

OCR

(Ours)

Figure 3. Qualitative detection results of WCCN [4], TS2C [16]

and our method.

is kept.

3. Experiments

In this section, we first introduce the evaluation dataset-

s and the implementation details of our approach. Then we

introduce the ablation experiments. Finally, we compare the

performance of our method with the-state-of-the-art meth-

ods.

Datasets and Evaluation Metrics. We evaluate our

method on the popular PASCAL VOC 2007 and 2012

datasets [5]. Average Precision (AP) and the mean of AP

(mAP) are taken as the evaluation metrics to test our model

on the testing set and are evaluated on the PASCAL criteria,

i.e., IoU > 0.5 between ground truths boxes and predicted

boxes.

Implementation Details. We use the object proposals gen-

erated by selective search windows [14] and adopt VGG16

[11] pre-trained on ImageNet [9] as the backbone of our

proposed network. Training details follow OICR [12].

Ablation Studies We conduct ablation experiments on

PASCAL VOC 2007 to prove the effectiveness of our pro-

posed OCR.

The baseline is the MIL detector that we introduced in

the detection branch section (i.e. Section 2.2), which is the

same as OICR [12], denoted as MIL. We also use a de-

tection branch that combine the MIL detector (i.e. OICR)

with a box regressor, and we denote this type of detection

branch as MILreg[17].

To verify the effect of our proposed new object repre-

sentation, we conduct ablation studies on the objectness s-

coring methods. We compare three types of segmentation

guidance methods, namely, WCCN [4], TS2C [16] and our

OCR. Results are shown in the first four rows of Table 1.

As Wei et al. [16] did, we adopt only top two hundreds pro-

posals ranked by objectness scores for the detection branch.

The performance of MIL+WCCN [4] is even lower than

the MIL baseline. We attribute this to the inferior box ob-

jectness scoring method of WCCN, thus two hundreds pro-

posals are far from enough. MIL+TS2C [16] achieves 1%

mAP improvement which is slightly lower than the result-

s reported by Wei et al. We attribute this difference to the

usage of saliency detection results generated a fully super-

vised saliency detection model in the original implementa-

tion. Our method improves significantly over the baseline

by 5.0%. To verify the stability of our OCR under models

with different performance, we also test our OCR under a

much stronger baseline MILreg , as shown in the last two

rows of upper part in Table 1, our method still achieves a

large improvement.

To analyze the sensitivity to segmentation quality, we

have tried two different segmentation branch, i.e. Affini-

tyNet [2] and IRNet [1]. The performance of these two

kinds of pseudo semantic segmentation labels in PASCAL

VOC 2012 train set is 59.3% and 66.5% mIoU, respective-

ly. The detection results on PASCAL VOC 2007 mAP are

shown in Table 2 the absolute decline of OCR is higher than

the other two, but still far above their performance. We at-

tribute this to the fact that the improvement brought by their

guidances is not obvious, and the impact of switching to

lower quality is also small.

Since our method can better handle the situation at the

boundary of the object to produce more complete detection

region, it is interesting to see whether the performance gap

will be larger when raising IOU threshold? When the IoU

threshold raised from 0.5 to 0.7, the results change as shown

in the Table 3. We can conclude from the results that our

OCR indeed helps select high-quality boxes with more pre-

cise boundaries.

Comparison with State-of-the-Art To fully compare with

other methods, we report the results for both single-phase

approaches and multi-phase approaches. The results on

VOC 2007 and VOC 2012 are shown in Table 4, Table 5. In

Figure 3, we also illustrate some detection results by three

segmentation guided methods. It can be concluded from the

illustration that our OCR helps the detector detects more

complete objects.

4. Conclusion

In this paper, we present a novel object representation

named OCR for segmentation guided weakly supervised

object detection. We proposed a new criterion, i.e. consis-

tency, for evaluating the objectness of object proposals. The

proposed OCR can be easily integrated into popular weakly

supervised object detection framework.
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