
Take the Scenic Route:

Improving Generalization in Vision-and-Language Navigation

Felix Yu Zhiwei Deng Karthik Narasimhan Olga Russakovsky

Princeton University

{felixy, zhiweid, karthikn, olgarus}@cs.princeton.edu

Abstract

In the Vision-and-Language Navigation (VLN) task, an

agent with egocentric vision navigates to a destination

given natural language instructions. The act of manually

annotating these instructions is timely and expensive, such

that many existing approaches automatically generate ad-

ditional samples to improve agent performance. However,

these approaches still have difficulty generalizing their per-

formance to new environments. In this work, we investigate

the popular Room-to-Room (R2R) VLN benchmark and dis-

cover that what is important is not only the amount of data

you synthesize, but also how you do it. We find that shortest

path sampling, which is used by both the R2R benchmark

and existing augmentation methods, encode biases in the

action space of the agent which we dub as action priors.

We then show that these action priors offer one explanation

toward the poor generalization of existing works. To miti-

gate such priors, we propose a path sampling method based

on random walks to augment the data. By training with this

augmentation strategy, our agent is able to generalize better

to unknown environments compared to the baseline, signifi-

cantly improving model performance in the process.

1. Introduction and Related Works

The Vision and Language Navigation (VLN) task is a

complex problem which requires an agent to interpret and

blend together multiple modalities, including visual scenes

and spoken language. In the task, an agent is given a se-

quence of natural language instructions e.g. ”Go through

the door to the right then...” and placed at a starting loca-

tion in the environment. At each timestep, the agent per-

ceives its surrounding visuals through a set of images, each

one corresponding to a viewpoint, and performs an action

by choosing from a subset of these viewpoints to teleport to

(referred to as teleporting action space). A side effect of this

complexity is the difficulty in obtaining natural language in-

Figure 1. The Room-to-Room (R2R) dataset contains a limited

number of human annotated instructions for shortest paths. This

brings about two problems: Agent performance suffers due to lack

of data, and shortest path sampling leads to a skewed distribution

in action space, which we refer to as action priors. These action

priors can affect agent generalizability to unseen environments. To

mitigate both problems, we propose to augment the dataset with

additional machine annotated instructions of random walk paths,

which do not contain such action priors.

structions, which requires annotators to traverse the naviga-

tional path through a simulator to write the instruction. As a

result, VLN benchmarks such as the Room-to-Room (R2R)

task [1] that we focus on in this work only provide a limited

amount of annotated data, e.g. 21,567 sets of instructions

for R2R. This leads to poor performance and lack of gener-

alization to new environments on the benchmark [1].

To circumvent this lack of annotations, Fried et. al. [3]

propose the Speaker, an architecture which is trained on

the original R2R dataset to take path trajectories as inputs

and output natural language instructions, allowing them to

generate an order of magnitude more synthetic instructions

from paths sampled through the Matterport3D simulator

[2, 1]. Their work and subsequent works [12, 8, 6, 9] which

4321



use this augmented data show that performance rises as the

amount of augmented data increased, but the generalization

gap of these models still exist.

In this work, we focus not only on improving perfor-

mance through Speaker-based data augmentation, but also

on reducing the generalization gap by changing the type

of paths we sample over. We find that existing methods

[1, 3, 12, 8, 6, 9, 11] which use shortest path sampling con-

tains biases over the teleporting action space (dubbed action

priors) such that the agent can learn to perform navigation

in known environments without relying on the natural lan-

guage instructions. We hypothesize that since these action

priors are specific to each environment, agents are unable to

transfer this knowledge to novel scenes, thus leading to the

generalization gap. To alleviate these priors, we opt to use

random walk path sampling rather than shortest path sam-

pling to augment the existing R2R dataset. By mitigating

these scene specific action priors, the agent relies more on

cues such as language which generalize better to unseen en-

vironments. As a result, we see a significant decrease in

the generalization gap from the baseline model, improving

performance in unseen environments in the process.

Other existing works have also tried bridging the gener-

alization gap. Wang et. al. [12] allows the agent to explore

the unseen environments in a self-supervised fashion before

evaluating to boost performance. Hu et. al. [4] proposed

an ensemble method using various visual representations,

and Tan et. al. [11] performs data augmentation on both

paths as well as environments by performing consistent vi-

sual feature masking. However, all works still train their

models purely on shortest paths. To our knowledge, we are

the first to investigate the role of these action priors and to

propose training navigational agents on non-shortest paths

for the R2R benchmark. Although Jain et. al. [5] propose

the Room-for-Room (R4R) task, which creates non-shortest

paths by concatenating paths from R2R together, the R4R

task is a separate benchmark altogether. In this work, we

focus solely on R2R.

2. Room-to-Room and Lack of Generalization

We first elaborate on the Room-to-Room benchmark [1]

and establish notation in the process. Afterwards, we exam-

ine how action priors exist in the benchmark and how this

affects generalization.

2.1. Room­to­Room Setup

In the Room-to-Room (R2R) benchmark, an agent is

given natural language instruction ~x for some path consist-

ing of multiple viewpoints ~p = (s1, s2, ..., snp
), where si

denotes a single viewpoint and np is the number of view-

points in the path. At each point in time t, the agent ob-

serves a panoramic visual of its current state st, represented

by 36 discrete view vectors ~vst = {~vst,i}
36
i=1. The agent

also receives Ast , the action space at the current state.

Following the panoramic framework introduced in [3],

rather than using primitive actions such as TURN-LEFT,

FORWARD, STOP, each action a ∈ Ast corresponds to

another location/state that the agent can navigate to (as well

as STOP). This means that the action space of the agent de-

pends on the current state, and therefore the environment of

the agent. The agent must then combine instruction ~x, vi-

sual information ~vst , and action history {(at′ , st′)}
t−1
t′=1 to

choose the action at ∈ Ast that corresponds to the next lo-

cation to move to. After either T steps, or when the agent

chooses to stop, we evaluate how far the agent’s current

state is from goal snp
.

This action space brings about an alternate interpretation

to the task: Each environment can be interpreted as a graph,

where nodes are the states that the agent can be located in,

and edges between two nodes denotes direct navigability

from one state to the other. At each timestep, the action

space of an agent at a state is that state’s outgoing edges.

Thus, the agent is performing a graph traversal with only

local knowledge of the graph.

2.2. Overfitting due to Action Priors

From this graph traversal interpretation, it can be seen

that the decisions an agent makes at state st may not only

depend on the natural language instruction, but also on the

number of times each outgoing edge is traversed within the

training data. If agents are able to recognize their current

state given visual information, they can be biased toward

choosing actions that appear more frequently within the

training data while ignoring other sources of information.

We examine the action priors that can arise from shortest

path sampling by looking at the augmented dataset gener-

ated by Fried et. al. [3] and used by other subsequent works

[8, 9, 12], which we will refer to as the Speaker-Follower

Augmented Dataset. We choose to use this dataset over the

original R2R dataset since it contains a more representative

number of shortest path samples. To test how useful these

shortest path action priors are in the R2R task, we treat each

environmental graph as a Markov chain and calculate their

Markov transition matrices (MTM) based on the number of

times each edge is traversed within the dataset.

We then feed the MTMs to a greedy agent which takes in

no language information. For each for each test sample p =
(s1, ..., snp

) within the validation set of seen environments

in the R2R dataset, our greedy agent starts at s1 and takes

T = 5 greedy steps, choosing the action a ∈ Ast which has

the highest probability according to the MTM. We report the

success rate as defined in [1], which measures the fraction

of times the agent stop position sT is within three meters

of slp . We compare this greedy agent with a random agent

which takes T random steps, as well as with the Follower

navigational agent reported in Fried et. al. [3] which takes



Input Modality MTM V + L

Greedy Random Follower[3]

Success Rate 0.35 0.12 0.66

Table 1. Success Rate over Val Seen data split for the Greedy

and Random agents, which take in the Markov transition matrices

(MTM), and the Follower navigation agent, which takes in vision

and language information (V + L).

language and vision as input. Our findings are reported in

table 1.

As can be seen, our greedy agent performs much better

than the random agent, increasing success rate by an abso-

lute 23% (relative 192% increase). Furthermore, although

the agent receives no language instructions and has no rea-

soning capabilities, we are able to achieve a success rate

that is over half that of the Follower agent. This is a surpris-

ing result, since the Follower agent is given the language

instructions and has memory over its action history to per-

form more sophisticated reasoning.

From this, we can see that action priors are useful in nav-

igating to goals in seen environments, even in the absence

of language instruction. Agents which are able to locate

themselves in an environment given visual information ~vst
can depend of such priors to perform well on scenes in the

training data while ignoring language information given. If

we mitigate such priors, the agent may learn to rely more

on cues such as language which generalize better to unseen

environments.

3. Methods

3.1. Random Walk Path Sampler

This motivates us to use random walks rather than short-

est paths when augmenting existing R2R dataset. In partic-

ular, our sampling is done using the following method: We

first uniformly draw a starting viewpoint across all possi-

ble viewpoints in the training data. Then, we sample a path

length according to the distribution of path lengths found in

the R2R benchmark training data. To avoid the actions pri-

ors that exist in shortest path sampling, we perform a ran-

dom walk while avoiding nodes already visited in the path.

Finally, if the end goal is not at least three meters away from

starting location, we re-sample the path.

Figure 2 visualizes the reduction in action priors by us-

ing this sampling method over shortest path sampling. We

first sample an identical number of paths as the Speaker-

Follower Augmented Dataset, and then for each of the origi-

nal R2R Dataset, Speaker-Follower augmented Dataset, and

our Random Walk Dataset, we calculate the Markov transi-

tion matrix M as done in Section 2.2. Then, for each node

i in the training environments, we calculate it’s skew factor,

which we define as the ratio between the largest transition

Figure 2. Histogram of skew factors: Given the Markov Transition

Matrix (MTM) of each environment calculated from the datasets,

we calculate the skew factor of each node. This is defined as the

ratio between the largest transition probability at that specific node

and the probability under uniform distribution. If the node is never

visited in the dataset, as can be the case in the R2R dataset, the

skew factor is None. We see that although the MTMs for R2R

Dataset and Speaker-Follower Augmented Dataset contain large

skew factors, almost all skew factors for the Random Walk Sam-

pler MTM has a skew factor close to 1, i.e. the distribution over

actions for that node is close to uniform and have minimal action

priors.

probability from node i and the probability under uniform

distribution. Ideally, we want the skew factor to approach

1, which denotes that the transition function out of node i

is as close to uniform as possible. As can be seen from the

histogram, both shortest path datasets contain a significant

number of nodes with high skew factors, while the skew fac-

tor of almost all (96%) nodes in our random walk dataset is

close to 1.

3.2. Agent Framework

We now go over the framework used to add random walk

paths to the existing R2R dataset to mitigate action priors.

Our framework is based off of Speaker-Follower’s [3], and

consists of the aforementioned Path Sampler, a Speaker,

and a Follower navigational agent, which we will elaborate

on shortly. We first pre-train the Speaker using the R2R

benchmark data and fix the weights. Then, to train the Fol-

lower on augmented data, we sample random walks with

the Path Sampler on the fly and annotate instructions using

our fixed Speaker.

Speaker The Speaker is takes in all visual information ~v

for a path ~p = (s1, ..., slp) and generates natural language

instructions ~x according to pS(xt|~v, x1,...,t−1). This is done

through a SEQ2SEQ with attention architecture [10, 7].

Follower The Follower is the navigational agent, and ar-

chitecturally mirrors the Speaker. Given natural language

instructions ~x and the environment, the agent defines the

navigation distribution as pT (at|~x, st, τ), where τ encodes

the history of the agent for a particular path traversal. At

each timestep t, the agent receives visual features ~vst and



Condition Data

Augmentation

Forcing

Method

Seen Validation Unseen Validation

↓NE ↑SR ↑OSR ↑SPL ↓NE ↑SR ↑OSR ↑SPL

Reported in Speaker-Follower [3]

1 None Student 4.86 52.1 63.3 - 7.07 31.2 41.3 -

2 Shortest Student 3.36 66.4 73.8 - 6.62 35.5 45.0 -

Our Implementation

3 None Student 4.39 57.1 68.9 47.0 6.98 27.2 38.6 18.7

4 Shortest Student 3.99 61.6 69.4 54.0 6.85 29.7 41.0 20.1

5 None Teacher 5.36 51.6 59.4 48.6 7.13 32.5 41.1 29.0

6 Shortest Teacher 4.97 54.0 60.5 51.7 7.12 33.8 42.2 31.0

7 (ours) Random Teacher 5.03 53.0 61.6 50.4 6.29 38.9 46.7 36.0

Table 2. Reported Results. ↓ denotes lower is better, ↑ denotes higher is better. Although using shortest path sampling leads to best overall

performance over all metrics on known environments, we see the model trained with our random walk sampling achieves best performance

over unseen environments.

performs an action ~at ∈ Ast .

4. Experiments and Results

We compare our Random Walk Augmentation Fol-

lower trained on both the R2R dataset and augmented ran-

dom walks against two baseline augmentation methods: (1)

None, under which an agent is trained with only the R2R

dataset, and (2) Shortest, an agent trained on R2R dataset

and augmented shortest paths. All agent architectures re-

mained identical between experiments. We use a batch size

of 64, and Adam as the optimizer with a learning rate of

0.0001. All models are trained for 60,000 iterations. If data

augmentation is applied, the model is first trained for 40,000

iterations on the augmented data, followed by 20,000 itera-

tions on the original R2R data.

Following [3], all models are trained through imitation

learning. When all samples are shortest paths, it is possible

to re-calculate shortest paths on the fly when models devi-

ate from the original path. This allows us to use student

forcing, where the action taken is sampled from the agent’s

policy at each timestep. Since our random walk sampling

method has non-shortest paths, this is not an option and

we train that model with only teacher forcing, where the

action taken is always the ground truth action. We report

metrics for the baselines with both student and teacher forc-

ing. Our models are based off of a re-implementation of [3],

and due to these implementation differences, there are dif-

ferences in reported metrics. For fairness to both our work

and theirs, we report both versions when applicable, but for

consistency, run analysis on results gathered from our im-

plementation.

Our results are given in table 2. We evaluate our model

primarily using Success Rate (SR) as described in section

2.2. We also show Navigational Error (NE) which mea-

sures distance between goal state and agent’s last state, Or-

acle Success Rate (OSR) which measures success rate at the

closet point that the agent ever was to the goal, and Success

rate weighted by Path Length (SPL) which normalizes Suc-

cess Rate by the length of the traversed path.

We can see that for validation samples in seen environ-

ments, the training scheme that yields the best results(4)

matches that used in [3] with shortest path augmentation

and student forcing, with a success rate of 61.6%. However,

we see that this model generalizes poorly to unseen environ-

ments with success rate dropping to 29.7% which is an ab-

solute decrease of 31.9% and a relative decrease of 51.8%.

On the contrary, our method(7) only sees a performance

drop from 53.0% to 38.9% giving us absolute decrease of

only 14.1% and relative decrease of 26.6%. Furthermore,

we can see that although models trained with shortest path

augmentation outperform ours trained with random walks,

our model outperforms all baselines across all metrics on

the unseen environments, improving success rate from the

next best model(6) from 33.8% to 38.9%. It is helpful to

note that we also outperform the original values(2) included

in [3]. These results show promise toward our sampling

strategy and validate our hypothesis that action priors can

negatively impact the generalizability of agents.

5. Conclusion

In this paper, we simultaneously deal with the scarcity

of data in the R2R task while removing biases in the dataset

through random walk data augmentation. By doing so, we

are able to reduce the generalization gap and outperform

baselines in navigating unknown environments.

6. Acknowledgments

This work is supported by the Princeton CSML DataX
fund. We would also like to thank Zeyu Wang, Angelina
Wang, and Deniz Oktay for offering insights and comments
which guided the paper.



References

[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3674–

3683, 2018.

[2] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej

Halber, Matthias Niessner, Manolis Savva, Shuran Song,

Andy Zeng, and Yinda Zhang. Matterport3d: Learning

from rgb-d data in indoor environments. arXiv preprint

arXiv:1709.06158, 2017.

[3] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,

Jacob Andreas, Louis-Philippe Morency, Taylor Berg-

Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.

Speaker-follower models for vision-and-language naviga-

tion. In Advances in Neural Information Processing Systems,

pages 3314–3325, 2018.

[4] Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein,

Kate Saenko, et al. Are you looking? grounding to multiple

modalities in vision-and-language navigation. arXiv preprint

arXiv:1906.00347, 2019.

[5] Vihan Jain, Gabriel Magalhaes, Alex Ku, Ashish Vaswani,

Eugene Ie, and Jason Baldridge. Stay on the path: Instruction

fidelity in vision-and-language navigation. arXiv preprint

arXiv:1905.12255, 2019.

[6] Liyiming Ke, Xiujun Li, Yonatan Bisk, Ari Holtzman, Zhe

Gan, Jingjing Liu, Jianfeng Gao, Yejin Choi, and Siddhartha

Srinivasa. Tactical rewind: Self-correction via backtrack-

ing in vision-and-language navigation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6741–6749, 2019.

[7] Minh-Thang Luong, Hieu Pham, and Christopher D Man-

ning. Effective approaches to attention-based neural machine

translation. arXiv preprint arXiv:1508.04025, 2015.

[8] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,

Zsolt Kira, Richard Socher, and Caiming Xiong. Self-

monitoring navigation agent via auxiliary progress estima-

tion. arXiv preprint arXiv:1901.03035, 2019.

[9] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming

Xiong, and Zsolt Kira. The regretful agent: Heuristic-

aided navigation through progress estimation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6732–6740, 2019.

[10] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to

sequence learning with neural networks. In Advances in neu-

ral information processing systems, pages 3104–3112, 2014.

[11] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to nav-

igate unseen environments: Back translation with environ-

mental dropout. arXiv preprint arXiv:1904.04195, 2019.

[12] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,

Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and

Lei Zhang. Reinforced cross-modal matching and self-

supervised imitation learning for vision-language navigation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6629–6638, 2019.


