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Abstract

The task of referring relationships is to localize sub-

ject and object entities in an image satisfying a relation-

ship query, which is given in the form of <subject,

predicate, object>. This requires simultaneous lo-

calization of the subject and object entities in a specified

relationship. We introduce a simple yet effective proposal-

based method for referring relationships. Different from

the existing methods such as SSAS, our method can gen-

erate a high-resolution result while reducing its complexity

and ambiguity. Our method is composed of two modules:

a category-based proposal generation module to select the

proposals related to the entities and a predicate analysis

module to score the compatibility of pairs of selected pro-

posals. We show state-of-the-art performance on the refer-

ring relationship task on two public datasets: Visual Rela-

tionship Detection and Visual Genome.

1. Introduction

Localizing the entity in an image that is specified by a

textual query, which can refer to both a single noun and its

properties, such as “a large, red sedan”, has been an active

area of research over the last few years [4, 14, 31]. There

has been recent work [16] in including relationships be-

tween two objects in the queries, which have been called re-

ferring relationships. Such relationships are useful for var-

ious applications including image retrieval and visual ques-

tion answering. Fig. 1 shows examples where queries, “per-

son with phone” and “bag next to person”, help in differen-

tiating a person and a bag from others in the same scene.

We consider a query to be in the form of <subject,

predicate, object>. The problem of grounding en-

tities in a relationship is more challenging than noun phrase

grounding, as it subsumes the task of single object ground-

ing and imposes the requirement of satisfying a relationship

between a pair of objects. Modeling predicates is difficult

due to the imprecise definition of relations. For example, in

“next to” and “near”, the expectations of distances between

entities may depend on the types of entities involved; dis-

(a) (b)

(c) (d)

<Person> <Bag>

<Person, With, Phone> <Bag, Next to, Person>

Figure 1. In a complex scene, referring relationships helps to local-

ize target entities by their relationships with others. When query-

ing for “person” and “bag”, (a) and (b) give multiple instances of

the same entity. If we want to localize a specific target, such as the

person making a phone call, or the bag close to that person, query-

ing with the relationship triplets <person, with, phone> in

(c) and <bag, next to, person> in (d) helps by localizing

both the subject and object entities.

tances are not the same in <bag, next to, person>

and <car, next to, building>. Different from

the tasks such as visual relationship detection [25, 42] and

scene graph generation [37], which also explore the de-

tection of <subject, predicate, object> triples,

the task of referring relationships focuses on the relation-

ship between the specific subject and object pairs given in

the query. Methods in visual relationship detection and

scene graph generation attempt to find all relationships in

an image; so, presumably, the queried triples will also be

in the output set, but it may possibly be discarded due to

the potential large number of relationships. The detection

model may also focus on more common relationships such

as “person standing” than ones with lower frequency due to

the imbalance of relationships in the training set. An exist-

ing state-of-the-art method, SSAS [16], aims to avoid the
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difficulty of variations in the appearance of subject-object

pairs by generating two attention maps to influence each

other by shifts, but the accuracy of the inferred bounding

boxes suffers due to the low resolution of attention maps.

In this paper, we introduce a proposal-based method

which is composed of two steps: first using a category-

based proposal generating module to localize and select re-

lated candidate proposals based on their categories for sub-

ject and object entities and then applying a predicate analy-

sis module to identify proposal pairs satisfying the queried

predicate. By decoupling the proposal generation with the

predicate analysis, the network can first pick out highly re-

lated entities to reduce both the complexity and ambigu-

ity for predicate prediction and then analyze the relation-

ships between selected proposals. We call our complete

system as CPARR for “Category-based Proposal Analysis

for Referring Relationships”. With category-based propos-

als for related candidates and specified predicate analysis,

we show state-of-the-art performance on the public datasets

for referring relationships with different evaluation metrics.

In summary, our contributions are two-fold: 1) a

category-based proposal generator to select related candi-

dates and tackle the challenge of accurate localization; 2)

a predicate analysis network trained with selected propos-

als to model the role of the predicate in disambiguating ob-

ject pairs. In the following, we first introduce related work

in Sec. 2, then we provide details of CPARR in Sec. 3.

Lastly, we present the evaluation and comparison with base-

line methods in Sec. 4, followed by conclusions in Sec. 5.

2. Related Work

There has been limited work directly on the referring re-

lationships task. However, the tasks of scene graph genera-

tion, visual relationship detection, human-object interaction

and phrase grounding have some relations; we briefly sum-

marize them in the following.

Scene Graph Generation: To find the relationship

pairs, some researchers generate scene graphs [5, 20, 21, 37,

38, 43] for the dense relationships reconstruction in the im-

age. A scene graph represents entities and all the relation-

ships in a graph where the nodes represent entities and the

edges represent the relationship between the nodes. Xu et

al. [37] provides an end-to-end solution built with standard

RNNs and iterative message passing for prediction refine-

ments. Neural Motif [43] observes statistics of relationships

labels and utilizes motifs, regularly appearing substructures

in scene graphs. Factorizable Net [20] replaces numerous

relationship representations of the scene graph with fewer

subgraphs and object features to reduce the computation.

Visual Relationship Detection: Finding all the ex-

isting triplet relationships <subject, predicate,

object> in a scene is also explored in the Visual Re-

lationship Detection (VRD) task [7, 19, 23, 25, 27, 42,

40]. Yu et al. [42] leverages external datasets and dis-

tills knowledge for triplet training and inference. Shuffle-

then-Assemble [39] applies unsupervised domain transfer

to learn an object-agnostic relationship feature. Zoom-Net

[40] proposes spatially and contextually pooling operations

to improve feature interaction between proposals. Differ-

ent from referring relationships, it is not easy to find out the

subject and object entities in VRD due to the exponential

number and its long-tailed distribution of entity types and

their combinations, which might also result in the required

entities being discarded due to the low interest.

Human Object Interaction: Human Object Interaction

focuses on detecting and recognizing how human in the im-

age interacts with the surrounding objects [1, 10, 11, 22,

29, 34, 36]. ICAN [10] uses the appearance of an entity to

learn the highlight informative regions. Xu et al. [36] im-

plements knowledge graphs for modeling the dependencies

of the verbs and objects. Compared with referring relation-

ships, HOI only has one subject class, while both subjects

and objects in referring relationships tasks can be human or

objects. Also, compared with HOI, relationships described

in referring relationships are much more varied.

Phrase Grounding and Referring Expression: Phrase

grounding and referring expression apply the visual and lan-

guage modalities to solve the problem of localizing entities

for specific queries [2, 3, 4, 9, 14, 16, 18, 24, 28, 31, 32,

35, 41]. SSAS [16] uses attention maps for localization.

However, due to the low resolution of the generated atten-

tion map (14 × 14), the inferred bounding boxes are less

accurate. Chen et al. [4] introduces the regression mech-

anism and reinforcement learning techniques to improve

the grounding performance. MAttNet [41] uses modular

components including subject, location and relationships, to

adaptively process the expression contents. Compositional

Modular Network [13] decomposes the task into modular

networks handling language parsing, localization and pair-

wise relationships. Compared with phrase grounding and

referring expression, the referring relationships task focuses

on finding the correct entities based on the relationship,

where strong hints such as location do not exist.

3. Method

Our goal is to infer the location of the queried subject

and object when given an image I and a relationship query

q=<S, P, O>, where S, P and O represent the categories

of the subject, predicate and object. In this section, we will

first formulate the problem and then introduce the category-

based proposal generating and predicate analysis module re-

spectively, followed by the implementation details.

3.1. Problem Formulation

We take an image, I , and a triplet query q=<S, P, O>

as the input of the network with parameter θM . To obtain



Figure 2. The framework of CPARR. The category-based proposal generating module tackles the case when the input query only indicates

one entity, i.e., the subject or the object entity with its phrase embedding result. The predicate analysis module considers the whole

relationship phrase and disambiguates subjects and objects proposed by the category-based proposal generating module in this relationship.

the location of the subject, ys, and object, yo, conditioned

on the given query q respectively, we express this inference

task as a probabilistic problem which is shown as follows:

P (ys, yo|〈S, P,O〉) = argmax
ys,yo,ΘM

P (ys|〈S〉) · P (yo|〈O〉)·

P (P |(ys, yo))
(1)

3.2. CPARR

Our method solves the localization precision challenge

in two main steps: first, it finds related candidates for sub-

jects and objects by selecting them independently using

their descriptions in the query and then pick out pairs that

best satisfy the given predicate. Fig. 2 provides an overview

of our proposed framework. Object proposals and their fea-

tures are generated from an image and then passed to two

category-based proposal generating modules, one for the

subject and one for the object. These two modules have an

identical architecture but do not share weights. After pro-

posals are ranked, the predicate analysis module takes pairs

from the top-ranking outputs of the two category-based pro-

posal generating modules and evaluates them for consis-

tency with the given predicate which results in the selection

of subject and object entities and their locations. In this sub-

section, we first introduce the category-based proposal and

predicate analysis and then describe how these two separate

parts are combined to make the final inference.

3.2.1 Category-based Proposals

To generate category-based proposals, an entity is localized

by a bounding box with a noun phrase from the query re-

gardless of its relationship with other entities. We use two

independent category-based proposal generating modules

Msub and Mobj to regress and predict probability scores for

subject and object entities respectively.

We extract a set of N candidate proposals {Bi}
N
i=1

from the image I by using a Region Proposal Network

[30] as initial bounding boxes and extract feature vec-

tors {fi}
N
i=1

corresponding to each region. We rep-

resent the 5-dimension spatial feature of Bi, which is

[xmin

wI

, ymin

hI

, xmax

wI

, ymax

hI

,
AreaBi

AreaI

], as si. The full represen-

tation of a proposal, vi, is the concatenation of visual fea-

ture fi and spatial feature si. The input of the network to

generate category-based proposals is the concatenation of

visual features and phrase embedding vectors of the pro-

posals. The network first transforms the visual feature fi

and the embedding vector of the subject or object phrase,

ep into a multimodal space following

mi = φ(Wm(vi||ep) + bm) (2)

where the multimodal feature mi ∈ R
128 aims to align

the visual appearance and the semantics so that the pre-

dicted probabilities are conditioned on both the proposal’s

visual appearance and the subject/object category. Wm ∈
R

di×128 is the projection weight and bm ∈ R
128 is the bias.

|| represents the concatenation operator and φ(.) is the non-

linear activation function. After a multi-layer perceptron

layer network, Msub and Mobj give the multimodal embed-

ding of each candidate, mi, a confidence score ci and pro-

vide regression offsets ti to refine the initial bounding box.

The calculation of 4D regression parameters ti is defined

as [(x−xa)/wa, (y−ya)/ha, log(w/wa), log(h/ha)], fol-

lowing [30], where x and xa are for the predicted box and

anchor box respectively.

Msub and Mobj have two objective functions, 1) Lcls for

predicting the confidence of Bi being the phrase embed-

ding of the queried entity ep and 2) Lreg showed in Eq. 3

for regression offsets that adjust the initial boundaries of Bi

conditioned on the input query. We assume there can be

more than one candidate overlapping with the groundtruth

with an Intersection Over Union (IoU) larger than a thresh-

old τ and consider all these candidates to be positive. The

loss of classification objective function is measured by the

sigmoid cross-entropy loss. The regression offsets calculate

L1-smoothness regression loss between the positive candi-



dates t
p
i ∈ R

4 and the groundtruth t
q
i ∈ R

4, where f(.) is

the smooth L1 loss function. N is the number of positive

candidates i∗ after regression offsets.

Lreg (t
p
i , t

q
i ) =

1

4N

N∑

i=1

3∑

j=0

f (|tpi [j]− t
q
i [j]|) (3)

We rank the candidates by confidence ci to perform off-

set regression on the best proposals and feed the top-Ksub

and top-Kobj proposals to the next module.

3.2.2 Predicate Analysis

The category-based proposals are to localize entities across

different categories, while the disambiguation of subject

and object entities depends on inter-object relationships, in

particular, the predicate connecting a subject and an object.

The predicate analysis module selects subject and object en-

tities that participate in the same relationship query by eval-

uating the predicate category between a pair of proposals.

Following the category-based proposal generation, the

input to the predicate analysis module is a pair of propos-

als, Bi and Bj . The module Mpred(Bi, Bj) outputs pred-

icate confidence scores of {Bi, Bj} under P + 1 predicate

categories, with P being the total number of predicate cat-

egories plus one for the background class where the pair

does not have any of the enumerated relationships. The net-

work first concatenates visual features of Bi and Bj , then

compresses the dimension by a convolutional neural net-

work, and finally outputs a score for verification. We take

the score corresponding to the predicate type in q = <S,

P, O> as the probability of Prob(P |Bi, Bj), representing

Bi and Bj forming the queried relationship P .

To recognize the relationship between two regions of the

image, their appearance similarity, spatial connection, in-

teraction with other regions all contribute to the recogni-

tion results. Therefore, there is a demand for effective pro-

posal feature interaction to comprehensively exploit use-

ful appearance, spatial and semantic interaction between

the proposal pairs. In our method, instead of using one-

dimensional feature vectors, we concatenate two W ×H ×
D spatial feature maps that come from ROI pooling [30]

depth-wise to form a W × H × (D × 2) dimension in-

put tensor. The consideration is that the multi-dimensional

feature maps incorporate spatial information and contextual

visual features. The subject candidate Bi and object can-

didate Bj , which form the pair {Bi, Bj}, come from Msub

and Mobj respectively. When constructing pairs, we take

Ksub subject proposal candidates and Kobj object proposal

candidates, forming Ksub ×Kobj pairs for each query q.

The correct classification should only identify pairs with

the positive subject and object candidate pairs as the known

<predicate> category. The role of this module, clas-

sifying the presence of a predicate, requires constructing a

training set with positive examples and two types of nega-

tive examples: i) Bi or Bj is not a correct proposal for the

subject or object entity, and ii) Bi and Bj do not form any

relationships in the P given categories.

3.2.3 Combined Inference

The model combines probabilities from the category-based

proposals and predicate analysis for final inference follow-

ing Eq. 1, and the candidate object and subject proposals

for one query are selected as the ones which yield the high-

est probability. With the final Ksub ×Kobj predicate clas-

sification scores, we select candidates with high weighted

confidence on the category-based proposals and predicate

verification as correct prediction. Note that if the predicate

confidence is under a threshold τpred, we set the weight of

predicate confidence as 0 and solely use the category-based

proposal score, because its predicate confidence could be

low due to the inaccurate pairing candidates, which result

in errors accumulated by the category-based proposals.

3.3. Implementation Details

In this subsection, we present the implementation details

of our method. We first introduce how the proposals and

features for the two stages are generated, then show our net-

work structure for category-based proposal generation and

predicate analysis modules separately, and finally, we show

our detailed information on training and testing.

Proposal Generation: We use a pretrained RPN [30] to

generate initial candidate proposals. The RPN is initialized

with the VGG16 [33] pre-trained on ImageNet [8] and then

trained on the datasets in the experiments. We set Non-

Maximum Suppression (NMS) in RPN as 0.6 and generate

N = 300 proposals for each image after RPN to feed it into

the category-based proposal generating network.

Visual Features Extraction: After the proposals are

generated, we use a ResNet-50 [12] pre-trained on Ima-

geNet [8] followed by an average pooling layer [6] to extract

proposal features from bounding boxes. In the category-

based proposal generation, proposal features are feature

vectors from an average pooling layer. In the predicate anal-

ysis module, the feature maps from the ROI pooling layer

are directly used as the input of visual features.

Phrase Embedding Generation: For the subject and

object phrases, we use the GloVe embedding algorithm [26]

to map a phrase to the 300-dim phrase embedding vector,

which is then concatenated with the visual feature before

sent for category-based proposals selecting.

Network Architecture: The category-based proposal

generating network is a five-layer Multi-Layer Perceptron

(MLP), where the first layer maps the concatenated visual



and textual feature into a 128-D multimodal vector, fol-

lowed by three 128-dim hidden layers and finally projects

the vector to the 5-D output ci||ti. The predicate analysis

module consists of 3 convolution layers with 3 × 3 kernels

and one convolutional layer with 1× 1 kernels. All nonlin-

ear layers use ReLU activations.

Training and Testing: During training, We first train the

RPN, then the two category-based proposal generating net-

works and finally the predicate analysis module. The out-

puts from the previous stages are used to train the next stage.

We use the Adam optimizer [15] with an initial learning rate

of 0.0001. The maximum iteration is set to be 20000 on

the category-based proposal generating module and 10000

on the predicate analysis module. We adopt a multi-label

training scheme in the category-based proposal generating

module, so there could be multiple possible targets for clas-

sification. τpred is set to be 0.5. Ksub and Kobj are both set

to be 5. For the predicate analysis module, the numbers of

positive and negative examples are kept to be the same. We

select positive and negative boxes from category-based pro-

posals and train them with the Sigmoid cross-entropy loss.

The predicate classification target of positive pairs {Bi, Bj}
is the predicate <P>, while target labels for negative pairs

is the background predicate type P +1. For testing, we first

apply an NMS on all proposals and then select the subject

and object candidates with top-K confidence, where K is

also set to be 5 empirically. The rate used for NMS is 0.5

in our experiments. The top K confident subject and object

proposals are selected as candidates for predicate analysis.

4. Experiments

In this section, we provide results on benchmark datasets

to show the performance of our model. For quantitative

results, we compare with the four existing state-of-the-art

methods on IoU score and recalls respectively. For qualita-

tive results, we show some visualization results for subjects

and objects entities with CPARR on the public datasets.

4.1. Datasets

We evaluate our results on two popular visual relation-

ship detection datasets with real scenes: VRD dataset [25]

and Visual Genome [17].

VRD Dataset [25]: The VRD dataset consists of 100

object types, 70 predicate types and 5000 images. In all, it

contains 37,993 relationship annotations with 6,672 unique

relationship types and 24.25 relations per entity category.

60.3% of these relationships refer to ambiguous entities.

Predicates are mainly from spatial, preposition, compara-

tive, action, and verb types. We use the same dataset splits

as in SSAS [16] which consist of 4000 training samples and

1000 testing samples.

Visual Genome [17]: Visual Genome is a dataset com-

monly used in scene graph generation and referring rela-

tionships evaluations. Following [16], we develop our re-

sults on version 1.4, which focuses on the top-100 frequent

object categories and top-70 frequent predicate categories.

We adopt the same subset of Visual Genome as used in

SSAS [16], with 8560 images for the test set, 77257 images

for the training and validation set.

4.2. Evaluation Metrics

For appropriate comparison with baseline methods, we

first evaluate our results on the Mean IoU score. To compare

with methods generating attention maps, we compute the

IoU of heatmap and groundtruth following SSAS [16]

IoU(Att,GT ) =

∑
(I(Atti > τ) ∩GTi)∑
(I(Atti > τ) ∪GTi)

where Atti and GTi denote the prediction and

groundtruth for the ith cell in the heatmap. I converts pre-

diction with IoU above the threshold τ as activated cells. To

convert bounding boxes into heatmap masks, we first trans-

formed the scale of bounding box coordinates down to the

L×L heatmap size. The binary masks are obtained by set-

ting regions within the bounding box as 1 and the outside as

0. To properly compare with previous methods [16, 25], L

is set as 14. Note that our output bounding box is based on

the original image size, we down-sample it to L × L for a

fair comparison with SSAS [16].

To assess the precision of bounding boxes, we also eval-

uate the referring relationships using object detection met-

rics. In Visual Genome and VRD datasets, objects and rela-

tionship queries are not labeled exhaustively. Therefore we

adopt Recall of bounding boxes as a metric for localization

evaluation. We directly apply the original results from VRD

[25] for bounding boxes generation and directly use the

code provided by SSAS [16] to transform the heatmap into

bounding boxes by first rescaling the heatmap to its origi-

nal input image size, 224× 224 and obtaining the bounding

boxes by thresholding activations over τ .

4.3. Baselines

We compare our method with four different baseline

methods: CO [9], SS [18], VRD [13, 25] and SSAS [16].

SSAS [16] is the present state-of-the-art method in referring

relationships by using the attention map to iterate until the

result converges, while SS [18] does not iterate. VRD [25]

is the state-of-the-art method on the visual relationship de-

tection problem by maximizing the similarity based on the

embeddings for entities, which is the same as CO [9], and

finding extra relationship embeddings for classification.

4.4. Discussion

We compare our method with VRD [25] and SSAS [16],

and highlight the differences and advantages of our method.



VRD Dataset Visual Genome

Method Subject Object Subject Object

CO [9] 0.347 0.389 0.414 0.490

SS [18] 0.320 0.371 0.399 0.469

VRD [25] 0.345 0.387 0.471 0.480

SSAS [16] 0.369 0.410 0.421 0.482

CPARR 0.482 0.510 0.469 0.517

Table 1. Mean IoU results on VRD dataset and Visual Genome

dataset for subject and object entities.

Differences with VRD [25]: VRD finds all triplet re-

lationships in one image. It uses all proposal candidates

from the detector and ranks all possible combinations in

the image with their confidence. Due to a large number

of possibilities, only a certain number of top-scoring rela-

tionships are retained according to the evaluation. When

applied to referring relationships, it is possible that queried

relationships may not appear in the set of preserved rela-

tionships. In our method, the predicate analysis module in-

teracts with the information only with the selected top-K

candidates generated by the category-based proposal gener-

ation, which greatly reduces the complexity for the predi-

cate analysis module by avoiding analysis on the likely ir-

relevant candidate proposals.

Differences with SSAS: SSAS generates iterative atten-

tion maps to solve the problem of the referring relation-

ships. It takes the whole image into consideration with high

complexity, resulting in the final attention map to be low

resolution. We decouple the task into two steps by generat-

ing category-based proposals first followed by relationship

analysis to distinguish among a small set of the candidate.

This both reduces the complexity and preserves the original

resolution of the image.

4.5. Method Variations

To evaluate the contributions of modules of CPARR, we

define three variations: CPARR, CPARR-cp and CPARR-

pa. CPARR is the complete system. CPARR-cp finds the

result with the highest score obtained with the category-

based proposals applied to subject and object entities in-

dependently; CPARR-pa finds the pair producing the high-

est predicate classification score for prediction, where the

pairs are composed of top-scoring subject and object en-

tities. Different from CPARR-pa, CPARR multiplies the

predicate classification scores with the probabilities of the

subject and object entities, while CPARR-pa only applies

the predicate scores for final confidence prediction.

4.6. Quantitative Results

We first compare CPARR with the baseline methods for

IoU score, which is commonly used in referring relation-

ships, and then compare CPARR with the state-of-the-art

subject object

Method r@1 r@5 r@50 r@1 r@5 r@50

SSAS [16] 0.215 - - 0.242 - -

VRD [25] 0.315 0.388 0.391 0.349 0.403 0.404

CPARR-cp 0.450 0.663 0.864 0.496 0.666 0.842

CPARR-pa 0.384 0.586 0.864 0.401 0.609 0.842

CPARR 0.498 0.694 0.864 0.524 0.702 0.842

Table 2. Recall on the VRD dataset. The results of subject and

object localization are evaluated separately. CPARR-cp shows re-

sults of category-based proposal generating modules, where predi-

cate is not involved. CPARR-pa shows localization with predicate

classification scores. CPARR is the final result which combines

CPARR-cp and CPARR-pa.

subject object

Method r@1 r@5 r@50 r@1 r@5 r@50

SSAS [16] 0.230 - - 0.291 - -

CPARR-cp 0.355 0.512 0.716 0.445 0.596 0.776

CPARR-pa 0.300 0.472 0.716 0.378 0.553 0.776

CPARR 0.375 0.527 0.716 0.464 0.613 0.776

Table 3. Subject and Object Recall on the Visual Genome dataset.

methods on the recall metric since it can better reflect how

good the methods are in finding correct subject and object

entities. Lastly, we compare the performance of using top-K

proposals and groundtruth, and show the result for finding

the best proposal feature interaction.

Mean IoU Score For proper comparison with the ex-

isting baseline methods, we first show our mean IoU re-

sult on the Visual Relationship Detection dataset and Vi-

sual Genome dataset in Table 1. Among the four baseline

methods, the two existing state-of-the-art methods, VRD

and SSAS, outperform the other two baseline methods, CO

and SS. On the VRD dataset, CPARR shows significant im-

provements over the other four baseline methods for both

the subject and object localizations, and for Visual Genome

dataset, it has nearly the same accuracy on subjects and

much better IoU result on objects.

Recall Based on the IoU results, we select VRD and

SSAS for object detection evaluation baselines method us-

ing the metric recall. We get corresponding bounding boxes

using the additional code1 provided by the authors for ap-

plying the bounding boxes for SSAS directly. Recall at top

5 and top 50 is not applicable since only one bounding box

for subject and object can be obtained from the heatmap.

Results for VRD2 are based on the detection results pro-

vided by the authors [25]. Table 2 and 3 show our results

for the recall on two datasets respectively. Numbers in the

table show recall of subject and object entities that have

1https://github.com/StanfordVL/

ReferringRelationships/blob/master/utils/

visualization_utils.py
2https://github.com/Prof-Lu-Cewu/

Visual-Relationship-Detection/blob/master/results



localization <person, in front of, box> <helmet, on, motorcycle> <person, ride, horse> <bench, beneath, person>

subject

object

localization <cup, beside, person> <person, fly, kite> <roof, cover, bench> <person, wear, hat>

subject

object

Figure 3. Examples of CPARR results on VRD and Visual Genome dataset. The top rows are from VRD and the bottom ones are from

Visual Genome. We visualize the groundtruth bounding box in blue and CPARR top-1 prediction in green. The captions above images are

the <subject, predicate, object> triplet query. The top rows are localization results on subject. The bottom rows present

object localization.

IoU with groundtruth of larger than 0.5 at three different

ranks. Our method has superior performance over the two

other baseline methods. Results also show that best results

are obtained by combining detection and predicate scores

(i.e. by CPARR). Note that VRD outperforming SSAS may

be due to the inaccurate proposal results on the attention

map with low resolution for SSAS. Better result compar-

ing CPARR-cp with VRD may due to the category-based

proposals being powerful enough to reduce the ambiguity

compared with using all proposals. This is also reflected in

the result that CPARR-pa is not better than CPARR-cp, in-

dicating that the prediction probabilities of the subject and

object entities also play a significant role in the predicate

analysis between subject and object pairs.

Top-K Proposals Analysis: For further analysis of the

performance of using top-K proposals for predicate analy-

sis, we compare these results with those using groundtruth

proposals in Table 4. The predicate analysis module using

GT proposals takes groundtruth subject and object locations

as input, which demonstrates the performance of predicate



Method r@1 r@5

GT proposals 0.7889 0.9609

Top-K proposals 0.7365 0.9168

Table 4. Evaluation of predicate analysis on the VRD dataset using

groundtruth proposals and top-K proposals.

analysis without the limitation of subject and object local-

ization. The predicate analysis module using top-K pro-

posals takes top-K proposals generated from the previous

stage for training the classifier. K is set to be 5 in the ex-

periment to show the final recall of predicate on the VRD

dataset. The number of predicate categories is 70. Re-

sults show that when training the predicate analysis module

on Top-K proposals, the result is comparable to the model

trained on groundtruth bounding boxes. When K is set to

5, the overall recall is comparably acceptable to provide the

candidates including the correct proposals for training the

predicate analysis. Instead of using all proposals, relation-

ships generated from Top-K proposals can greatly reduce

the complexity while still being sufficient to train a good

predicate analysis model.

Proposal Feature Interaction: We compare different

ways of proposal feature interaction and analyze their in-

fluence for predicate analysis and referring relationships on

the VRD dataset in Table 5. In the table, Vis Map represents

the ROI pooling feature, <S,O> represents phrase embed-

ding ep of subject and object categories, Vec represents the

visual feature vector fi of the proposal, and Spatial repre-

sents the 5D spatial feature si of the proposal. The four

rows in the table represent predicate analysis module in-

put settings as follows: 1) ROI-pooling feature as feature

maps, 2) the concatenation of feature vectors, 5D location

vector(spatial feature), and phrase embedding feature <S,

O>, 3) a variant of case 2 but without phrase embedding

features and 4) variant of case 2 but without spatial features

as input. We evaluate both the predicate classification ac-

curacy and the recall result on object entities on the VRD

dataset for CPARR-pa to show how it performs with differ-

ent combinations of visual and location features. From the

results in Table 5, we make the following observations:

1) For predicate verification, the ROI pooling feature

maps, which preserve the multiple channel feature as

well as its location, have the best performance over

feature vectors representation and its variants.

2) In all variants of feature vector-based pair representa-

tion, the concatenation with textual input of <S, O>

and bounding box spatial information serve as effec-

tive hints for entity inference.

3) Predicate classification score is higher with phrase em-

bedding and spatial relation features, showing that spa-

predicate CPARR-pa

Feature Input r@1 r@1 r@5

Vis Map 0.7365 0.4012 0.6091

Vec + Spatial + <S,O> 0.6680 0.3862 0.5918

Vec + Spatial 0.6854 0.3335 0.5532

Vec + <S,O> 0.6489 0.3742 0.6024

Table 5. Recall of proposal visual and semantic feature combi-

nation on predicate classification for object entities on the VRD

dataset. In PARR-pa, the r@50 results for all variants are 0.8642.

tial information and prior knowledge on subject and

object combinations can provide useful content for

predicting the predicate.

4.7. Qualitative Results

Besides quantitative comparison with existing baseline

methods, we also visualize some examples from the VRD

and visual genome datasets in Fig. 3, where the detection re-

sults for subject and object entities are given separately. To

focus on one example, in the <person, wear, hat>

query, there are multiple “person” entities given the query.

In CPARR-cp, the top-5 “hat” proposals result from all dis-

tribute around the hat on top of the second man to the right,

giving strong hints to the person proposal which enclose the

hat proposal at the top portion of the box, and correct the er-

ror of using the man left to the groundtruth as the result of

“person”, which actually has a higher score in CPARR-cp.

5. Conclusion

We introduce a proposal-based method with a category-

based proposal generating module to pick out related candi-

dates for subjects and objects separately to reduce the con-

fusion and complexity of predicate prediction, and a pred-

icate analysis module to further disambiguate subject and

object entities to decide whether a subject-object pair be-

longs to a known predicate category. Our method has sig-

nificantly higher accuracy than previous methods on mul-

tiple evaluation metrics on public datasets with real scenes

for referring relationships.
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