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Abstract

Active speaker detection refers to the task of inferring

which (if any) of the visible people in a video is/are speak-

ing. Existing methods based on audiovisual fusion are often

confused by factors such as non-speaking facial motions,

varied illumination, and low-resolution recording. To ad-

dress these problems, we propose a robust active speaker

detection model by incorporating the dense optical flow to

strengthen the visual representation of the facial motion.

These audio and visual features are processed by a two-

stream embedding network, and the embeddings are fed into

a prediction network for the binary speaking/non-speaking

classification. To improve the learning efficiency of the en-

tire network, we design a multi-task learning strategy to

train the network. The proposed method is evaluated on the

most challenging audiovisual speaker detection benchmark,

the AVA-ActiveSpeaker dataset. The results demonstrate

that optical flow can improve the performance of neural net-

works when combined with raw pixels and audio signal. It

is also shown that our method consistently outperforms the

state-of-the-art method [22] in terms of both the area under

the receiver operating characteristic curve (+4.4%) and the

balanced accuracy (+5.28%).

1. Introduction

Active speaker detection has received significant atten-

tion in speech-based interactive applications [24, 5, 2, 13].

Although these methods have achieved high precision for a

clear frontal face, two key factors may impact the detection

performance in real-world applications: First, these meth-

ods assume that the visible face landmarks (e.g., lip con-

tour) are available, but the more complex situations (e.g.,

non-speaking facial motions, varied illumination, and low-

resolution recording) may result in the failure of detect-

ing the landmarks. Second, if the labels (speaking/non-

speaking) of a certain identity are imbalanced, the model

tends to learn the connection between the label and the per-

son identity. Therefore, we aim to incorporate more robust

Figure 1. The gray-scale face image and the visualization of dense

optical flow. We color the optical flow per pixel based on its mag-

nitude and direction. A) The non-speaking face appears to have a

consistent motion pattern on the entire face region. B) The speak-

ing face has an obviously different motion pattern on the mouth

region from other regions. C) and D) The face with different illu-

minations generates the same optical flow.

features to address the above problems.

The visual perception theory [11] demonstrates that the

human visual cortex contains two pathways: the ventral

stream (which performs object recognition) and the dor-

sal stream (which recognizes motion), but existing active

speaker detection methods mainly learn the visual embed-

ding only from a stream of raw images. Therefore, we aim

to advance the representative ability of the visual embed-

ding by incorporating a motion stream.

Optical flow [17, 10] is an efficient representation of vi-

sual motion because it can measure the spatiotemporal vari-

ations between two subsequent images. The dense optical

flow [10] describes the motion vectors of all pixels of the

image. As Fig. 1 shows, the dense optical flow has sev-

eral advantages over gray-scale images: 1) the dense opti-

cal flow illustrates the unique motion pattern (i.e., open or

closed) of the speaking mouth; 2) the dense optical flow

can capture the subtle motion of the textureless facial skin

(e.g., cheek); 3) the face generates consistent optical flow

under different illuminations; and 4) the optical flow re-

moves the identity-related visual details, and it can avoid

the network mislearning the correlation between the iden-

tity and the speaking label.

In this work, we propose an end-to-end active speaker

detection system (see Fig. 3) by fusing raw face images,



dense optical flow and audio signal. To this end, we ap-

ply a two-stream network architecture to process the au-

dio and visual inputs separately. In particular, we design

two visual embedding strategies to fuse the optical flow and

the raw face images. The visual and audio embeddings

are concatenated and fed into a prediction network for bi-

nary speaking/non-speaking classification. To improve the

learning efficiency of each network, we design a multi-task

learning strategy with a combination of the overall classifi-

cation loss, the intermediate classification loss from visual

embedding networks, and the contrastive loss between vi-

sual and audio embeddings. The experimental results on the

AVA-ActiveSpeaker dataset demonstrate that our proposed

method achieves higher accuracy than the state-of-the-art

method [22].

We introduce the proposed method in Sec. II. We present

the experimental results in Sec. III. Finally, we give the

conclusion and future work in Sec. IV.

2. Related Work

Active speaker detection based on vision: There is a

large family of work on the active speaker detection prob-

lem. When audio information is unavailable, methods such

as [13, 9, 4] rely on visual information from the face, lip

and upper body. Everingham et al. [9] assumed the motion

in the lip area implies speech, and the motion of facial land-

marks along the video was used to determine the speaker.

However, this method will suffer other face/mouth motions,

such as eating and yawning. Besides lip motion, the move-

ments of the head, upper body and hands of active speak-

ers are important cues. Punarjay et al. [4] used the dense

trajectory within upper bodies to detect the active speaker.

Although this method achieves nearly perfect accuracy for

clear frontal faces, it is at risk of failing to generalize to

more complex situations, such as low resolution.

Active speaker detection based on audiovisual fusion:

Compared to visual-only methods, the audio information

provides an important clue for speaker identification, as

speech rhythm and word pronunciation are closely related

to facial motion and mouth shape. Chung et al. [5]

learned the visual/audio embedding features by minimizing

audio-video synchronization error, and predicted the active

speaker by thresholding the distance between visual and au-

dio embedded features. Joseph et al. [22] proposed an end-

to-end multimodal active speaker detection framework with

a two-stream convolution network for audiovisual feature

extraction followed by a recurrent neural network for clas-

sification. However, given a stack of raw images as visual

input, it is not intuitive for the network to learn the subtle

differences between neighboring frames.

Application of optical flow in speech processing: The

effectiveness of the optical flow has been investigated in

many speech-related tasks. Mase et al. [19] discovered

that the velocity of lip motions can be measured from opti-

cal flow data, which allows muscle action to be estimated.

Pauses in muscle action result in zero velocity of the flow

and are used to locate word boundaries. The pattern of mus-

cle action is used to recognize the spoken words. Aubrey et

al. [3] proposed a new method of voice activity detection

using solely optical flow in the form of a speaker’s mouth

region. Wollmer et al. [26] combines the deep neural net-

work and optical flow to model continuous emotions in an

audiovisual affect recognition framework. However, these

methods assume that the each subject has a clear front face

and the subject’s lips are clearly visible. If the face suffers

from low resolution and occlusion, it is not feasible to de-

tect the contour of the lip, which poses great challenges for

the feature extraction and classifier design.

3. Proposed Method

3.1. Problem Definition

We aim at a learner ṗ = fθ(İ , ȯ, ȧ) to determine the ac-

tive speaker, where θ is a set of model parameters. İ , ȯ and

ȧ represents the image sequence, optical flow sequence and

audio feature, respectively. Let ẏ denote the binary labels

(speaking/non-speaking) of image sequences; the problem

is defined as the minimization of the binary classification

error, which can be written as the cross-entropy loss:

Loss = −ẏlog(fθ(İ , ȯ, ȧ)). (1)

In practice, we sample the video feature (face images and

optical flow) with 20 fps and the audio feature with 100 fps.

3.2. Feature Representation

In this subsection, we introduce the feature representa-

tion of the audio signal, face images and optical flow.

Audio signal: The audio signal at 16 kHz is converted

with a 25 ms FFT window to 64 mel-frequency bands,

each of which is a representation of the short-term power

spectrum of a sound on a non-linear mel scale of fre-

quency. Each audio feature contains 48 frames of the mel-

spectrogram.

Face images: We crop the grayscale image within the

face bounding box as the feature. We utilize the entire face

image instead of the mouth region because occlusion and

low-resolution recording will affect the mouth detection.

Optical flow: We apply dense optical flow to extract

the subtle motion of the face (see Fig. 2). We choose

Gunner-Farnebacks algorithm [10] to calculate the dense

optical flow for its efficient computation. The Gunner-

Farnebacks algorithm [10] estimates the motion between

two consecutive frames based on polynomial expansion.

Firstly, each neighborhood of both frames is approximated

by quadratic polynomials. Afterwards, considering these

quadratic polynomials, a new signal is constructed by a



Figure 2. The facial optical flow extraction.

global displacement. Finally, this global displacement is

calculated by equating the coefficients in the quadratic poly-

nomials’ yields.

Compared with the sparse optical flow (e.g, the Lucas-

Kanade method [17]), the dense optical flow in the method

[10] can extract the motion pattern of each pixel, even if the

pixel lies on the smooth skin region. To capture more ob-

vious displacement, we calculate the dense optical flow be-

tween the fifth previous frame and the current frame. Then

we crop the dense optical flow with the face bounding box

of the current image as the optical flow feature.

3.3. Network Architecture and Training

In this subsection, we describe the proposed network ar-

chitecture and loss function for training.

3.3.1 Network architecture

A desired learning model should effectively fuse spatial and

temporal information from multiple inputs. To this end, we

follow an early fusion strategy to design our model, includ-

ing a visual embedding network, an audio embedding net-

work and a prediction network, as shown in Fig. 3 (a).

We design our model based on an early fusion strategy

(i.e., combining audio and visual embeddings before pre-

diction). We will introduce the network architecture (see

Fig. 3) in terms of visual embedding network, audio em-

bedding network and prediction network.

Visual Embedding Network: The input format to the

visual network is a stack of 10 grayscale face images

(i.e., [It−9, It−8, ..., It]) and 5 dense optical flows (i.e.,

[ot−9,t−4, ot−8,t−3, ..., ot−5,t]), where ot−5,t refers to the

optical flow from It−5 to It. The face images and dense

optical flows are resized by 128×128 (pixels). We design

the following two methods to fuse the face image and opti-

cal flow streams.

Visual-Coupled Embedding: There is coupled spatial in-

formation between the facial appearance and the motion

pattern. For example, the dense optical flow on the lip re-

gion has the ‘up-and-down’ pattern. As Fig. 3 (b) shows, we

stack the face images and dense optical flow together as an

Table 1. Layer parameters of visual-coupled embedding network.

Input size: width × height × depth. Filter shape: filter width

× filter height × input channels × output channels. Conv: con-

volutional layer, Conv dw: depth-wise convolutional layer, GAP:

global average pooling.

Type/Stride Filter Shape Input Size

Conv / s2 3x3x20x32 128x128x20

Conv dw / s1 3x3x32 64x64x32

Conv / s1 1x1x32x64 64x64x32

Conv dw / s2 3x3x64 64x64x64

Conv / s1 1x1x64x64 32x32x64

Conv dw / s1 3x3x64 32x32x64

Conv / s1 1x1x64x64 32x32x64

Conv dw / s2 3x3x64 32x32x64

Conv / s1 1x1x64x64 16x16x64

Conv dw / s1 3x3x64 16x16x64

Conv / s1 1x1x64x128 16x16x128

Conv dw / s2 3x3x128 16x16x128

Conv / s1 1x1x128x128 8x8x128

GAP N/A 8x8x128

input (i.e., the input dimension is 128×128×(10 + 5 × 2).
Given this input, we extract a 128-d visual embedding by

using a modified MobileNet model [14]. In particular, we

replace the last fully-connected layer in the original Mo-

bileNet with a global average pooling (GAP) layer [16] for

visualizing the class activation map (detailed in Sec.4.4.5).

Independent Embedding: An alternative embedding

method is to use two independent networks to process the

face images and dense optical flow separately (see Fig. 3

(c)). The face and optical flow embeddings are concate-

nated as the visual embedding. Due to the limited avail-

ability of large amounts of annotated image data in the past,

this two-stream architecture has been widely used in action

recognition with pre-trained models such as FaceNet [23]

and FlowNet [8].

In this work, each stream of independent embedding net-

works is implemented with the same network configuration

(with different input sizes) as the visual-coupled embed-

ding network. To fairly compare both visual embedding

networks, we do not introduce any additional datasets to

pre-train the model.

Audio Embedding Network: The input format is a se-

quence of mel-spectrogram bands (64×48×1), which is

computed over the preceding 0.48 seconds of audio. We

apply the audio embedding network in the method [22] to

generate a 128-dim audio embedding.

Prediction Network: For each 10-frame clip, we con-

catenate both the visual and audio embeddings to form a

composite feature as the input of the prediction network.

We design the prediction network based on a sequence-

to-sequence (seq2seq) model [25], including an encoder

and a decoder. The encoder and decoder are based on a long

short-term memory (LSTM) [12] network with 512 units,

while the decoder is followed by a 2-dim fully connected



Figure 3. (a) The end-to-end active speaker detection framework. Two architectures of visual embedding network: (b) the visual-coupled

embedding and (c) the independent embedding.

layer and a softmax layer. The decoder produces a sequence

of prediction probability after receiving the state vector of

the encoder conditioned on M inputs (we set M as 50 in

this work). Each probability of the prediction sequence is

calculated from an overlapping sliding window with a 10-

frame length and 1-frame stride.

3.3.2 Loss Function

Considering that our model consists of two embedding net-

works and a prediction network, we use multi-task learning

to improve the learning efficiency of each network. The loss

function is designed from three aspects:

1) To minimize the prediction error, we define a cross-

entropy loss between the predictions and labels:

Lf = −ẏlog(ṗ) + λ‖w‖
2
, (2)

where the regularization hyperparameter λ is set as 0.01.

2) To improve the visual embedding (ev), we minimize

the visual-based classification error as follows:

Lv = −ẏlog(h(ev(İ , ȯ))), (3)

where h is 2-dim fully-connected layer followed by a soft-

max layer to convert to probability.

3) To learn the audiovisual synchronization, we use the

contrastive loss to minimize the distance between synchro-

nized visual and audio embeddings, and maximize the dis-

tance for the non-synchronized pair.

Lc = (1− ẏ)
1

2
‖ev(İ , ȯ)− ea(ȧ)‖

2

+ ẏ
1

2
max(0, D − ‖ev(İ , ȯ)− ea(ȧ)‖)

2

,

(4)

where ev and ea refers the visual embedding and audio em-

bedding, respectively. The margin D is set as 1.0.

Based on the above discussion, the overall loss function

can be written as follows:

Figure 4. The Example of the AVA Active Speaker detection

dataset. Left: The video, audio (waveform visualized below the

frame) and bounding boxes of each face. Right: Each face over the

frames is annotated with whether or not it is speaking (S: speaking;

N: non-speaking).

L = Lf + αLv + βLc, (5)

where both α and β are set as 0.4.

4. Experiments

In this section, we describe the dataset and the imple-

mentation details, followed by the experimental results.

4.1. Dataset

The AVA Active Speaker detection dataset (AVA-

ActiveSpeaker) was used to evaluate our method. The

dataset contains temporally labeled face tracks in video,

where each face instance is labeled as speaking or not.

Compared with other datasets (e.g., Columbia [4] and

VoxCeleb [20]), the AVA-ActiveSpeaker dataset has much

more labeled data, including 3.65 million face frames (38.5

hours), including 113 training videos (28,108 face tracks)

and 32 testing videos (7,900 face tracks). In addition, the

AVA-ActiveSpeaker dataset is very challenging due to low

resolution (e.g., people in the distance) or occlusion (e.g.,

profile faces). 44.6% labeled faces have a size that is



smaller than 100 pixels wide, and 48.2% of the face mouth

region cannot be detected by the state-of-the-art face land-

mark detection library Dlib [1].

4.2. Implementation Details

All the models in the experiments were trained under the

same conditions. We cropped the labeled tracks using a 3-

second (60-frame) sliding window with 1-second overlap.

For tracks less than 3 seconds, we included them entirely.

Our implementation was based on the tensorflow1.13

toolbox and the model training was executed on a NVIDIA

GT 1080 with 12 GB memory. The network was trained

with batch normalization [15]. We utilized Adamax [6] to

perform the optimization, with a learning rate of 0.002. We

stopped training after 50 epochs.

4.3. Metrics

We adopted “area under the Receiver Operating Charac-

teristic curve (AUC)” as a metric. Additionally, we used

the balanced accuracy at a fixed threshold T to evaluate a

model’s performance. Because speaking faces only occu-

pied 28% in the training set and 24% in the testing set, we

chose a lower threshold to determine whether the face was

the speaker. In this experiment, we set T as 0.3.

To compare the visual-coupled embedding and indepen-

dent embedding, we utilize the ratio R between intraclass

and interclass distance (see Eq. 6) to analyze the distribu-

tion of the embedding space. The more discriminative fea-

ture should be more separable with lower ratio value R.

R =
intraclass(speaking) + intraclass(nonspeaking)

interclass(speaking, nonspeaking)

intraclass(A) =
1

NANA

NA∑

i=1

NA∑

j=1

d(Xi
A, X

j
A
)

interclass(A,B) =
1

NANB

NA∑

i=1

NB∑

j=1

d(Xi
A, X

j
B
)

(6)

where d(Xi
A, X

j
B) refers to the Euclidean distance between

the ith embedding sample from class A and the jth embed-

ding sample from class B.

4.4. Experimental Results

4.4.1 Performance on different features

Tab. 2 shows the performance of different features in the in-

dependent embedding network without contrastive loss. We

abbreviate the facial image, optical flow and audio signal as

F , O and A, respectively. It appears to be a trend: F+O+A

> F+A > O+A > F+O > F > O, which demonstrates that

the optical flow can provide an additional (and important)

clue for detection.

Table 2. The performance (AUC) among different features

F O F+A O+A F+O F+A+O

0.8146 0.8014 0.8914 0.8597 0.8257 0.9042

Figure 5. The distribution of the embedded feature after PCA.

Each green/red point is an embedded feature for a speaking/non-

speaking face, respectively.

4.4.2 Visual embedding network

We compare the models between independent embedding

(IE) and visual-coupled embedding (VCE) in Tab. 3. Simi-

lar to Sec.4.4.1, we do not consider contrastive loss in model

training. Although an independent embedding network has

more parameters, a visual-coupled embedding network can

improve by 0.55% (F+O) and 1.56% (F+O+A) because it

can learn the spatial correlation between raw image and op-

tical flow.

Table 3. The performance (AUC) between independent embedding

and visual-coupled embedding.

(F+O, IE) (F+O, VCE) (F+O+A, IE) (F+O+A, VCE)

0.8257 0.8312 0.9042 0.9198

To visualize the distribution of visual-coupled embed-

ding and independent embedding, we randomly select 3800

embedded features from the test set and project them to the

2D space (see Fig. 5). Tab. 4 quantifies the separability of

different embedding features in terms of ratio between in-

traclass and interclass distance. We can see that the fusion

of optical low and face image appears to be more separable

than the single-modality feature. Meanwhile, the visual-

coupled embedding performs better than the independent

embedding (R=1.2153 vs. 1.5219), proving that the visual-

coupled embedding can generate more discriminative fea-

tures. This can explain why the visual embedding network

can achieve more accurate classification.



Table 4. The ratio between intraclass and interclass distance in

terms of different embedding features.

(F, IE) (O, IE) (F+O, IE) (F+O, VCE)

2.0742 2.4142 1.5219 1.2153

4.4.3 Contrastive loss function

We evaluate the influence of the contrastive loss (CL) in

Tab. 5. It shows that the contrastive loss can consistently

improve the prediction accuracy by 1%∼2%, which proves

our assumption that the contrastive loss is beneficial to learn

synchronization information between audio and visual fea-

tures. In particular, the model (F+O+A, VCE, with CL),

which has the visual-coupled embedding network with the

optical flows trained on the contrastive loss, achieves the

best performance among all the baselines.

Table 5. The performance (AUC) between the model with/without

contrastive loss.

Features
IE VCE

w/o CL with CL w/o CL with CL

F+A 0.8914 0.9095 - -

O+A 0.8597 0.8701 - -

F+O+A 0.9042 0.9237 0.9198 0.9317

4.4.4 Comparison against the baseline [22]

We also compare our methods with the best baseline (re-

current model) in Joseph et al. [22] in Tab. 6. Note that

this baseline model has the same architecture as one of our

models (F+A, IE, w/o CL) but it is trained with an addi-

tional cross-entropy loss for an audio embedding network.

It appears that the baseline performs worse than our equiva-

lent model by 0.4% (AUC) and 2.15% (balanced accuracy),

where the degradation can be explained by the fact that non-

speaking and speaking faces may appear in the same video

while sharing the same audio track.

Table 6. The performance (AUC and balanced accuracy) between

our methods and the baseline [22].

Metrics
F+A,

baseline [22]

F+A,

IE, w/o CL

F+O+A,

VCE, with CL

AUC 0.8874 0.8914 0.9317

balanced accuracy 0.8164 0.8379 0.8692

The model (F+O+A, VCE, with CL) achieves absolute

4.4% (AUC) and 5.28% (balanced accuracy) improvements

over the baseline. In addition, we evaluate the baseline and

our best model against different face sizes and orientations.

We adopt the method in [18] to obtain the face orientation.

Tab. 7 and Tab. 8 show that our proposed method consis-

tently performs better than the baseline, even with a small

face (i.e., the face whose width is less than 40 pixels) and

Figure 6. The snapshots with different face sizes and orientations:

(a) Face width: 318 pixels (red) vs 63 pixels (yellow); (b) Face

orientations: 11◦(red) vs 83◦(yellow).

side face (i.e., the orientation is larger than 60◦). These

results indicate the robustness of our model in adverse con-

ditions.

Table 7. The balanced accuracy over the face sizes

Model
Face Width (pixel)

[0-40) [40-80) [80-120) [120+)

(F+A, baseline [22]) 0.7351 0.7921 0.8301 0.8579

(F+O+A, VCE, with CL) 0.7761 0.8279 0.8734 0.9181

Table 8. The balanced accuracy over the face orientations

Model
Face Orientation (degree)

[0 ,20) [20 ,40) [40 ,60) [60 ,90)

(F+A, baseline [22]) 0.8627 0.8539 0.8318 0.8022

(F+O+A, VCE, with CL) 0.9139 0.9029 0.8739 0.8419

4.4.5 Visualizing sound sources

To understand which part of the face region contributes to

the prediction, we use the same technique in [21] to visual-

ize an activation map of the “speaking” class.

Figure 7. Class activation map of the class “speaking”. We scale

its range per image to compensate for the wide range of values.

Fig. 7 illustrates the class activation maps generated from

the visual-coupled embedding network of our best model.

The class activation maps of speaking faces show that the

region with the highest response lies on the mouth region.

Meanwhile, the mouth region of non-speaking faces shows

lower responses than the other facial regions. The results

demonstrate that our model can localize the mouth region

and analyze it to distinguish between active and non-active

speakers.



5. Conclusion and Future Work

In this study, we presented an improved active speaker

detection framework by fusing face images, dense opti-

cal flow and audio streams. The multi-task learning al-

lowed us to optimize the entire network effectively in

an end-to-end manner. Our experimental results on the

AVA-ActiveSpeaker dataset demonstrated that our method

achieves significant accuracy improvements over the base-

line method, particularly by the optical flow feature.

As we have shown, the performance of the model de-

grades with decreasing image resolution, which inspires us

to use curriculum learning to improve the training process.

There is still much room for improvements in our frame-

work by using more sophisticated network architectures

(e.g., VGG) and loss functions (e.g., ArcFace loss [7]). In

addition, our model can be extended to other applications,

such as lip reading, by incorporating the optical flow and

changing the loss function.
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