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Abstract

In the contemporary world, recording videos can be

done quickly and easily. The quantity and availability of

videos have continued to increase, therefore, an effective

video retrieval method has also become important. To re-

trieve a target video from a large collection of videos, a

video retrieval system needs to obtain appropriate queries

from a user. Given a sentence query, there are many simi-

lar videos related to the query. The video retrieval system

requires more information in addition to the sentence to dis-

tinguish the target video from others. If the system actively

collects more information on the target video, we can per-

form video retrieval effectively. Thus, we propose a system

to retrieve videos by asking questions about the content of

the videos, and leveraging the user’s responses to the ques-

tions and the dialog history. Additionally, we confirmed the

usefulness of the proposed system through experiments us-

ing the dataset called AVSD which includes videos and di-

alogs about the videos.

1. Introduction

Nowadays, with the widespread use of smartphones any-

one can easily record videos, leading to an ever-increasing

amount of content. To retrieve target videos from large

amount of videos, an effective video retrieval method is im-

portant. Personal videos, including home videos and life

log videos, generally do not become highly popular and are

not distinguished in most cases. Therefore, we cannot use

elements such as the number of hits and tag data, which can

be used when retrieving videos on the web; this makes re-

trieval difficulty relatively high. For example, some impres-

sive and valuable videos are buried in a lot of other videos

and cannot be found easily. The premise of this research is

to retrieve target videos in this type of situation.

Personal videos reflect people’s hobbies or preferences,

hence individuals tend to record videos in similar situations

or record similar videos semantically. When a retrieval sys-

tem searches a target video given a sentence query, it is dif-

ficult to distinguish a target video from other similar videos

I’m looking for a video of
“a man reading a book”.

Is he sitting?

No he isn’t.

What kind of room is he in?

He is in a kitchen.

User Agent

( a ) ( b ) ( c )

( d ) ( e ) ( f )

Figure 1. Overview of video retrieval with dialog. The picture

shows some frames of videos of “a man reading a book”. It is as-

sumed that there are various situations for the same behavior. It is

possible to narrow down the candidates making use of appropriate

questions and their responses.

for this reason. To facilitate the retrieval of target videos

among similar items, let us see a video retrieval using a sen-

tence as a query as shown in Fig. 1. For example, when a

user tried to retrieve a video using a query “A man reading

a book” as shown in Fig. 1, a retrieval system returned a lot

of similar videos matching the query. The user should have

added more discriminative keywords in the query sentence.

However, in reality, it is difficult to assume that a user is

aware of the sentence that is suitable enough to represent

the videos they are searching for, or it is labor-intensive.

Indeed, a user usually recorded a large number of similar

videos, and we can consider that it is impossible to remem-

ber the details of all videos. Therefore, we propose intro-

ducing a dialog as shown in Fig. 1. The system asks a

question to efficiently search for videos that the user wants,

and then the user replies to the questions. We call the part

of the system that controls the interaction with the user the



“agent”. For example, suppose that there are six videos in

Fig. 1 and we try to retrieve a video of “a man reading a

book”. If the search is for the upper left video (a), the agent

should ask “How many people are in the video?”. Further-

more, if asking “Is the person reading a book while lying

down?”, the lower left video (d) can be separated from the

others in Fig. 1. If the agent asks the question “Does the

person read while standing”, the agent can search for the

video in the upper middle (b) of Fig. 1. The agent can also

distinguish videos by asking questions such as “What was

the person doing at the start of the video?” and “What was

the person doing before/after reading a book?”. Moreover,

since the user is assumed to have some knowledge of the

target video, the user doesn’t need to check all videos when

answering these questions. That is to say, ideally the user

does not have to look at the candidate videos and identify

the optimal query and can instead simply search for the tar-

get video by answering the questions from the agent. It is

clear that video retrieval can be performed effectively by

introducing this type of dialog.

The purpose of this research is to retrieve target videos

among similar items by introducing a dialog between the

system and the user. The contributions of this research are

threefold. (1) We proposed a new video retrieval method

that utilizes interactive elements i.e., dialog. (2) We imple-

mented a model to instantiate it and compared with several

baselines. (3) We conducted the user study and confirmed

that the model was effective for the task proposed in this

study.

2. Related Work

2.1. Text-based Video Retrieval

In the video retrieval method using text, we typically first

learn a mapping that transforms text and video features into

a joint embedding space [23]. Then, in the learned joint em-

bedding space, a video with a high degree of similarity to

the sentence used as the input query is output as a search re-

sult. Previously, canonical correlation analysis (CCA) had

been used as an approach to learn the mapping of the joint

space. Training is performed to maximize the covariance

of the distribution of the two different modalities in the em-

bedding space. Presently, methods using deep neural net-

works (DNN) are popular [26, 17, 16, 24, 21, 25, 19, 6, 10]

thanks to their impressive performance. There are two types

of features embedded in the joint space in the case of video

retrieval, a sentence feature and a video feature, the idea of

which is based on the text-based image retrieval including

[7]. The former is often obtained by inputting text such as

captions to recurrent neural networks (RNN) that can han-

dle time-series data and adopts its final hidden state as the

representation. The latter is effectively obtained when con-

sidering features obtained by applying convolution neural

networks (CNN) to each frame of a video in a multilateral

manner [26, 17, 16, 24] .

In these related studies, basically, given one short sen-

tence as input, the corresponding video is output. These

methods are not sufficient for handling a history of dialog

with multiple sentences. For this reason, these cannot be

used in this research, which has to deal with dialog.

2.2. Vision and Dialog

The visual dialog proposed by Das et al. [3] is a task

that takes an image and multiple questions as inputs and

subsequently outputs a response to each question. Based on

this, visual dialog is still actively researched, and research

on video dialog that targets videos instead of images has

begun [27, 12, 13, 20, 1]. However, these studies are aimed

at returning better responses based on the contents of the

videos, and there is no module for video retrieval.

In contrast, there are also studies that have proposed

training methods for the goal-oriented visual dialog. Das et

al. [4] enable interactive image retrieval with dialog. They

generate an asymmetric scene in which an image can be

viewed from an answerer who can see the image and a ques-

tioner who cannot see it. Under the circumstances, the ques-

tioner asks a question about the image to the answerer. The

answerer in turn gives a response so that the questioner can

gain a finer understanding of the corresponding image. At

the time of training, the questioner tries to regress the image

feature using the dialog history without knowing the im-

age feature of the ground truth (GT) known to the answerer.

They argue that it is possible to improve dialog performance

by performing collaborative reinforcement learning on this

task. Das et al. [4] proposed an image retrieval method us-

ing image features obtained by regression from the dialog

history representation as a method for evaluating the ques-

tioner. This evaluation can be interpreted as an image re-

trieval with dialog. However, they only considered the point

that the feature predicted by the questioner approaches the

feature of the GT image known to the answerer in training.

Therefore, it is impossible to distinguish between the target

video and similar ones. Thus, we consider that this is not

sufficient to achieve the purpose of this research.

3. Task and Model

3.1. Task Description

In this task, we assume a situation as follows. First,

a user inputs a sentence query to a video retrieval system

searching for a target video. Then, the system outputs can-

didate videos, which contain N items. This N can be var-

ied. If the target video is included in the candidate videos,

the retrieval is successfully finished. If not, the system asks

a question to the user so that the system can distinguish the

target video from other similar videos, consequently output



the target video in the N candidate videos. The user re-

sponds to this question based on the target video and the di-

alog history thus far as well as the candidate videos. After

this round of dialog, candidate videos are updated, which

are displayed to the user again. If the target video is not

included in the candidate videos, the system asks another

question and the next round of dialog follows. This type

of Q&A is iteratively performed until the user reaches the

target video in the candidate videos.

3.2. Modeling and Overview

The following function requirement (FR) is considered

necessary to achieve the goal of this research, i.e., FR: Mak-

ing use of user’s responses and dialog history. To utilize the

dialog, the proposed system needs to be able to effectively

use user responses and the history of dialog. For instance,

when a response to a question is provided, the dialog history

must be used adequately to improve retrieval performance.

In addition, question generation in dialog requires the di-

alog history until a certain round. Moreover, to identify a

target video, it is ideally necessary to generate a question

on information that is not known yet.

In this section, we provide an overview of a model of the

proposed method that satisfies the functional requirement

mentioned above. Fig. 2 is an overview. The following

describes the proposed system, assuming that one combi-

nation of a question and its response is called one round of

dialog. As shown in Fig. 2, in the proposed system, there is

an agent interacting with the user. The agent’s main role is

to generate the question and present candidate videos based

on the dialog while interacting with the user. In this sys-

tem, the user first inputs a query describing the video that

he/she is searching for, and the agent outputs a question in

return. The proposed system starts from the point where the

user inputs a natural sentence describing the target video to

the agent. When the first sentence D0 is input, the agent

uses that sentence as a query, and presents to the user sev-

eral (N ) videos that are close to the query in the feature

space, namely Cand0 = {C
(1)
0 , C

(2)
0 , ..., C

(N)
0 }. Note C

(1)
0

has the highest similarity to the query while C
(N)
0 has the

lowest among Cand0. In this study, we assume N = 10 as

per [17]. It is defined as the 0th round of the dialog until

this first sentence D0 is input and the first candidate videos

Cand0 are output. After completing the 0th round dialog,

the agent generates a question q1, and the next round of the

dialog begins based on this. Considering the t-th round di-

alog (t = 1, ..., T ), the question qt is generated after round

t−1 of the dialog and the user responses at in return. That is

to say, by denoting the t-th round question and answer pair

as Ht = [qt, at] and the dialog history until the t-th round

dialog as DHt = {D0, H1, ..., Ht}, the series of processes

are expressed as follows.

st = HistEnc(DHt; θhe). (1)

Candt = topN
v∈V

S(fde(st; θde), fve(V ; θve)). (2)

qt+1 = QuesDec(DHt,Candt, V ; θqd). (3)

HistEnc(·) in Eq. 1 is a mapping to obtain the represen-

tation of the dialog history st until the t-th round. In the

following, we call the representation of the dialog history st
the “history vector”. Eq. 2 represents the mapping that uses

the history vector st obtained by Eq. 1 to obtain N candidate

videos Candt from the video group V in the database. This

mapping is composed of fde(·) and fve(·) which embed the

history vector st and the feature group V respectively into

the joint space. In the joint embedding space, the similarity

function S(·, ·) calculates the closeness between the embed-

ded history vector and the embedded video features, and as

a result N items considered to have a high similarity to the

embedded history vector are selected. QuesDec(·) in Eq. 3

is a mapping that outputs the next question qt+1 with the di-

alog history DHt, candidate videos Candt and the feature

group V as input. Eq. 1, Eq. 2, and Eq. 3 are the history

encoding module (History Encoder), the feature embedding

module (Feature Embedding) and the question generation

module (Question Decoder) in Fig. 2. All modules are ex-

ecuted based on θhe, θde, θve, θqd. In this study, the first

sentence D0 is considered as a caption of a video, and the

end is assumed to be the point where the round of dialog

reaches a predetermined upper limit T (= 10).

3.3. Model Architecture

History Encoder. This module is responsible for encoding

dialog history for interpretation. Inspired by [4], we adopt

hierarchical encoding for this module. The dialog in each

round is decomposed into words and then represented as

vectors by the word embedding matrix. These words are

fed into an LSTM (Sentence Encoder) to obtain sentence

level features as expressed in Eq. 4. Let h0, ..., ht be the

output from the Sentence Encoder. Note h0 is obtained by

feeding D0 as input, Ht is the concatenation of qt and at.

ht = LSTM(Ht). (4)

These are input sequentially into an LSTM (State Encoder)

in Eq. 5 which is different from the Sentence Encoder.

st = LSTM(ht|h0, h1, ..., ht−1). (5)

The final hidden state obtained from the State Encoder is

considered to be a feature that represents the entire dialog

history effectively. Therefore, we adopted the final hidden

state as the history vector st.

The history vector st obtained as described above is a

vector that semantically reflects the history of past conver-

sations. Therefore, using this feature as an input to construct

a later pipeline will satisfy the FR.
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Figure 2. An overview of the proposed model and each module.

Feature Embedding. In this module, videos are searched

using the dialog history as a query, and candidate videos are

output. The history vector st ∈ R
|s| obtained by Eq. 1 and

the video features V are used as input of this module, which

is responsible for embedding into the joint space as in [17].

To reduce the computational cost in training, the video

feature in this study uses pre-extracted features from a pre-

trained model, by sequentially feeding segments, each of

which includes several frames. Assuming that we have a

pre-trained model VideoEnc(·) and a video v ∈ V , then

VideoEnc(v) = {1v, ..., τmaxv}, (6)

where {τv}τmax

τ=1 ∈ R
|v|×τmax is a group of pre-extrated

video features. The video v is embedded as per

v = fve(v). (7)

Similarly, the history vector st is embedded according to

st = fde(st). (8)

Specifically, the video v is processed to an embedded vector

v via fve(·) as formulated in Eq. 9 and Eq. 10.

fve(v) = FC(v), (9)

where

v = pooling(VideoEnc(v)). (10)

Note FC is a fully connected layer and pooling is per-

formed across the time direction. Also, we do not train

VideoEnc(·) in this study. As for fde(·), a fully connected

layer is adopted. More generally, v is obtained by

v = VideoProc(v). (11)

In this paper, VideoProc(v) includes concatenation opera-

tion for pooled features from pre-trained models. Given the

two embedded features st and v, similarity between these

two are calculated by S(·, ·) shown in Eq. 2. Then, we can

obtain candidate videos Candt as per Eq. 2. For S(·, ·), we

adopt consine similarity as in the study of Mithun et al. [17].

In this module, the history vector representing the dialog

history and the feature of the videos are directly related to

the joint space. Hence, video features treated here should

reflect dialog content properly. Particularly by choosing

VideoProc(·) which is good at detecting motions in videos,

we can expect better performance, for conversations held in

this task could involve various kinds of topics including mo-

tions.

Question Decoder. This module is responsible for the ques-

tion generation necessary for the video retrieval with dialog.

This module consists of one LSTM, of which the hidden

state output is used to calculate the probability of words in

the generated question. Note this module takes as input the

dialog history representation.

3.4. Model Learning

Feature Embedding. The trained joint embedding space

determines video retrieval performance in the end. Video

retrieval fails when the joint space is not properly trained,

even if the agent succeeded in obtaining necessary informa-

tion. Therefore, the loss function for embedding features

is important. We train the joint embedding space by mini-

mizing the following loss function Eq. 12 proposed by [7].

α in Eq. 12 is a margin and S(·, ·) calculates cosine sim-

ilarity for input pairs. v̂ and ŝt are called hard negatives

(i.e., the negative video/dialog sample closest to a positive



matching (v, st) pair), both of which are defined by v̂ =
argmax

v
− S(v−, st) and ŝt = argmax

st
− S(v, st

−).
Note v

− and st
− are negative video/dialog sample for a

positive pair (v, st). By minimizing Eq. 12, the model

learns to increase the similarity for positive matching pairs

while decrease the similarity for hard negatives. That is to

say, Eq. 12 attempts to bring positive samples closer than

negative samples (hard negatives). In this way, we can train

the Feature Embedding so that similar items are easier to

distinguish in the joint space. In the actual implementation,

training is performed within a mini-batch, so training will

proceed by keeping away the hard negatives from matching

samples in a mini-batch (i.e., semi-hard negatives).

Lfeat =
∑

v

max(0, α− S(v, st) + S(v, ŝt))

+
∑

st

max(0, α− S(v, st) + S(v̂, st)).
(12)

Question Decoder. We would like to train the question de-

coder in a supervised way utilizing ideal questions that peo-

ple actually uttered i.e.,

q̂t = human(DHt−1,Candt−1, V ), (13)

for t = 1, ..., T . While training, we would like to use

teacher forcing with cross entropy loss based on the dia-

log history including a group of questions for each video

Q̂ = {q̂t}
T
t=1 and the responses Â = {ât}

T
t=1. In this man-

ner, the question decoder in Eq. 3 can be reformulated as

qt+1 = QuesDec(st; θqd), (14)

in which θqd is expected to learn “common sense” about

which question to generate for each topic of videos, as a

result of supervised learning based on Q̂. Note st reflects

the dialog history DHt including D0, Q̂ and Â.

In practice however, it is still challenging to construct

a question decoder that satisfies Eq. 14 due to a lack of

dataset which contains Q̂. To mitigate this issue, we utilize

a dataset which contains questions Q̃ similar to Q̂. Details

about the dataset are described in subsection 4.1.

Summary. When training the whole model, we mini-

mize the linear sum in Eq. 15 by writing the loss function

Eq. 12 in the Feature Embedding as Lfeat and the Ques-

tion Decoder’s cross entropy loss as Lques. The coefficients

λfeat, λques in the Eq. 15 are hyperparameters that indicate

the extent to which each module is emphasized.

min
θ

(λfeat Lfeat + λques Lques) . (15)

4. Experiments

4.1. Settings

Dataset. In this study, we used the AVSD dataset [1]. This

dataset was created by adding dialog data to the existing

video dataset called Charades [22]. Charades is a video

dataset of about 30 seconds, and the collection contains ac-

tivities that people will be exposed to in their daily lives.

Charades has many motions in one video (each video in-

cludes at least two actions as per [1]) and is characterized

by the presence of many semantically similar videos in the

dataset. The AVSD dataset contains ten rounds of ques-

tions and answers for each video. Questions include a lot

of spatio-temporal information (e.g., actions, interactions,

and development of events) as well as the audio informa-

tion. In the annotation process of the AVSD dataset, as per

[1], two workers on Amazon Mechanical Turk (AMT) were

asked to help annotate a video, one of whom is a questioner

and the other is an answerer. The questioner is presented

with 3 frames from the video i.e., beginning, middle and

end of the video, then asks a question to obtain a good un-

derstanding of what is actually happening in the video. The

answerer, who has already watched the video and read a

script D0 about the video, responds. The two workers are

implicitly encouraged to hold conversations with rich infor-

mation unique to videos in this protocol. Questions in the

AVSD dataset (Q̃) are asked in order to guess the true video

given partial information about the video, which is similar

to Eq. 13. Thus, we can assume Q̃ ≈ Q̂. For details, please

see Sec. A in the supplementary material.

From the above, the AVSD dataset, which includes di-

alogs focusing on elements unique to the videos, targeting

recordings by individuals including home videos and lifelog

videos, is suitable for this research. AVSD has 7,985 sam-

ples for training. We used 863 samples for validation and

1,000 samples for testing. Part of the validation data was

adopted as test data in this study.

Evaluation Metrics. Here we introduce the evaluation

metrics used in this research. We measure the rank-based

performance by Recall@k (R@k), Mean Rank (MeanR),

and Mean Reciprocal Rank (MRR). R@k calculates the

percentage that the GT video is found in the top-k re-

trieved points, which can be interpreted as the percentage

that Candt with respect to N = k includes the GT video.

MeanR calculates the mean rank of all GT videos and MRR

is the mean of multiplicative inverse of the rank for all GT

videos. Note MRR is equivalent to mean average preci-

sion (mAP) in this case as there is only one correct target

video for each dialog. Ideally, R@k, MeanR, and MRR in-

dicate 100, 1 and 1 respectively. Higher is better for R@k

and MRR, while lower is better for MeanR. Note that R@k

(k = 1, 5, 10), MeanR, MRR in Table 1, Table 2 and Ta-

ble 3 are the values obtained when 10 rounds of GT dialog

data are input.

Baselines. As baselines, we prepare three types of mod-

els overall, namely L2 Loss, C Loss, and LSTM. In the L2

Loss model, L2 norm for positive pairs (st,v) expressed in



Eq. 16

Lfeat =
∑

(st,v)

||st − v||2 (16)

is applied as L2 Loss in Feature Embedding instead of rank-

ing loss in Eq. 12. L2 Loss centers on bringing the positive

samples closer with no consideration for keeping the nega-

tive samples apart. This is equivalent to the architecture of

Das et al. [4] except that the L2 Loss baseline takes differ-

ent features from their paper. Note in this baseline based on

their original implementation [18], fve(v) in Eq. 9 is com-

posed without FC layer. This is because if the FC layer can

be trained as per Eq. 16 there is a high possibility both em-

bedded features could be zero to minimize the loss, hence

training fails. The C Loss model is trained with contrastive

loss expressed as

Lfeat =
∑

pairs

ysvd+ (1− ysv)(∆− d), (17)

where d is a distance between embedded vectors st and v

for any pairs in the batch, ∆ is a margin, and ysv is a la-

bel which gives 1 or 0 when the given pair is correct or

incorrect respectively. Eq. 17 enforces margin for negative

samples while bringing the positive samples closer. Thus,

unlike the L2 Loss in Eq. 16, contrastive loss is able to em-

bed features so that they are easier to distinguish in the joint

space. Since distance is a relative concept, a positive sam-

ple should be closer than negative samples. However, con-

trastive loss solely takes into account given pairs. Conse-

quently, some negative sample could be closer than a posi-

tive sample. For this reason, compared to the ranking loss

in Eq. 12, contrastive loss has weak guarantee that the posi-

tive sample is closer than the negative samples. The LSTM

model is a model which uses one LSTM in Eq. 18 as His-

tory Encoder. DHt is decomposed into words and these are

represented as word level features by the word embedding

matrix. The difference from the proposed model is that the

LSTM baseline does not encode the dialog history hierar-

chically. The LSTM model is based on the typical architec-

ture in the text-based video retrieval represented by [17] in

the sense that they encode sentences with an RNN, though

commonly only D0 is given as query.

st = LSTM(Ht|DHt−1). (18)

Implementation Details. We prepare two types of features

as a visual cue for the videos, the frame-wise feature ex-

tracted from ResNet152 [9] pre-trained with ImageNet [5]

and the feature extracted from the I3D [2] model pre-trained

with Kinetics [14]. Furthermore, the VGGish [11] feature

pre-trained on the Audio Set [8] is prepared as an audio

feature for supplementary data. These three types of fea-

tures constitute VideoProc(v) in Eq. 10. Moreover, since

the model proposed in this research is a complex configu-

ration with multiple modules, it is difficult to train all pa-

rameters end-to-end at once. Therefore, training is divided

into two steps; in the first step, the parameters of fde(·) and

fve(·) are fixed to the initial values, and in the second step,

this constraint is released to train all parameters. The main

hyperparameters are set as follows. The batch size is 32,

the word embeddings are 300-d, the hidden state of the two

LSTMs in the History Encoder is 512-d, the hidden state of

an LSTM in the Question Decoder is 512-d, the dimension

of the joint embedding space is 1,024, α in Eq. 12 is 0.2 and

the coefficients in Eq. 15 are λfeat = 1, 000, λques = 2.

For some baselines, there are some differences in terms of

the parameters because of the architecture difference. ∆ in

Eq. 17 is set to 1.0 for C Loss. As for the LSTM baseline,

λfeat = 10, 000. Parameters are optimized using Adam

[15] with an initial learning rate of 0.001. The number of

dimensions of the video feature are ResNet152: 2,048, I3D:

1,024, VGGish: 128.

4.2. Results and Discussions

Table 1. Comparison of retrieval performance depending on the

input video features. “M”, “A”, “S” in the table indicates I3D,

ResNet, VGGish respectively, “+” represents concatenation.

R@1 R@5 R@10 MeanR MRR

M 3.90 12.4 20.5 117 0.0961

A 1.60 7.90 13.4 176 0.0591

S 0.300 1.90 3.00 365 0.0169

M + A 3.90 13.4 20.7 124 0.0970

M + S 4.20 15.9 24.2 107 0.112

A + S 2.70 9.20 15.1 174 0.0702

M + A + S 4.40 15.0 24.4 109 0.113

Feature Selection for Representing Videos. Here

we select the appropriate representation for videos, i.e.,

VideoProc(·) in Eq. 11. We compared the retrieval per-

formance with the ResNet feature, I3D feature and VG-

Gish feature, each of which is expected to represent ap-

pearance, motion and sound respectively. After that, exper-

iments were also conducted with various types of features

combined hoping that multiple features could be used ef-

fectively. This result is shown in Table 1. We adopt max

pooling for pooling features. According to Table 1, the best

performance is achieved by adopting a combination of three

features basically aside for R@5 and MeanR. As M + A +

S achieves highest R@10 and there is no big difference be-

tween M + S and M + A + S, in the following, we adopt

M + A + S as the video representation. Comparing I3D

and ResNet, I3D gives better results because the dataset

used this time holds more dynamic behaviors, and I3D is

more likely to reflect such features. The audio feature (VG-

Gish) is poor in terms of stand-alone performance, but it



contributes to the improvement of the retrieval performance

when considered simultaneously with I3D and/or ResNet.

From the above, it appears crucial to choose an architecture

sensitive to motions. Additionally, multimodal information

contributes to the retrieval performance.

Table 2. Comparison of retrieval performance against the baselines

regarding Lfeat. The proposed model achieves much better per-

formance than the L2 Loss and the C Loss, while C Loss is still

much better than the L2 Loss.
R@1 R@5 R@10 MeanR MRR

L2 Loss 0.300 0.700 1.80 433 0.0115

C Loss 2.50 9.4 13.9 174 0.0665

Proposed 4.40 15.0 24.4 109 0.113

Table 3. Comparison of retrieval performance against the base-

line regarding the History Encoder. The proposed model achieves

much better performance than the LSTM.

R@1 R@5 R@10 MeanR MRR

LSTM 0.500 2.70 5.10 354 0.0240

Proposed 4.40 15.0 24.4 109 0.113

(a) (b)
Figure 3. Transition of MeanR (a) and R@10 (b) as the dialog

proceeds. GT dialog data is used as input.

Comparisons against Baselines. Table 2 and Table 3 show

the performance comparison against baselines. As can be

seen in Table 2 and Table 3, we can confirm that the pro-

posed method is superior for all metrics. Furthermore,

Fig. 3 expresses the relationship between the number of dia-

log rounds and the retrieval performance. It is apparent that

in the proposed method, MeanR tends to decrease as the di-

alog progresses. As for R@10, the progress of the dialog

and the performance improvement are linked, and the sig-

nificance of the dialog is apparent. First, we will compare

the proposed model with two baselines in Table 2, namely

L2 Loss and C Loss. According to Fig. 3, it appears that

the L2 Loss tends to improve retrieval performance as the

dialog progresses, as does the proposed model. However,

the retrieval performance itself is poor. This result indicates

that the loss function in Feature Embedding is insufficient

with an L2 Loss. Meanwhile, C Loss achieves much bet-

ter performance than the L2 Loss while showing a similar

tendency to both the proposed model and the L2 Loss. Nev-

ertheless, the proposed model which considers hard nega-

tives indicates better performance. Thus, we can confirm

that the retrieval performance itself can be improved by de-

vising embedding loss into the joint space in the Feature

Embedding. On the other hand, looking at Fig. 3, although

the LSTM achieves almost the same performance as the

proposed model in the 0th round, its performance deteri-

orates drastically in the first round and essentially deterio-

rates thereafter. We consider that this phenomenon occurs

because the LSTM cannot effectively handle a long-term

information sequence such as a dialog history. In other

words, by finding a way to handle a long-term information

sequence in the History Encoder, we can improve search

performance along with the progress of the dialog.

4.3. User Study

(a) (b)
Figure 4. Transition of MeanR (a) and R@10 (b) as dialog pro-

ceeds when user study is performed with the proposed model and

the other baselines.

User Study Settings. In the evaluation thus far, the dialog

with humans is simulated using GT dialog data as input.

However, an evaluation through a human-model interaction

is also necessary. Therefore, we conducted a user study on

AMT to check if the retrieval performance improves with

the dialog when actually interacting with humans. We ran-

domly selected 100 out of 1,000 videos of test data. Con-

sidering the purpose of this research, as a way of user study,

ideally users should provide their own videos, and hold con-

versations searching for the videos. However, such an eval-

uation method is difficult in practice. For this reason, we

used the videos in the dataset as the targets and had the

workers hold conversation on the target videos. Specifically,

we asked workers to respond to questions for ten rounds

based on the content of the videos and the dialog history.

The GT video ranks in the database were calculated using

the dialog data obtained. Note the users were unaware that

this task is related to video retrieval as users only need to re-

spond in natural languages based on the target videos. For

details, please see Sec. C in the supplementary material.

User Study Results. Fig. 4 illustrates the user study results.

Looking at the result of the proposed model in Fig. 4, it ap-



caption GT rank Top video

A person is tidying some dishes .
They take a drink from a coffee cup and lie down on the floor .

449

Video I
Q1:How many people are in the video ? A1:There is one person in the video 467

Q2:What is he doing at the beginning of the video ? A2:He is washing dishes 141

Q3:What room is he in ? A3:In a kitchen 61 Video II
Q4:What is he doing in the beginning of the video ? A4:Washing dishes 54 Video III

GT Video Video I

Video II Video III

Figure 5. An example of qualitative results. The upper part shows the dialog targeting the GT video and its rank in other test (1000) videos

as well as the top ranked videos in each round. The lower part shows the frames of the GT video and the top ranked videos mentioned

in the upper part. All the top ranked videos (Video I, II, III) in the figure reflect “take a drink” in the caption. The background of the top

videos changes from a living room to a kitchen as a result of Q3&A3; we can see both Video II and III are in kitchens. Moreover, after

Q4&A4 a dish appears in the Video III in the man’s right hand.

pears that the retrieval performance improves overall with

the progress of the dialog for both MeanR and R@10, as in

the case involving the GT dialog data shown in Fig. 3. We

confirmed that even when a dialog with a human is actually

performed, the retrieval performance can be enhanced us-

ing dialog for the proposed model. Other baselines exclud-

ing the C Loss indicate similar tendencies to Fig. 3. In the

L2 Loss, the retrieval performance becomes better as dialog

proceeds though the performance itself is poor. The LSTM

achieves comparable performance with the proposed model

first, however it deteriorates thereafter. Nevertheless, the

C Loss performance tends to deteriorate as the dialog pro-

gresses, which is unlike the C Loss in Fig. 3. This tendency

suggests that the C Loss failed to train the model properly.

Qualitative Results. Fig. 5 is the qualitative result of the

proposed method when the user study is performed (Please

see Sec. D in the supplementary material for more exam-

ples.) Targeting a video as a GT video, we can see the GT

video rank becomes lower gradually, which indicates that

the retrieval works well. Furthermore, the top ranked can-

didate videos reflect the dialog content. Clearly, the dialog

content influences the retrieval result. However, as can be

seen in Q2 and Q4, some questions generated by the model

were similar or the same. This is because the question de-

coder is trained with teacher forcing using the dataset. The

question decoder learned to generate frequently used ques-

tions in the dataset. Though the current model can ade-

quately utilize the dialog history to improve video retrieval

performance, questions with more varieties could improve

the performance. Hence, improving the question decoder

would be the next step in this research.

5. Conclusion

The purpose of this study was to introduce an interac-

tion (dialog) in which the system generates questions based

on the dialog history with the user, enabling the retrieval of

the target video among similar ones. To achieve this, we

proposed a model that can ask questions and utilize the di-

alog history. We showed its effectiveness in experiments

using the AVSD dataset, with videos that are rich in scene

developments. Furthermore, we conducted the user study

and confirmed that the proposed model is effective when it

actually interacts with humans.
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and Naokazu Yokoya. Learning Joint Representations of

Videos and Sentences with Web Image Search. In ECCV,

2016.

[20] Ramakanth Pasunuru and Mohit Bansal. Game-Based

Video-Context Dialogue. In EMNLP, 2018.

[21] Dian Shao, Yu Xiong, Yue Zhao, Qingqiu Huang, Yu Qiao,

and Dahua Lin. Find and Focus: Retrieve and Localize Video

Events with Natural Language Queries. In ECCV, 2018.

[22] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali

Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in

Homes: Crowdsourcing Data Collection for Activity Under-

standing. In ECCV, 2016.

[23] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang

Wang. A Comprehensive Survey on Cross-modal Retrieval.

arXiv preprint arXiv:1607.06215, 2016.

[24] Masataka Yamaguchi, Kuniaki Saito, Yoshitaka Ushiku, and

Tatsuya Harada. Spatio-temporal Person Retrieval via Natu-

ral Language Queries. In ICCV, 2017.

[25] Xiaoshan Yang, Tianzhu Zhang, and Changsheng Xu.

Text2Video: An End-to-end Learning Framework for Ex-

pressing Text with Videos. IEEE Transactions on Multime-

dia, 20(9):2360–2370, 2018.

[26] Youngjae Yu, Jongseok Kim, and Gunhee Kim. A Joint Se-

quence Fusion Model for Video Question Answering and Re-

trieval. In ECCV, 2018.

[27] Zhou Zhao, Xinghua Jiang, Deng Cai, Jun Xiao, Xiaofei He,

and Shiliang Pu. Multi-Turn Video Question Answering via

Multi-Stream Hierarchical Attention Context Network. In

IJCAI, 2018.


