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Abstract

Grounding phrases in images links the visual and the tex-

tual modalities and is useful for many image understanding

and multimodal tasks. All known models heavily rely on

annotated data and complex trainable systems to perform

phrase grounding – except for a recent work [38] that pro-

poses a system requiring no training nor aligned data, yet is

able to compete with (weakly) supervised systems on popu-

lar phrase grounding datasets. We explore and expand the

upper bound of such a system, by contextualising both the

image and language representation with structured repre-

sentations. We show that our extensions benefit the model

and establish a harder, but fairer baseline for (weakly) su-

pervised models. We also perform a stress test to assess

the further applicability of such a system for creating a sen-

tence retrieval system requiring no training nor annotated

data. We show that such models have a difficult start and a

long way to go and that more research is needed.

1. Introduction

When integrating vision and language in a multimodal

task (such as Visual QA, Dialogue or Commonsense Rea-

soning), it is essential to align textual phrases with the im-

age regions they refer to. This is called phrase grounding or

phrase localisation. Phrase grounding is important because

by grounding the textual modality in the image we link

knowledge and context from both modalities and can expect

improved model performance in joint vision and language

tasks. Evaluating a system’s ability of phrase grounding

also opens the door to interpretability: We can infer what

regions or phrases mattered for system predictions, inspect

whether the system made a decision informed on both vi-

sion & language simultaneously and test whether the model

aligned the two modalities without confusion.

Phrase grounding is one step towards solving general vi-

sion & language tasks [18, 21, 30]. While CV object detec-

tors are trained to recognise (a fixed class of) objects from

Figure 1. Strong, weak and no supervision. Our approach belongs

to the latter. Scene graph in red, external knowledge in green.

a closed vocabulary (e.g. cat), phrase grounding is expected

to localise objects in an image referred to with free-form

phrases (e.g. a newborn Siamese kitten). Phrase grounding

can thus be considered a generalised object recognition task

that considerably extends the visual-linguistic knowledge

captured in pre-trained object detectors, and that requires

systems to have or exploit additional linguistic knowledge.

A related application of phrase grounding is sentence-

to-image alignment. Here the main interest is to detect im-

ages that correspond to a linguistic description, and phrase

grounding scores can be re-purposed for aligning images

and textual descriptions [16, 30].

The majority of phrase grounding methods have been

strongly supervised with annotated phrase-region pairs [2,

3, 11, 12, 13, 23, 28, 29, 34, 35, 40, 39, 46] or weakly su-

pervised using sentence-image pairs [1, 4, 41, 43, 47, 6] (cf.

Fig. 1 left and middle). In recent work, Wang&Specia [38]

propose to perform phrase grounding without any annota-

tion pairs, by aligning caption phrases with object labels

proposed by multiple object detectors and selecting a ’best’

alignment by pairing the linguistically most similar phrase–

label pairs. Their approach outperforms weakly supervised

settings and defines a strong baseline for fully supervised
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Figure 2. Simplified scene graph (SG) for the image on the left.

Nodes in SG represent objects with associated bounding box in-

formation (labels and coordinates).

methods. Wang&Specia’s method can be characterised as

a ‘bag of words (BoW)’ approach that exploits the linguis-

tic similarity of paired caption phrases and object labels as-

signed to region proposals – without considering structural

properties of text or image. Moreover, their method com-

bines outputs of different detectors, and can be regarded

as being unfair against (weakly) supervised models, since

the latter rely on only one region proposal backbone with a

bounded coverage. Another weakness of their model is that

it does not consider context. Their distributed word embed-

dings are not contextualised and can suffer from undesired

associations, e.g. mapping synonyms and antonyms to sim-

ilar space regions – a displeasing property when searching

for most similar object labels and phrases.

Still, Wang&Specia’s baseline requiring no training or

supervision is an interesting approach and worth being fur-

ther explored in comparison to systems that require super-

vision from large training sets. Thus, our work has two ob-

jectives: we aim (i) to explore and expand the upper bound

of an unsupervised approach by extending it with contextu-

alisation in the image and language representation, and (ii)

to assess its performance on the related task of sentence-to-

image retrieval. Our contributions relate to four aspects:

i) Label set size and upper bound of the underlying object

detector: Wang&Specia employ a collection of object

detectors that jointly improve system results by con-

siderable degrees. In order to ensure fair comparison

to competing (weakly) supervised systems, we aim to

employ a single object detector with a finer-grained la-

bel set. Also, while Wang&Specia’s object detectors

offer a proposal upper bound of ca. 50%, we establish

a more realistic improved baseline using a single object

detector with a proposal upper bound close to 90%.

ii) Structuring the visual representation: While Wang&

Specia compare unstructured label sets (BoW), we

contextualise the visual modality by exploiting struc-

tured information about the image provided by a scene

graph. This allows us to address imperfections of ob-

ject detectors and small class label sets.

iii) Knowledge injection: We contextualise the seman-

tic labels of image region proposals in the linguistic

modality by grounding them in structured background

knowledge sources and thereby extend the model’s lin-

guistic capacities. We (a) compensate the deficiencies

of object detectors by enriching the vocabulary cover-

age of the upstream object detection system (using the

Open Images v5 [20] label hierarchy) and (b) compute

word similarity on the WordNet [9] graph structure, as

an alternative to only measuring cosine similarity over

distributional word embeddings as in Wang&Specia.

iv) Unsupervised phrase grounding for image retrieval:

We explore the limitations of unsupervised phrase

grounding by applying our method to the sentence-

image retrieval task. We do this by re-purposing phrase

grounding scores as image ranking scores.

Experiments on the Flickr30kEntities dataset [30] show

that (a) our method – using no training nor supervision,

but scene graphs and external knowledge – outperforms

state-of-the-art weakly supervised models by a large margin

and surpasses the majority of supervised models, establish-

ing a strong baseline for strongly supervised models. Our

model that uses only one object detector can be a good al-

ternative to engineering a suitable ensemble of object detec-

tors: it outperforms Wang&Specia’s system on Flickr30k-

Entities, and we show that it benefits from leveraging know-

ledge and context in both modalities. Yet, while our method

is competitive when tasked to ground entities in the same

image, (b) our experiments on text-based image retrieval on

Flickr30k [44] show that it its results can not compete with

recent supervised state-of-the-art systems. Nonetheless, our

method sets a noteworthy baseline as the (to the best of our

knowledge) only sentence-image retrieval method requiring

no supervision and no training data.

2. Related work

Increasingly accurate object recognition systems are be-

ing developed that extract bounding boxes of detected ob-

jects and label these with classes from a fixed class label set

(vocabulary) [8, 10, 24, 31, 32, 33, 48]. The task of phrase

grounding clearly profits from enhanced object recognition

systems, yet it needs to solve an extended task: grounding

phrases from an open vocabulary to objects in an image, by

aligning phrases with proposed bounding boxes.

Current research on phrase grounding can be divided into

strongly supervised and weakly supervised approaches.

Strongly supervised approaches [2, 3, 7, 11, 12, 13, 23,

28, 29, 34, 35, 40, 39, 46] make use of different techniques:

some project the visual and textual modalities onto the same

space [29, 27, 40, 39], others attend to the correct image re-

gion and reconstruct the corresponding phrase [34]. The



architectures are becoming ever more intricate: Hinami &

Satoh [12] train object detectors with an open vocabulary,

Plummer et al. [28] condition the textual representation on

the phrase category. We also find approaches that treat

phrases not individually, but as a sequential and contex-

tual process [7]. Recent approaches integrate visual features

from object detectors into Transformer models [23, 25].

Weakly supervised systems [1, 4, 41, 43, 47, 6] do not

have access to paired bounding boxes and phrases in train-

ing. They learn to ground phrases implicitly by solving

downstream tasks such as caption-to-image retrieval [6],

use external region proposals and knowledge [1, 47], atten-

tion maps [41] or co-occurrence statistics [43].

The regular techniques for text-based image retrieval

methods (TBIR) are mapping text and image features to

a learnt joint space in order to compute distances between

vectors from the two different modalities [14, 17, 22, 30].

Early approaches [17] adopt a CNN-based region proposal

network to encode the image at the level of objects and

a bidirectional RNN [36] for text processing. Latest ap-

proaches have a finer degree of refinement of visual and

textual features. E.g. [22] use a Graph Convolutional Neu-

ral Network (GCN) [19] to reason about the relationships of

the proposed image regions. With a gate and memory mech-

anism, they reason globally on the relationships-enhanced

features of the GCN. The latest innovation to this line of

work is the Visual Transformer model [5, 25] with the self-

attention mechanism. It is pre-trained in a multi-task fash-

ion (masked multi-modal modelling and multimodal align-

ment prediction) on even larger training data and is applica-

ble to many downstream tasks beyond image retrieval. The

most similar approach to ours classifies image regions into

objects, actions and properties and uses these labels and

visual features to learn their semantic ordering [14]. The

ordering is supervised by sentence generation through an

LSTM and sentence similarity scoring. In our work, we aim

to test the performance of an unsupervised system that has

access only to the classified object labels and noun phrases

in the text – while the aforementioned systems are guided

by a loss function, have access to visual features and pro-

cess these and textual embeddings with high sophistication.

Recently, Wang&Specia [38] developed the (to the best

of our knowledge) only other approach on phrase ground-

ing that does not need paired training examples. They

combine the object detections of four different systems and

one colour detector into labelled bounding box candidates.

They embed all labels and the phrase with word vectors and

rank the labels by cosine similarity. As grounding proposals

they choose the bounding box of the highest-ranked label.

Their method can be considered a ‘bag of objects (BoO)’

approach. We, by contrast, will make use of a single object

detector and exploit structured context in the linguistic and

the visual modality.

3. Contextualising phrase localisation with

knowledge and scene graphs

The phrase grounding task measures a system’s capacity

of identifying an area in a given image I that a phrase p is

referring to. The system is tasked to deliver the bounding

box b in image I that circumscribes the location of that area.

Grounding without training Our approach to the task

does not rely on annotated pairs {p, b} (p a phrase, b a

bounding box in I), as in strongly supervised settings, nor

on pairs {p, I} as in weakly supervised settings. Our model

uses information from (i) out-of-the-box object detectors,

(ii) out-of-the-box scene graph generators, (iii) external

linguistic knowledge bases and (iv) word embeddings ob-

tained from language embedding models trained on generic

text, not specifically on phrases or vocabulary of a phrase

grounding dataset. Even though models used for generating

(i-iv) may be trained with supervision, our phrase ground-

ing system is completely unsupervised and all information

it uses is extracted from readily available models or knowl-

edge bases.

Contextualisation When creating a visual representation

for phrase grounding, our aim is to exhaustively capture the

visual content. Wang&Specia [38] employ multiple object

detectors to extract a ‘bag of objects (BoO)’: a set of de-

tected objects {b; l} consisting of their coordinates b and

predicted labels l. But a bag of objects does not model any

dependencies or neighbourhood between objects in the im-

age, and risks to ignore important contextual information.

We propose to use a structured representation of the im-

age content in form of a scene graph that models relation-

ships between objects. This design puts objects into context

and thus, the visual context can offer distinguishing con-

text information that may, e.g., disambiguate cases where

the same coarse-grained category label is assigned to dif-

ferent entities, while the visual neighbours may offer addi-

tional hints for correctly grounding the phrase. An example

is seen in the top left image of Fig. 5.

Another advantage of a structured visual and linguistic

representation is that it can bridge missing explicitness in

the language. This is seen in Fig. 2, where we ground the

phrase uniforms. A BoO approach will lack the information

that a set of shirts, jackets, pants belonging to women jointly

constitute what is called uniforms. By contrast, an LKB

such as WordNet captures the relatedness of these concepts

trough a relation path e.g. uniform – clothing – skirt.

Model overview We build a visual representation of

the image I consisting of a set of object proposals Ω =

{oi} in the form of bounding boxes and a linguistic label

oi = 〈bi, li〉. We extend prior work by (i) including rela-

tional information rij between object detections that form

a scene graph SG = {(oi, rij , oj)} (red nodes in Fig. 3).

We also (ii) enrich the linguistic components of the object



Figure 3. Sketch of our approach. The scene graph (red) and know-

ledge nodes (green) – retrieved through is-a relations – contain

information about bounding boxes and word embeddings. The

embeddings are compared with cosine similarity to the word em-

bedding of the phrase and with WordNet path similarity between

label and phrase. After ranking, the bounding box related to the

maximum score is the grounding result.

representations li by linking them to structured semantic

knowledge from a linguistic knowledge base (green nodes

in Fig. 3). Specifically, we (a) map labels li of the scene

graph nodes to small sub-graphs {ki} that connect li with

its direct neighbours in LKB, using selected relations, such

as hyponymy in WordNet, or else (b) use the full LKB to en-

hance the search for the best-fitting phrase-object pair, using

a shortest path method to compute path similarity.

To obtain linguistic representations for the phrases pi
in the text, we use a language embedding model to encode

them into vectors phi . We use same embedding model to

encode the labels rij and lemmas li in the enriched vi-

sual representation SG ∪ {ki} (i.e., the labelled object

nodes and edges in the scene graph and the linked subgraphs

{ki} from the LKB), converting them to vectors in SG =

{(〈bi, l
h
i 〉, r

h
ij , 〈bj , l

h
j 〉)} (and similarly for the nodes in sub-

graphs {ki}) using the word embedding model. Finally, we

map the phrases pi to all concepts si in the LKB (using their

lemma) and select the one with shortest connecting path.

With these extensions, we can measure the similarity be-

tween phrase representations ph and any linguistic com-

ponent lh, rh or kh in the (enriched) visual representation

SG∪{ki} using (i) the cosine similarity metric over vectors

as well as (ii) a score based on the shortest path connecting

the concept representation of the phrase and the object la-

bel in the extended linguistic representation. By ranking the

distances of all pairings of phrase pi and visual object oj re-

presentations, we select the highest-ranking visual proposal

oi for the query phrase pi and generate the grounding result.

3.1. Structured visual­linguistic representations

Scene graph generation We first extract object detec-

tions with bounding boxes Ω = {oi}. We then extract a

scene graph from the image to build a graph of structured

proposals. The graph SG = Ω∪R = {(oi, rij , oj)} (repre-

sented in red in all figures) is described by the set of object

nodes Ω = {oi} containing bounding box information and

labels and the set of labelled edges that model visual rela-

tionships R = {rij} between detected objects.1

We extract scene graphs from images using the genera-

tor of Zellers et al. [45]. We choose this model because it

performs almost state-of-the-art and includes ready-to-run

code. The scene graph generation model [45] was trained

on Visual Genome [21] with 150 object labels and 50 re-

lationships. For generating the scene graph, we use the 50

most confident relationships from the generator’s output.

Enhancing visual with structured linguistic representa-

tions When grounding an open-vocabulary phrase to an

image object labelled with a coarse category, we need to in-

form the nodes oi of the scene graph with semantic knowl-

edge in order to make correct predictions. When using dis-

tributional word embeddings to encode object labels in a

vector space, one has to reckon with unintuitive side-effects,

e.g. when the vector representation of groom is closer to

the one for woman than the one for man. To counter such

effects, we create an enhanced representation of man by

aggregating it with the meaning of neighbouring concepts

{ki} in the linguistic ontology that further characterise the

entity. For this, we map each object label li to a concept

ki ∈ LKB and retrieve the direct neighbours {ki}. We

then shift the vector ohi towards an enriched, contextualised

meaning õhi by computing the mean over the embeddings of

a node ohi and its direct neighbour concepts {khi }. E.g., the

neighbours sir, guy, adult male guide the system towards

choosing the correct answer man, instead of woman. We

apply similar aggregations to SG nodes and relations, to ob-

tain contextualised visual object representations ōhi .

In this work, we experiment with two LKB’s: Word-

Net [9] and the Open Images (OI) v5 [20] class label hi-

erarchy. When using WordNet as a LKB, the mapping of

li to {ki} is facilitated, since the object labels are annotated

with WordNet senses. The direct neighbours in {ki} consist

of synonyms, hypernyms and hyponyms. For the OI label

hierarchy, the neighbourhood graph {ki} consists only of

the direct hypernyms and hyponyms, as illustrated in Fig. 4.

The mapping between li and ki is also unambiguous, be-

cause we use Faster-RCNN [33] trained on Open Images

v4 [20] to predict objects as grounding proposals, thus the

li labels are all linked to the hierarchy.2

1For comparability with Wang&Specia we remove any detections (and

relationships between them) from the scene graph that are not covered by

the object detector.
2We only report the results with the OI hierarchy. While we also ex-



3.2. Text representation

For phrase grounding we map query phrases to a vector

representation. For this we perform part-of-speech tagging

with the Stanford Tagger [37] using the NLTK package. We

extract and lower-case adjectives and nouns, perform spell

checking and embed them using word embeddings. For

multi-word phrases we compute the mean over all token em-

beddings in the phrase to obtain the final phrase vector. We

use 300-dimensional word2vec [26] embeddings.

As an alternative to word embeddings, we utilise Word-

Net to compare labels and phrases. Lexical meaning in

WordNet is represented in terms of synsets, i.e. sets of sy-

nonyms for a given word sense. Meaning relations (hyper-

nymy, hyponymy, etc.) are defined between synsets. We

link phrases to labelled nodes in the visual representation

by mapping all words in a phrase to all their possible Word-

Net senses and search for the shortest paths that connect any

synset of the phrase p to any candidate labelled object oi.
3

3.3. Grounding by ranking proposals

In the final phrase grounding step we rank the propos-

als from the visual representation and select the highest-

ranking candidate according to their semantic similarity.

For ranking (Fig. 3), we compute the grounding score γi
between a phrase p and an image region oi by combining

(i) cosine similarity between word embeddings of labels

of the visual representation ohi and the embedding of the

query phrase phi multiplied by (ii) the maximum WordNet

path similarity score path sim = 1

d+1
∈ [0, 1] based on

the shortest path distances d connecting the label synset oi
and any synset psyns of the phrase in the WordNet hyper-

nym/hyponym taxonomy. The node or relation with maxi-

mum grounding score γi is chosen and its bounding box is

predicted as the phrase localisation result.

γi = cosim(ohi , p
h) ·max

syns
(path sim(oi, psyns)) (1)

We adopt several policies: If a knowledge node is chosen

by the process, the predicted image coordinates are defined

by the bounding box of the scene graph node to which the

knowledge is attached. If two nodes obtain equal scores,

we predict the union of their bounding boxes. But if a scene

graph node and a knowledge node score the same, we con-

sider only the scene graph node, to minimise the amount of

perimented with WordNet [9] manifesting similar results, we decided to

encode WordNet knowledge only in the language representation (Section

3.2) because the (i) bigger size of the WordNet ontology allows for com-

puting similarities between phrases and nodes, while the OI label hierarchy

is too small for this purpose, delivering many out-of-vocabulary errors. (ii)

In the visual representation, by contrast, WordNet expands the visual graph

with many superfluous fine-grained labels.
3Each node oi in the scene graph is annotated with its WordNet [9]

synset using the Visual Genome [21] sense annotations, hence the scene

graph nodes are disambiguated and we use a single synset per node label.

Figure 4. Excerpt from the Open Images v5 hierarchy [15].

equally scoring nodes (e.g., when the object detector pre-

dicts person, woman and knowledge appends again person).

3.4. Image retrieval by ranking proposal scores

When considering phrase grounding alignments between

all phrases in a sentence and an image, we can use the

sum of their grounding scores for sentence-to-image re-

trieval. By doing so, we can assess the practicality of phrase

grounding methods requiring no training nor paired anno-

tated data on the well-established benchmark of sentence-

image retrieval. We do not expect these methods to perform

very well, but neither did we expect them to perform com-

petitively on the phrase grounding task.

We create an unsupervised image-from-text search en-

gine without involving any training data, by ranking the

grounding score per image ΓI between the query sentence

and 1000 candidate images (following the standard protocol

for Flickr30k). ΓI is defined as the sum4 of the grounding

scores between the N phrases in the sentence ΓI =
∑N

n γn.

4. Experiments

We test our method on the established Flickr30k En-

tities [30] dataset for phrase grounding. It is based on

Flickr30k [44] and offers annotated noun phrases in image

captions that are aligned with bounding box coordinates in

the image. The vocabulary of the phrases is relatively di-

verse, comprising over 5,000 words on the whole dataset

and 2806 on the test split. The test set amounts to 1,000

images, 16,576 phrases, of which 7,180 are unique.

In addition we perform an experiment on sentence-

image retrieval on the Flickr30k[44] test set, which com-

prises 1000 images with five captions each. For each cap-

tion the system is tasked to choose the image with which

it was paired from the full set of 1000 images. The data

contains around 5 phrases per image in average.

Phrase grounding metric: In order to be comparable to

previous work, we choose the accuracy metric for evalua-

tion. A bounding box is considered to be correctly detected

if the intersection over union (IoU ) with the ground truth

is greater than or equal to 0.5. As an upper bound UB we

report the percentage of the cases in which the ground truth

can be be found in the proposal set with IoU ≥ 0.5.

4In this setting, normalisation is not necessary because each sentence

has the same number of phrases.



Method Acc (Var) % UB %

No training

tfoid+CC+PL [38] 50.49 (5.37) 57.81

tfoid [38] 44.69 50.04

No training – ours

tfoid (reimpl. of [38]) 46.08 (7.02) 61.17

tfoid + sg 46.62 (6.50) 61.17

tfoid + hierkn 46.82 (6.73) 61.17

tfoid + hierkn + wnpath sim 47.74 (6.78) 61.17

tfoid + sg + wnpath sim 47.92 (6.53) 61.17

visgen 56.30 (5.51) 87.88

visgen + sg 56.40 (5.42) 87.88

visgen + sg + wnpath sim 57.08 (5.30) 87.88

Weakly supervised

GroundeR [34] 28.94 77.90

KAC Net + Soft KBP [1] 38.71 (8.41)

Strongly supervised

GroundeR [34] 47.81 77.90

CCA [30] 50.89 ≥ 75.73

Wang et al. [39] 51.05 84.58

QRC-Net [3] 65.14 (3.77) 89.61

VisualBERT [23] 71.33 87.45

Table 1. Results on Flickr30k Entities. UB: upper bound,

Var: variance over categories (cf. Tbl. 2), sg: scene graph,

wnpath sim:WordNet path similarity, tfoid: Faster-RCNN trained

on Open Images, hierkn: Open Images hierarchical knowledge,

visgen: Faster-RCNN trained on Visual Genome.

Image retrieval metric: For sentence-image retrieval we

report performance as median rank (mdR) and Recall@k,

i.e. the percentage of instances for which the ground truth

was ranked among the top k proposals.

4.1. Phrase grounding on Flickr30kEntities

We compare our method to Wang&Specia [38], the only

other approach requiring no paired training data. We also

compare to weakly supervised [1, 34] and fully super-

vised settings [3, 23, 34, 39]. Hereby we put our method

into perspective: while we do not rely on any annotated

pairs, weakly and strongly supervised settings use annotated

data. Furthermore, they are unfairly overpowered: besides

bounding box proposal generators they compute visual fea-

tures on the image and refine word vectors during training.

Table 1 and 2 report our results for phrase grounding on

Flickr30kEntities. We show results for different procedures

of computing the visual representation, which fall into two

main categories:

(a) Coarse-grained labels: Here we rely on an object

detector with a relatively low number (545) of la-

bels compared to the phrase vocabulary. This tfoid

(OI) detector is also used in Wang&Specia. We re-

implement their approach for two reasons: Firstly,

we want to create a fair unsupervised baseline for

phrase grounding that uses a single detector, the same

amount as the (weakly) supervised systems we com-

pare to. Secondly, we consider a recalculation of

their results necessary, since we extract 16,576 phrases

from Flickr30kEntities, while Wang&Specia’s results

are based on only 14,481 phrases.5

tfoid is our re-implementation of Wang&Specia using

only object detection proposals with confidence higher

than 0.1 from a Faster-RCNN trained on Open Images

on 545 object categories.

tfoid+sg includes labels (but no bounding boxes be-

yond the tfoid detections) and relationships corre-

sponding to the neighbours in the scene graph and

tfoid+sg+wnpath sim extends tfoid+sg in that it com-

putes the grounding score using the combination of co-

sine similarity with WordNet path similarity between

the scene graph representation and the phrases.

tfoid + hierkn performs grounding with the visual rep-

resentation without scene graph information, but en-

riched with the Open Images label hierarchy (in Fig. 4)

and tfoid + hierkn+wnpath sim combines cosine simi-

larity with the WordNet path similarity.

(b) Fine-grained labels: Here the object detector is trained

with a relatively big vocabulary for object detectors:

visgen represents a Faster-RCNN model trained on

Visual Genome (mAP = 4.4) with a label set of

1600 objects available at [42]. All detections have

a confidence higher than 0.1. We combine it with

the scene graph and WordNet path similarity in

visgen+sg+wnpath sim.6

Our best performing model in the detector with low vo-

cabulary setting (a) integrates scene graphs, the WordNet

structure and slightly outperforms our direct competitor in

the single-detector setting [38].7 We observe small and

comparable increases when using the contextualised repre-

sentations based on the scene graph and the label hierarchy

as external knowledge, which go along with a reduction of

variance over phrase categories (see Table 2). The extension

of similarity-based ranking using WordNet path similarity

shows consistent improvements over the contextualised rep-

resentations and over the BoO baseline.

When using a detector with large vocabulary, we set

a new baseline for models without training nor annotated

data. We observe a higher BoO baseline, which is also re-

flected in the raised upper bound (ca. 88%), exploring the

limits of unsupervised phrase grounding systems.

Comparison to systems using weakly supervised meth-

ods shows that both our and Wang&Specia’s method that

5For extracting phrases, we use functionality available on the GitHub

page of the Flickr30K Entities dataset [27].
6We do not report experiments of visgen enriched with the label hi-

erarchy because its vocabulary of 1600 classes is much richer than the

hierarchy with around 600 labels.
7With our own reimplementation. Compared to [38]’s published results

using tfoid as single detector we observe an increase of 3.5 pp. accuracy.



Method people clothing bodyparts animals vehicles instruments scene other overall var

tfoid 66.94 36.95 21.03 81.27 82.02 57.41 18.73 25.62 46.09 7.02

tfoid+sg+wnpath sim 67.35 43.37 21.80 81.47 82.27 57.41 21.45 26.95 47.92 6.53

visgen 67.68 56.98 34.76 73.75 73.65 6.17 60.23 38.29 56.30 5.51

visgen+sg+wnpath sim 67.92 57.11 34.61 73.75 73.65 8.02 60.69 38.52 57.08 5.31

Table 2. Accuracy per category on Flickr30k Entities. var: variance over categories, sg: scene graph, wnpath sim: WordNet path similarity.

Figure 5. Grounding output example on Flickr30kEntities. The

query phrases are represented in black and are localised by tfoid

in cyan. Magenta stands for the response of our system enabled

with the contextualisation method indicated in the grey box.

do not require training nor paired annotated data, outper-

form these systems by a large margin. We also stress that

our results outperform many supervised systems, thus set-

ting a strong baseline for state-of-the-art supervised models.

We also compute the variance of the accuracy over the

eight phrase categories in the dataset (see Table 2). This

shows how the performance throughout all classes varies

when employing a different object detector, but also the

consistent gains in accuracy we obtain by enriching the rep-

resentation with additional knowledge – along with reduc-

tion of the variance of results for each category.

Impact of the size of the label set. In the coarse-

grained label setting (a) we compare against Wang&Specia

and the re-implementation tfoid of their best performing

single object detector method and show that our method

visgen+sg+wnpath sim outperforms their ensemble model

that relies on three different object detectors. The signifi-

cantly higher bound of our object detector (88% compared

to 58% for Wang&Specia), can not be the only explana-

tion for the observed performance improvement: Table 1

shows that accuracy does not directly correlate with the up-

per bound. While a higher bound increases the possibility

of finding the searched object, more coverage of the image

generates more proposals, thus more confounders for the

ranking step. We thus suspect that the reason for the accu-

racy increase lies in the more fine-grained label set rather

than lower coverage of tfoid, and in the added scene graph

structure together with the ranking based on the WordNet

path similarity score.

Impact of the contextualised visual representation. In

Table 1 we show with tfoid+sg that a contextual represen-

tation of the image (compared to BoO) brings only minimal

benefit (little above half of percentage point) for grounding.

This improvement might seem small at first, but there are

important gains hidden by the accuracy statistics: In Fig. 5

on the top left we see one positive and one negative exam-

ple of the scene graph impact. The system’s pink response

in the top left corner is informed by the scene graph con-

text of hat, shifting the vector representation towards the

correct meaning. In the second example, we see the effect

of the evaluation procedure where a union of the bounding

boxes representing one phrase is created: The ground truth

boundary comprises all men in the picture. As an effect of

the scene graph contextualisation, the nine man detections

in the picture are unique due to their different neighbour-

hood. The result in cyan of the system not informed by

the scene graph structure, does not differentiate between the

men, generating the right proposal for the query crowd. The

system having access to the scene graph (in pink), ranks

unique candidates and detects only one part of the crowd.

An additional reason for a lower than expected impact of

the scene graph lies in errors of the generated scene graph.

Another reason is the loss of some generated scene graph

parts when mapping it to the existing object detections, in

order to be comparable to previous work by not including

additional bounding boxes.

Impact of knowledge injection and WordNet path simi-

larity computation. By injecting the already existing knowl-

edge of the label hierarchy of tfoid+hierkn, we show that

already a small amount of linguistic knowledge can boost

the performance (see Fig. 5 for examples). Our methods

tfoid+hierkn+wnpath sim, tfoid+sg+wnpath sim compris-

ing the WordNet path similarity score together with the

cosine similarity show the greatest jump in performance

(around 1 pp. and 1.5 pp. respectively) and represent our

second way to introduce the structure of a linguistic know-



Figure 6. Sentence-image retrieval examples on Flickr30k. Two

positive (green bounding box) with the system’s second guess (no

bounding box) over the same coloured background. One negative

example (red) where the second guess is the ground truth example.

ledge base. By these means, we show that a complemen-

tary way of computing word similarities besides just using

word embeddings benefits our purposes. An analysis of the

number of hops in WordNet between phrase and proposed

grounding shows that around 80% of the correct proposals

are made by number of hops no greater than 3 and that they

lead to better predictions than larger numbers of hops.

4.2. Text­based image retrieval by proposal ranking

We performed experiments with both the tfoid detector

having a relatively low upper bound (around 60%), as well

as with visgen with a higher upper bound (roughly 88%).

We select representative results of a selection of sentence-

retrieval systems and report our experiments in Table 3 with

a BoO approach with visgen and with integrating WordNet

path similarity visgen+wnpath sim, hereby improving in

R@1. We observe that while our method requiring no train-

ing is no match to the state-of-the-art systems trained with

supervision, it is nonetheless decent for the only training-

less sentence-image retrieval method known to us.

Discussion While our phrase grounding method is keep-

ing pace with (weakly) supervised methods, we are stress-

testing our phrase grounding system by extending it to

sentence-image retrieval. Simultaneously, our method is

an experiment for what a sentence-image retrieval method

without any training nor supervision potentially delivers.

The system is (a) requiring no training – but off-the-shelf

object detectors; (b) uses no visual features – only the lan-

guage representation of phrases and object detection labels;

(c) no language context – but the noun phrases in the sen-

tence, and yet visgen can select in 14% of the cases the

right picture (among 999) in the first trial. While this un-

Method R@1 R@5 R@10 mdR

DVSACVPR15[17] 15.2 37.7 50.5 9.2

SCOCVPR18 [14] 56.7 87.5 94.8 -

ViLBERTNeurIPS19 [25] 58.2 84.9 91.52 -

No training

tfoid 8.7 19.8 27.5 52

visgen 14.6 34.0 43.7 17

visgen + wnpath sim 15.3 33.9 43.7 16

Table 3. Results on sentence-based image retrieval on Flickr30k

in terms of Recall@k/R@k (high is good) and median rank mdR

(low is good).

supervised method represents strong competition to the su-

pervised neural computer vision systems of 2015, it is no

challenge to recent supervised models. This demonstrates

that while object detectors can be used to sufficiently dis-

criminate between different image regions when perform-

ing phrase grounding without regarding the image pixels,

visual features are necessary when being challenged with

the much harder task to rank 1000 pictures. In this task, sev-

eral pictures can be characterised by the same BoO (cf. the

negative examples in Fig. 6, where both pictures contain a

man, woman, cars and distinguishing features like ethnicity

and the glass are not captured by the object detector). Fur-

thermore, full-fledged processing of the linguistic modality

incorporated in the sentence is crucial: only looking at the

noun phrases misses discriminating clues in the language.

5. Conclusion

We propose a method that tackles the phrase ground-

ing task without using annotated image-language pairs. We

show that a structured representation of images and injec-

tion of linguistic knowledge are beneficial in a system that

requires no training nor loss function to guide the atten-

tion to relevant input regions. Our model surpasses the

performance of all weakly supervised and many supervised

models on Flickr30kEntities and establishes a more serious

baseline for (weakly) supervised models than prior work. A

crucial factor are extensions for visual and linguistic contex-

tualisation, which may be further enhanced in future work.

We also stress-test our alignment system on the challeng-

ing Flickr30k sentence-image retrieval task and achieve first

noteworthy results for a system without a training phase.

The strong performance of phrase grounding methods

requiring no training casts doubt on the adequacy of su-

pervised architectures trained on annotated phrase-region

pairs, since these highly complex and over-parameterised

trainable systems do not improve much over our approach,

which does not require a training stage.
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