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Abstract

Grounding phrases in images links the visual and the tex-
tual modalities and is useful for many image understanding
and multimodal tasks. All known models heavily rely on
annotated data and complex trainable systems to perform
phrase grounding — except for a recent work [38] that pro-
poses a system requiring no training nor aligned data, yet is
able to compete with (weakly) supervised systems on popu-
lar phrase grounding datasets. We explore and expand the
upper bound of such a system, by contextualising both the
image and language representation with structured repre-
sentations. We show that our extensions benefit the model
and establish a harder, but fairer baseline for (weakly) su-
pervised models. We also perform a stress test to assess
the further applicability of such a system for creating a sen-
tence retrieval system requiring no training nor annotated
data. We show that such models have a difficult start and a
long way to go and that more research is needed.

1. Introduction

When integrating vision and language in a multimodal
task (such as Visual QA, Dialogue or Commonsense Rea-
soning), it is essential to align textual phrases with the im-
age regions they refer to. This is called phrase grounding or
phrase localisation. Phrase grounding is important because
by grounding the textual modality in the image we link
knowledge and context from both modalities and can expect
improved model performance in joint vision and language
tasks. Evaluating a system’s ability of phrase grounding
also opens the door to interpretability: We can infer what
regions or phrases mattered for system predictions, inspect
whether the system made a decision informed on both vi-
sion & language simultaneously and test whether the model
aligned the two modalities without confusion.

Phrase grounding is one step towards solving general vi-
sion & language tasks [18, 21, 30]. While CV object detec-
tors are trained to recognise (a fixed class of) objects from
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Figure 1. Strong, weak and no supervision. Our approach belongs
to the latter. Scene graph in red, external knowledge in green.

a closed vocabulary (e.g. cat), phrase grounding is expected
to localise objects in an image referred to with free-form
phrases (e.g. a newborn Siamese kitten). Phrase grounding
can thus be considered a generalised object recognition task
that considerably extends the visual-linguistic knowledge
captured in pre-trained object detectors, and that requires
systems to have or exploit additional linguistic knowledge.

A related application of phrase grounding is sentence-
to-image alignment. Here the main interest is to detect im-
ages that correspond to a linguistic description, and phrase
grounding scores can be re-purposed for aligning images
and textual descriptions [16, 30].

The majority of phrase grounding methods have been
strongly supervised with annotated phrase-region pairs [2,
3,11, 12,13, 23,28, 29, 34, 35, 40, 39, 46] or weakly su-
pervised using sentence-image pairs [1, 4, 41, 43,47, 6] (cf.
Fig. 1 left and middle). In recent work, Wangé&Specia [38]
propose to perform phrase grounding without any annota-
tion pairs, by aligning caption phrases with object labels
proposed by multiple object detectors and selecting a "best’
alignment by pairing the linguistically most similar phrase—
label pairs. Their approach outperforms weakly supervised
settings and defines a strong baseline for fully supervised



Figure 2. Simplified scene graph (SG) for the image on the left.
Nodes in SG represent objects with associated bounding box in-
formation (labels and coordinates).

methods. Wang&Specia’s method can be characterised as
a ‘bag of words (BoW)’ approach that exploits the linguis-
tic similarity of paired caption phrases and object labels as-
signed to region proposals — without considering structural
properties of text or image. Moreover, their method com-
bines outputs of different detectors, and can be regarded
as being unfair against (weakly) supervised models, since
the latter rely on only one region proposal backbone with a
bounded coverage. Another weakness of their model is that
it does not consider context. Their distributed word embed-
dings are not contextualised and can suffer from undesired
associations, e.g. mapping synonyms and antonyms to sim-
ilar space regions — a displeasing property when searching
for most similar object labels and phrases.

Still, Wang&Specia’s baseline requiring no training or
supervision is an interesting approach and worth being fur-
ther explored in comparison to systems that require super-
vision from large training sets. Thus, our work has two ob-
jectives: we aim (i) to explore and expand the upper bound
of an unsupervised approach by extending it with contextu-
alisation in the image and language representation, and (ii)
to assess its performance on the related task of sentence-to-
image retrieval. Our contributions relate to four aspects:

1) Label set size and upper bound of the underlying object
detector: Wang&Specia employ a collection of object
detectors that jointly improve system results by con-
siderable degrees. In order to ensure fair comparison
to competing (weakly) supervised systems, we aim to
employ a single object detector with a finer-grained la-
bel set. Also, while Wang&Specia’s object detectors
offer a proposal upper bound of ca. 50%, we establish
a more realistic improved baseline using a single object
detector with a proposal upper bound close to 90%.

ii) Structuring the visual representation: While Wang&
Specia compare unstructured label sets (BoW), we
contextualise the visual modality by exploiting struc-
tured information about the image provided by a scene
graph. This allows us to address imperfections of ob-
ject detectors and small class label sets.

iii) Knowledge injection: We contextualise the seman-
tic labels of image region proposals in the linguistic
modality by grounding them in structured background
knowledge sources and thereby extend the model’s lin-
guistic capacities. We (a) compensate the deficiencies
of object detectors by enriching the vocabulary cover-
age of the upstream object detection system (using the
Open Images v5 [20] label hierarchy) and (b) compute
word similarity on the WordNet [9] graph structure, as
an alternative to only measuring cosine similarity over
distributional word embeddings as in Wang&Specia.

iv) Unsupervised phrase grounding for image retrieval:
We explore the limitations of unsupervised phrase
grounding by applying our method to the sentence-
image retrieval task. We do this by re-purposing phrase
grounding scores as image ranking scores.

Experiments on the Flickr30kEntities dataset [30] show
that (a) our method — using no training nor supervision,
but scene graphs and external knowledge — outperforms
state-of-the-art weakly supervised models by a large margin
and surpasses the majority of supervised models, establish-
ing a strong baseline for strongly supervised models. Our
model that uses only one object detector can be a good al-
ternative to engineering a suitable ensemble of object detec-
tors: it outperforms Wang&Specia’s system on Flickr30k-
Entities, and we show that it benefits from leveraging know-
ledge and context in both modalities. Yet, while our method
is competitive when tasked to ground entities in the same
image, (b) our experiments on text-based image retrieval on
Flickr30k [44] show that it its results can not compete with
recent supervised state-of-the-art systems. Nonetheless, our
method sets a noteworthy baseline as the (to the best of our
knowledge) only sentence-image retrieval method requiring
no supervision and no training data.

2. Related work

Increasingly accurate object recognition systems are be-
ing developed that extract bounding boxes of detected ob-
jects and label these with classes from a fixed class label set
(vocabulary) [8, 10, 24, 31, 32, 33, 48]. The task of phrase
grounding clearly profits from enhanced object recognition
systems, yet it needs to solve an extended task: grounding
phrases from an open vocabulary to objects in an image, by
aligning phrases with proposed bounding boxes.

Current research on phrase grounding can be divided into
strongly supervised and weakly supervised approaches.

Strongly supervised approaches [2, 3,7, 11, 12, 13, 23,

, 29,34, 35,40, 39, 46] make use of different techniques:
some project the visual and textual modalities onto the same
space [29, 27, 40, 39], others attend to the correct image re-
gion and reconstruct the corresponding phrase [34]. The



architectures are becoming ever more intricate: Hinami &
Satoh [12] train object detectors with an open vocabulary,
Plummer et al. [28] condition the textual representation on
the phrase category. We also find approaches that treat
phrases not individually, but as a sequential and contex-
tual process [7]. Recent approaches integrate visual features
from object detectors into Transformer models [23, 25].

Weakly supervised systems [1, 4, 41, 43, 47, 6] do not
have access to paired bounding boxes and phrases in train-
ing. They learn to ground phrases implicitly by solving
downstream tasks such as caption-to-image retrieval [6],
use external region proposals and knowledge [ 1, 47], atten-
tion maps [41] or co-occurrence statistics [43].

The regular techniques for text-based image retrieval
methods (TBIR) are mapping text and image features to
a learnt joint space in order to compute distances between
vectors from the two different modalities [14, 17, 22, 30].
Early approaches [17] adopt a CNN-based region proposal
network to encode the image at the level of objects and
a bidirectional RNN [36] for text processing. Latest ap-
proaches have a finer degree of refinement of visual and
textual features. E.g. [22] use a Graph Convolutional Neu-
ral Network (GCN) [19] to reason about the relationships of
the proposed image regions. With a gate and memory mech-
anism, they reason globally on the relationships-enhanced
features of the GCN. The latest innovation to this line of
work is the Visual Transformer model [5, 25] with the self-
attention mechanism. It is pre-trained in a multi-task fash-
ion (masked multi-modal modelling and multimodal align-
ment prediction) on even larger training data and is applica-
ble to many downstream tasks beyond image retrieval. The
most similar approach to ours classifies image regions into
objects, actions and properties and uses these labels and
visual features to learn their semantic ordering [14]. The
ordering is supervised by sentence generation through an
LSTM and sentence similarity scoring. In our work, we aim
to test the performance of an unsupervised system that has
access only to the classified object labels and noun phrases
in the text — while the aforementioned systems are guided
by a loss function, have access to visual features and pro-
cess these and textual embeddings with high sophistication.

Recently, Wang&Specia [38] developed the (to the best
of our knowledge) only other approach on phrase ground-
ing that does not need paired training examples. They
combine the object detections of four different systems and
one colour detector into labelled bounding box candidates.
They embed all labels and the phrase with word vectors and
rank the labels by cosine similarity. As grounding proposals
they choose the bounding box of the highest-ranked label.
Their method can be considered a ‘bag of objects (BoO)’
approach. We, by contrast, will make use of a single object
detector and exploit structured context in the linguistic and
the visual modality.

3. Contextualising phrase localisation with
knowledge and scene graphs

The phrase grounding task measures a system’s capacity
of identifying an area in a given image I that a phrase p is
referring to. The system is tasked to deliver the bounding
box b in image [ that circumscribes the location of that area.

Grounding without training Our approach to the task
does not rely on annotated pairs {p,b} (p a phrase, b a
bounding box in I), as in strongly supervised settings, nor
on pairs {p, I'} as in weakly supervised settings. Our model
uses information from (i) out-of-the-box object detectors,
(i1) out-of-the-box scene graph generators, (iii) external
linguistic knowledge bases and (iv) word embeddings ob-
tained from language embedding models trained on generic
text, not specifically on phrases or vocabulary of a phrase
grounding dataset. Even though models used for generating
(i-iv) may be trained with supervision, our phrase ground-
ing system is completely unsupervised and all information
it uses is extracted from readily available models or knowl-
edge bases.

Contextualisation When creating a visual representation
for phrase grounding, our aim is to exhaustively capture the
visual content. Wang&Specia [38] employ multiple object
detectors to extract a ‘bag of objects (BoO)’: a set of de-
tected objects {b;!} consisting of their coordinates b and
predicted labels [. But a bag of objects does not model any
dependencies or neighbourhood between objects in the im-
age, and risks to ignore important contextual information.
We propose to use a structured representation of the im-
age content in form of a scene graph that models relation-
ships between objects. This design puts objects into context
and thus, the visual context can offer distinguishing con-
text information that may, e.g., disambiguate cases where
the same coarse-grained category label is assigned to dif-
ferent entities, while the visual neighbours may offer addi-
tional hints for correctly grounding the phrase. An example
is seen in the top left image of Fig. 5.

Another advantage of a structured visual and linguistic
representation is that it can bridge missing explicitness in
the language. This is seen in Fig. 2, where we ground the
phrase uniforms. A BoO approach will lack the information
that a set of shirts, jackets, pants belonging to women jointly
constitute what is called uniforms. By contrast, an LKB
such as WordNet captures the relatedness of these concepts
trough a relation path e.g. uniform — clothing — skirt.

Model overview We build a visual representation of
the image I consisting of a set of object proposals 2 =
{0;} in the form of bounding boxes and a linguistic label
0; = (b;,l;). We extend prior work by (i) including rela-
tional information r;; between object detections that form
a scene graph SG = {(o;,7ij,0;)} (red nodes in Fig. 3).
We also (ii) enrich the linguistic components of the object
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Figure 3. Sketch of our approach. The scene graph (red) and know-
ledge nodes (green) — retrieved through is-a relations — contain
information about bounding boxes and word embeddings. The
embeddings are compared with cosine similarity to the word em-
bedding of the phrase and with WordNet path similarity between
label and phrase. After ranking, the bounding box related to the
maximum score is the grounding result.

representations l; by linking them to structured semantic
knowledge from a linguistic knowledge base (green nodes
in Fig. 3). Specifically, we (a) map labels /; of the scene
graph nodes to small sub-graphs {k;} that connect I; with
its direct neighbours in LKB, using selected relations, such
as hyponymy in WordNet, or else (b) use the full LKB to en-
hance the search for the best-fitting phrase-object pair, using
a shortest path method to compute path similarity.

To obtain linguistic representations for the phrases p;
in the text, we use a language embedding model to encode
them into vectors p?. We use same embedding model to
encode the labels 7;; and lemmas /; in the enriched vi-
sual representation SG U {k;} (i.e., the labelled object
nodes and edges in the scene graph and the linked subgraphs
{k;} from the LKB), converting them to vectors in SG =
{((b, 1), rfj, (b, l?>)} (and similarly for the nodes in sub-
graphs {k;}) using the word embedding model. Finally, we
map the phrases p; to all concepts s; in the LKB (using their
lemma) and select the one with shortest connecting path.

With these extensions, we can measure the similarity be-
tween phrase representations p” and any linguistic com-
ponent I, 7" or k" in the (enriched) visual representation
SGU{k;} using (i) the cosine similarity metric over vectors
as well as (ii) a score based on the shortest path connecting
the concept representation of the phrase and the object la-
bel in the extended linguistic representation. By ranking the
distances of all pairings of phrase p; and visual object o; re-
presentations, we select the highest-ranking visual proposal
o; for the query phrase p; and generate the grounding result.

3.1. Structured visual-linguistic representations

Scene graph generation We first extract object detec-
tions with bounding boxes ! = {o;}. We then extract a
scene graph from the image to build a graph of structured
proposals. The graph SG = QUR = {(0;,7;5,0;)} (repre-
sented in red in all figures) is described by the set of object
nodes 2 = {o;} containing bounding box information and
labels and the set of labelled edges that model visual rela-
tionships R = {r;;} between detected objects.'

We extract scene graphs from images using the genera-
tor of Zellers et al. [45]. We choose this model because it
performs almost state-of-the-art and includes ready-to-run
code. The scene graph generation model [45] was trained
on Visual Genome [21] with 150 object labels and 50 re-
lationships. For generating the scene graph, we use the 50
most confident relationships from the generator’s output.

Enhancing visual with structured linguistic representa-
tions When grounding an open-vocabulary phrase to an
image object labelled with a coarse category, we need to in-
form the nodes o; of the scene graph with semantic knowl-
edge in order to make correct predictions. When using dis-
tributional word embeddings to encode object labels in a
vector space, one has to reckon with unintuitive side-effects,
e.g. when the vector representation of groom is closer to
the one for woman than the one for man. To counter such
effects, we create an enhanced representation of man by
aggregating it with the meaning of neighbouring concepts
{k;} in the linguistic ontology that further characterise the
entity. For this, we map each object label [; to a concept
k; € LK B and retrieve the direct neighbours {k;}. We
then shift the vector 0? towards an enriched, contextualised
meaning 67 by computing the mean over the embeddings of
anode of* and its direct neighbour concepts {k?}. E.g., the
neighbours sir, guy, adult male guide the system towards
choosing the correct answer man, instead of woman. We
apply similar aggregations to SG nodes and relations, to ob-
tain contextualised visual object representations 6.

In this work, we experiment with two LKB’s: Word-
Net [9] and the Open Images (OI) v5 [20] class label hi-
erarchy. When using WordNet as a LKB, the mapping of
I; to {k;} is facilitated, since the object labels are annotated
with WordNet senses. The direct neighbours in {k; } consist
of synonyms, hypernyms and hyponyms. For the OI label
hierarchy, the neighbourhood graph {k;} consists only of
the direct hypernyms and hyponyms, as illustrated in Fig. 4.
The mapping between [; and k; is also unambiguous, be-
cause we use Faster-RCNN [33] trained on Open Images
v4 [20] to predict objects as grounding proposals, thus the
I; labels are all linked to the hierarchy.’

!For comparability with Wang&Specia we remove any detections (and
relationships between them) from the scene graph that are not covered by
the object detector.

2We only report the results with the OI hierarchy. While we also ex-



3.2. Text representation

For phrase grounding we map query phrases to a vector
representation. For this we perform part-of-speech tagging
with the Stanford Tagger [37] using the NLTK package. We
extract and lower-case adjectives and nouns, perform spell
checking and embed them using word embeddings. For
multi-word phrases we compute the mean over all token em-
beddings in the phrase to obtain the final phrase vector. We
use 300-dimensional word2vec [26] embeddings.

As an alternative to word embeddings, we utilise Word-
Net to compare labels and phrases. Lexical meaning in
WordNet is represented in terms of synsets, i.e. sets of sy-
nonyms for a given word sense. Meaning relations (hyper-
nymy, hyponymy, efc.) are defined between synsets. We
link phrases to labelled nodes in the visual representation
by mapping all words in a phrase to all their possible Word-
Net senses and search for the shortest paths that connect any
synset of the phrase p to any candidate labelled object 0;.’

3.3. Grounding by ranking proposals

In the final phrase grounding step we rank the propos-
als from the visual representation and select the highest-
ranking candidate according to their semantic similarity.
For ranking (Fig. 3), we compute the grounding score -;
between a phrase p and an image region o; by combining
(1) cosine similarity between word embeddings of labels
of the visual representation o and the embedding of the
query phrase p! multiplied by (ii) the maximum WordNet
path similarity score path_sim = T}A € [0,1] based on
the shortest path distances d connecting the label synset o;
and any synset pg,ns of the phrase in the WordNet hyper-
nym/hyponym taxonomy. The node or relation with maxi-
mum grounding score -y; is chosen and its bounding box is
predicted as the phrase localisation result.

% = cosim(of',p") - max(path sim(0i, puyns)) (1)
We adopt several policies: If a knowledge node is chosen
by the process, the predicted image coordinates are defined
by the bounding box of the scene graph node to which the
knowledge is attached. If two nodes obtain equal scores,
we predict the union of their bounding boxes. But if a scene
graph node and a knowledge node score the same, we con-
sider only the scene graph node, to minimise the amount of

perimented with WordNet [9] manifesting similar results, we decided to
encode WordNet knowledge only in the language representation (Section
3.2) because the (i) bigger size of the WordNet ontology allows for com-
puting similarities between phrases and nodes, while the OI label hierarchy
is too small for this purpose, delivering many out-of-vocabulary errors. (ii)
In the visual representation, by contrast, WordNet expands the visual graph
with many superfluous fine-grained labels.

3Each node o; in the scene graph is annotated with its WordNet [9]
synset using the Visual Genome [21] sense annotations, hence the scene
graph nodes are disambiguated and we use a single synset per node label.
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equally scoring nodes (e.g., when the object detector pre-
dicts person, woman and knowledge appends again person).

3.4. Image retrieval by ranking proposal scores

When considering phrase grounding alignments between
all phrases in a sentence and an image, we can use the
sum of their grounding scores for sentence-to-image re-
trieval. By doing so, we can assess the practicality of phrase
grounding methods requiring no training nor paired anno-
tated data on the well-established benchmark of sentence-
image retrieval. We do not expect these methods to perform
very well, but neither did we expect them to perform com-
petitively on the phrase grounding task.

We create an unsupervised image-from-text search en-
gine without involving any training data, by ranking the
grounding score per image I'; between the query sentence
and 1000 candidate images (following the standard protocol
for Flickr30k). I'; is defined as the sum® of the grounding
scores between the NV phrases in the sentence I'; = Zg Yn-

4. Experiments

We test our method on the established Flickr30k En-
tities [30] dataset for phrase grounding. It is based on
Flickr30k [44] and offers annotated noun phrases in image
captions that are aligned with bounding box coordinates in
the image. The vocabulary of the phrases is relatively di-
verse, comprising over 5,000 words on the whole dataset
and 2806 on the test split. The test set amounts to 1,000
images, 16,576 phrases, of which 7,180 are unique.

In addition we perform an experiment on sentence-

image retrieval on the Flickr30k[44] test set, which com-
prises 1000 images with five captions each. For each cap-
tion the system is tasked to choose the image with which
it was paired from the full set of 1000 images. The data
contains around 5 phrases per image in average.
Phrase grounding metric: In order to be comparable to
previous work, we choose the accuracy metric for evalua-
tion. A bounding box is considered to be correctly detected
if the intersection over union (/oU) with the ground truth
is greater than or equal to 0.5. As an upper bound UB we
report the percentage of the cases in which the ground truth
can be be found in the proposal set with JoU > 0.5.

“4In this setting, normalisation is not necessary because each sentence
has the same number of phrases.



Method

No training
tfoid+CC+PL [38] 50.49 (5.37) 57.81
tfoid [38] 44.69 50.04

No training — ours
tfoid (reimpl. of [35])
tfoid + sg

tfoid + hier,,

[ Acc(Var)% [ UB% |

46.08 (7.02) 61.17
46.62 (6.50) 61.17
46.82 (6.73) 61.17
tfoid + hierg,, + Wnpaih_sim | 47.74 (6.78) 61.17
tfoid + Sg + Wnpath_sim 47.92 (6.53) 61.17

visgen 56.30 (5.51) 87.88

visgen + sg 56.40 (5.42) 87.88
visgen + Sg + Wiy th_sim 57.08 (5.30) 87.88
Weakly supervised

GroundeR [34] 28.94 77.90
KAC Net + Soft KBP [1] 38.71 (8.41)

Strongly supervised

GroundeR [34] 47.81 77.90
CCA [30] 50.89 > 75.73
Wang et al. [39] 51.05 84.58
QRC-Net [3] 65.14 (3.77) 89.61
VisualBERT [23] 71.33 87.45

Table 1. Results on Flickr30k Entities. ~UB: upper bound,
Var: variance over categories (cf. Tbl. 2), sg: scene graph,
Wiyath_sim: WordNet path similarity, tfoid: Faster-RCNN trained
on Open Images, hiery,: Open Images hierarchical knowledge,
visgen: Faster-RCNN trained on Visual Genome.

Image retrieval metric: For sentence-image retrieval we
report performance as median rank (mdR) and Recall @k,
i.e. the percentage of instances for which the ground truth
was ranked among the top k proposals.

4.1. Phrase grounding on Flickr30kEntities

We compare our method to Wangé&Specia [38], the only
other approach requiring no paired training data. We also
compare to weakly supervised [!, 34] and fully super-
vised settings [3, 23, 34, 39]. Hereby we put our method
into perspective: while we do not rely on any annotated
pairs, weakly and strongly supervised settings use annotated
data. Furthermore, they are unfairly overpowered: besides
bounding box proposal generators they compute visual fea-
tures on the image and refine word vectors during training.

Table 1 and 2 report our results for phrase grounding on
Flickr30kEntities. We show results for different procedures
of computing the visual representation, which fall into two
main categories:

(a) Coarse-grained labels: Here we rely on an object
detector with a relatively low number (545) of la-
bels compared to the phrase vocabulary. This tfoid
(OI) detector is also used in Wang&Specia. We re-
implement their approach for two reasons: Firstly,
we want to create a fair unsupervised baseline for
phrase grounding that uses a single detector, the same
amount as the (weakly) supervised systems we com-
pare to. Secondly, we consider a recalculation of

their results necessary, since we extract 16,576 phrases
from Flickr30kEntities, while Wang&Specia’s results
are based on only 14,481 phrases.’

tfoid is our re-implementation of Wang&Specia using
only object detection proposals with confidence higher
than 0.1 from a Faster-RCNN trained on Open Images
on 545 object categories.

tfoid+sg includes labels (but no bounding boxes be-
yond the tfoid detections) and relationships corre-
sponding to the neighbours in the scene graph and
tfoid+sg+wn,, .11, gim extends tfoid+sg in that it com-
putes the grounding score using the combination of co-
sine similarity with WordNet path similarity between
the scene graph representation and the phrases.

tfoid + hier;,, performs grounding with the visual rep-
resentation without scene graph information, but en-
riched with the Open Images label hierarchy (in Fig. 4)
and tfoid + hiery,,+wn,, ., si»,m, combines cosine simi-
larity with the WordNet path similarity.

(b) Fine-grained labels: Here the object detector is trained
with a relatively big vocabulary for object detectors:

visgen represents a Faster-RCNN model trained on
Visual Genome (mAP = 4.4) with a label set of
1600 objects available at [42]. All detections have
a confidence higher than 0.1. We combine it with
the scene graph and WordNet path similarity in
visgen+sg+wn,qzh_sim.-°

Our best performing model in the detector with low vo-
cabulary setting (a) integrates scene graphs, the WordNet
structure and slightly outperforms our direct competitor in
the single-detector setting [38].” We observe small and
comparable increases when using the contextualised repre-
sentations based on the scene graph and the label hierarchy
as external knowledge, which go along with a reduction of
variance over phrase categories (see Table 2). The extension
of similarity-based ranking using WordNet path similarity
shows consistent improvements over the contextualised rep-
resentations and over the BoO baseline.

When using a detector with large vocabulary, we set
a new baseline for models without training nor annotated
data. We observe a higher BoO baseline, which is also re-
flected in the raised upper bound (ca. 88%), exploring the
limits of unsupervised phrase grounding systems.

Comparison to systems using weakly supervised meth-
ods shows that both our and Wang&Specia’s method that

SFor extracting phrases, we use functionality available on the GitHub
page of the Flickr30K Entities dataset [27].

®We do not report experiments of visgen enriched with the label hi-
erarchy because its vocabulary of 1600 classes is much richer than the
hierarchy with around 600 labels.

7With our own reimplementation. Compared to [38]’s published results
using tfoid as single detector we observe an increase of 3.5 pp. accuracy.



[ Method

[ people clothing bodyparts animals vehicles instruments scene

other [ overall  var |

tfoid 66.94 3695 21.03
tfoid+sg+Wnpath_sim 6735 4337 21.80
visgen 67.68 5698 34.76
ViSgen+sg+wiyath_sim 67.92 57.11 34.61

81.27
81.47
73.75
73.75

82.02 57.41 18.73 25.62 | 46.09  7.02
82.27 57.41 2145 2695 | 4792  6.53
73.65 6.17 60.23 3829 | 5630  5.51
73.65 8.02 60.69 3852 | 57.08 5.31

Table 2. Accuracy per category on Flickr30k Entities. var: variance over categories, sg: scene graph, Wnyq¢h_sim: WordNet path similarity.
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Figure 5. Grounding output example on Flickr30kEntities. The
query phrases are represented in black and are localised by tfoid
in cyan. Magenta stands for the response of our system enabled
with the contextualisation method indicated in the grey box.

do not require training nor paired annotated data, outper-
form these systems by a large margin. We also stress that
our results outperform many supervised systems, thus set-
ting a strong baseline for state-of-the-art supervised models.

We also compute the variance of the accuracy over the
eight phrase categories in the dataset (see Table 2). This
shows how the performance throughout all classes varies
when employing a different object detector, but also the
consistent gains in accuracy we obtain by enriching the rep-
resentation with additional knowledge — along with reduc-
tion of the variance of results for each category.

Impact of the size of the label set. 1In the coarse-
grained label setting (a) we compare against Wang&Specia
and the re-implementation tfoid of their best performing
single object detector method and show that our method
viSgen+sg+wny,j,_siy, outperforms their ensemble model
that relies on three different object detectors. The signifi-
cantly higher bound of our object detector (88% compared
to 58% for Wang&Specia), can not be the only explana-
tion for the observed performance improvement: Table 1

shows that accuracy does not directly correlate with the up-
per bound. While a higher bound increases the possibility
of finding the searched object, more coverage of the image
generates more proposals, thus more confounders for the
ranking step. We thus suspect that the reason for the accu-
racy increase lies in the more fine-grained label set rather
than lower coverage of tfoid, and in the added scene graph
structure together with the ranking based on the WordNet
path similarity score.

Impact of the contextualised visual representation. In
Table 1 we show with tfoid+sg that a contextual represen-
tation of the image (compared to BoO) brings only minimal
benefit (little above half of percentage point) for grounding.
This improvement might seem small at first, but there are
important gains hidden by the accuracy statistics: In Fig. 5
on the top left we see one positive and one negative exam-
ple of the scene graph impact. The system’s pink response
in the top left corner is informed by the scene graph con-
text of hat, shifting the vector representation towards the
correct meaning. In the second example, we see the effect
of the evaluation procedure where a union of the bounding
boxes representing one phrase is created: The ground truth
boundary comprises all men in the picture. As an effect of
the scene graph contextualisation, the nine man detections
in the picture are unique due to their different neighbour-
hood. The result in cyan of the system not informed by
the scene graph structure, does not differentiate between the
men, generating the right proposal for the query crowd. The
system having access to the scene graph (in pink), ranks
unique candidates and detects only one part of the crowd.
An additional reason for a lower than expected impact of
the scene graph lies in errors of the generated scene graph.
Another reason is the loss of some generated scene graph
parts when mapping it to the existing object detections, in
order to be comparable to previous work by not including
additional bounding boxes.

Impact of knowledge injection and WordNet path simi-
larity computation. By injecting the already existing knowl-
edge of the label hierarchy of tfoid+hiery,,, we show that
already a small amount of linguistic knowledge can boost
the performance (see Fig. 5 for examples). Our methods
tfoid+hier;,+wn, .4 _sim, tloid+sg+wn,q.), om compris-
ing the WordNet path similarity score together with the
cosine similarity show the greatest jump in performance
(around 1 pp. and 1.5 pp. respectively) and represent our
second way to introduce the structure of a linguistic know-
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together in front of a glass window as cars pass.

Figure 6. Sentence-image retrieval examples on Flickr30k. Two
positive (green bounding box) with the system’s second guess (no
bounding box) over the same coloured background. One negative
example (red) where the second guess is the ground truth example.

ledge base. By these means, we show that a complemen-
tary way of computing word similarities besides just using
word embeddings benefits our purposes. An analysis of the
number of hops in WordNet between phrase and proposed
grounding shows that around 80% of the correct proposals
are made by number of hops no greater than 3 and that they
lead to better predictions than larger numbers of hops.

4.2. Text-based image retrieval by proposal ranking

We performed experiments with both the tfoid detector
having a relatively low upper bound (around 60%), as well
as with visgen with a higher upper bound (roughly 88%).
We select representative results of a selection of sentence-
retrieval systems and report our experiments in Table 3 with
a BoO approach with visgen and with integrating WordNet
path similarity visgen+wny.n _sim, hereby improving in
R@]1. We observe that while our method requiring no train-
ing is no match to the state-of-the-art systems trained with
supervision, it is nonetheless decent for the only training-
less sentence-image retrieval method known to us.

Discussion While our phrase grounding method is keep-
ing pace with (weakly) supervised methods, we are stress-
testing our phrase grounding system by extending it to
sentence-image retrieval. Simultaneously, our method is
an experiment for what a sentence-image retrieval method
without any training nor supervision potentially delivers.
The system is (a) requiring no training — but off-the-shelf
object detectors; (b) uses no visual features — only the lan-
guage representation of phrases and object detection labels;
(c) no language context — but the noun phrases in the sen-
tence, and yet visgen can select in 14% of the cases the
right picture (among 999) in the first trial. While this un-

[ Method [ R@1 [ R@5 [ R@10 | mdR |

DVSAcvypris[17] 15.2 37.7 50.5 9.2
SCOcvypris [14] 56.7 87.5 94.8 -

VIiLBERT Neurips19 [25] 58.2 84.9 91.52 -

No training
tfoid 8.7 19.8 27.5 52
visgen 14.6 34.0 43.7 17
Visgen + Whpath_sim 15.3 339 43.7 16

Table 3. Results on sentence-based image retrieval on Flickr30k
in terms of Recall@k/R@Kk (high is good) and median rank mdR
(low is good).

supervised method represents strong competition to the su-
pervised neural computer vision systems of 2015, it is no
challenge to recent supervised models. This demonstrates
that while object detectors can be used to sufficiently dis-
criminate between different image regions when perform-
ing phrase grounding without regarding the image pixels,
visual features are necessary when being challenged with
the much harder task to rank 1000 pictures. In this task, sev-
eral pictures can be characterised by the same BoO (cf. the
negative examples in Fig. 6, where both pictures contain a
man, woman, cars and distinguishing features like ethnicity
and the glass are not captured by the object detector). Fur-
thermore, full-fledged processing of the linguistic modality
incorporated in the sentence is crucial: only looking at the
noun phrases misses discriminating clues in the language.

5. Conclusion

We propose a method that tackles the phrase ground-
ing task without using annotated image-language pairs. We
show that a structured representation of images and injec-
tion of linguistic knowledge are beneficial in a system that
requires no training nor loss function to guide the atten-
tion to relevant input regions. Our model surpasses the
performance of all weakly supervised and many supervised
models on Flickr30kEntities and establishes a more serious
baseline for (weakly) supervised models than prior work. A
crucial factor are extensions for visual and linguistic contex-
tualisation, which may be further enhanced in future work.
We also stress-test our alignment system on the challeng-
ing Flickr30k sentence-image retrieval task and achieve first
noteworthy results for a system without a training phase.

The strong performance of phrase grounding methods
requiring no training casts doubt on the adequacy of su-
pervised architectures trained on annotated phrase-region
pairs, since these highly complex and over-parameterised
trainable systems do not improve much over our approach,
which does not require a training stage.
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