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Abstract

Self-supervised pretraining has become a strong force in
both language and vision tasks. Current efforts to improve
the effects of pretraining focus on improving network archi-
tecture or defining new tasks to extract representations from
the data. We focus on a third axis, the data itself, to quantify
and measure how different sources and quality of data can
affect the learned representations. As pretraining datasets
grow larger and larger; the cost of pretraining will continue
to increase. This issue is especially acute for visuolingusitic
data, as the cost of storage and processing for image and
video data will rise quickly. We therefore examine four vi-
suolinguistic datasets (three preexisting datasets and one
collected by us) for their utility as pretraining datasets. We
define metrics for dataset quality and relevance, propose a
method for subsampling large corpuses for the data most
relevant to a set of downstream multimodal vision and lan-
guage tasks of interest, and show that this method increases
performance across the board for all downstream tasks.

1. Introduction

In the last several years, self-supervised pretraining has
emerged as a powerful tool for extracting information from
large, unlabeled datasets. In both natural language pro-
cessing and computer vision, a number of groups have
shown significant increases in performance across a vari-
ety of models and tasks by training representations on large
scale data, before transferring to smaller labeled datasets
[4, 20].

A standard pretraining pipeline consists of roughly three
choices: data selection, model selection, and pretraining
task/loss selection. Most work focuses on the latter two
parts of this pipeline, examining new models [10, 17] or
new tasks/losses [13, 19, 20]. Where data is studied, it is
mostly to look at the effect of data size, rather than data
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quality or relevance [5, 18].

We believe that although the pretraining datasets of to-
day are still small enough to train on for multiple epochs,
datasets will grow increasingly larger to the point where it
will be infeasible to train on the full dataset (at least for most
organizations). Mahajan et al. [I1] have already shown
that, in a billion-image scale dataset, ‘label space engineer-
ing’ - the process of pruning labels to only those relevant to
the downstream task in mind - can improve performance of
models. This will be an especially large issue for visuolin-
guistic datasets as the storage and processing of images and
videos will become too large for the average practitioner to
manage.

In this paper we ask several exploratory questions. Given
a fixed model, task, and data size, how does data quality and
data relevance affect performance on downstream tasks? Is
it possible to select pretraining data so as to maximize per-
fomance of a model on downstream tasks?

In order to answer these questions we analyze several
datasets consisting of paired image and text data: Conceptu-
alCaptions [16], ICE-Title, ICE-Comments [7], and Ngram
Image Search. More details about each dataset can be found
in Section 4.

We propose to score each example in a dataset along two
axes: quality and relevance, for which we propose two met-
rics based on GloVe vector [14] word similarity and TF-
IDF, respectively (see Section 3). Based on these metrics,
we sample from our four base datasets to construct several
additional pretraining sets designed to maximize/minimize
our metrics of quality and relevance.

Finally, for each dataset we pretrain a VILBERT [10]
style model and evaluate on four downstream tasks: Vi-
sual Question Answering (VQA) [6], Visual Commonsense
Reasoning (VCR) [22], Grounded Referring Expressions
[8], and Image Retrieval [21]. We compare the performance
of our pretrained model on each downstream task, and find
that our quality and relevance metrics correlate well with



performance on downstream tasks (Spearman’s p of 0.893
and 0.577, respectively). We also find that constructing
‘Amalgam’ datasets from the base datasets based on our
metrics enables us to improve pretraining utility even fur-
ther, boosting performance on all downstream tasks.

2. Related Work
2.1. Dataset Curation

The most common data ablation performed in recent
self-supervised learning papers is one of dataset size. This
examines the effects of pretraining on more and more data.
The story here has been relatively conistent: more data is
better [5, 10, 18]. However, this only tests one axis of data
selection. ConceptualCaptions [16], for example, is a rela-
tively high-quality image-text dataset. During its creation,
97% of candidate (image, text) pairs were filtered out for
quality issues. If dataset size is the only important axis,
we would expect that a lower quality version of Concep-
tualCaptions containing 100M (image, text) pairs would
necessarily make for a superior pretraining dataset.

Mahajan et al. [1 1] explore the question of engineering a
pretraining dataset more directly. They introduce a concept
called label-space engineering, where they prune a set of
hashtags across 1 billion images down to sets of 1.5k, 8.5k,
and 17k hashtags. These are pruned via WordNet synsets
[12] of ImageNet [3] classes, with higher thresholds for
‘relatedness’ creating smaller hashtag sets. They find that
pretraining on a smaller set of hashtags can improve per-
formance on some downstream tasks, suggesting that nois-
ier pretraining data can be less helpful. Inspired by their
techniques for filtering their data and labels, we define two
metrics to empirically measure dataset quality and related-
ness. We work with visuolinguistic data rather than pure
vision data, as this allows us a wider variety of downstream
tasks and makes the problem of defining quality and relat-
edness more difficult. We also test our hypotheses across
a variety of datasets collected from different sources and
with differing levels of effort and money placed into creat-
ing and filtering them. By comparing across methodologies
we can determine whether increased effort and cost of pre-
training dataset curation translates into increased gains for
downstream tasks.

2.2. Network Architecture and Pretraining Task

We chose to fix our model the VILBERT model proposed
by Lu et al. [10] which allows us to train on a wide vari-
ety of image and text data, without careful tailoring of the
dataset for our model architecture. ViLBERT is a multi-
modal model designed to work with both visual and lin-
guistic inputs. For the visual component of the model, each
image is run through a pretrained object-detection network
to extract bounding boxes and visual features. For the text

component of the model, the input is preprocessed via a
byte-pair encoding and the resulting discrete tokens em-
bedded via a learned embedding layer. The visual features
are concatenated with the embedded tokens as input to the
model. The model is then trained via two tasks: masked
multi-modal modeling and multi-modal alignment predic-
tion.

For masked multi-modal modeling, 15% of inputs are
masked. When masking text features, the feature is replaced
with the special MASK token 80% of the time, with a ran-
dom token 10% of the time, and is left unchanged 10% of
the time. On output, the model is trained to re-predict the
masked token based on all unmasked inputs. When mask-
ing image features, the feature is zeroed out 90% of the time
and left unaltered 10% of the time. On output, the model
is trained to predict class probabilities of the original input
object, and to minimize the KL-divergence between these
class probabilities and the original ResNet class probabili-
ties.

For mutli-modal alignment prediction, the model re-
ceives as input either truly aligned image and text data or
a random pairing of image and text data. It must then pre-
dict wither the input image and text are aligned or random.

We evaluate our pretrained models using the same tasks
chosen in the VIIBERT paper, namely Visual Question An-
swering (VQA), Visual Commonsense Reasoning (VCR),
Grounded Referential Expressions, and Image Retrieval.

3. Methods

We define two metrics of dataset relatedness and quality,
which we use to score each of our datasets. The both met-
rics are also used to curate “amalgam” datasets consisting
of high-scoring examples.

3.1. Relatedness

We use a TFIDF-based metric for determining the relat-
edness of the text in a given (image, text) pair to the text
in the downstream tasks. We first take all text across all our
base datasets (described in Sections 4.1-4.3), and compute
the TFIDF matrix:

D
K. = freq,(w) log (')Vd eDweW (1)

freqp(w)

Where D is the set of all text, W is the set of all
words, d is an individual document, w is an individual
word, freq,(w) is the number of times w appears in d, and
freqp (w) is the number of documents w appears in. This
defines a matrix K e RIPIXIWI,

Now, given a new document d’ (i.e. the text from a par-
ticular example in a downstream task), we encode it into
the same space as the query vector ()4 and define the score
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Figure 1. Distribution of relatedness scores for the four base
datasets. As the maximum score for any query-document pair is
1, the total score can be interpreted as the number of downstream
task examples to which a document is highly relevant. The median
score on the ConceptualCaptions dataset is 933.6, on the Ngram
Image Search dataset is 128.5, on the ICE-Title dataset is 345.2,
and on the ICE-Comments dataset is 568.3.

for each document d as the cosine distance between the en-
coded pretraining text and the encoded downstream text.
The total score for a given document is simply the sum of
scores across all downstream text. If we let .S be the set of
all downsteam text, then

KIQuw
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3.2. Quality

We define quality of data as similarity between the image
and text of an (image, text) pair. High quality data should
have a strong similarity between image and text, with text
referring to at least one if not more parts of the image. Low
quality data should have weak or no similarity between im-
age and text, and may even be missing text altogether.

To calculate similarity between image and text, we run
each image through an RCNN trained on Visual Genome
[15, 9]. We then examine the GloVe vectors [14] corre-
sponding to the 1600 Visual Genome classes and compare
them via cosine similarity to the GloVe vectors in the text.
The GloVe vectors used are pretrained on 840 billion tokens
from Common Crawl. Let o € O; be the set of objects de-
tected by the RCNN for a given image %, w € d be the set
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Figure 2. Distribution of quality score for the four base datasets.
As the maximum score for any (image, text) pair is 3 (denoting
that three distinct objects in the image are exactly present in the
text), the score can be interpreted roughly as the number of distinct
objects present in the image that are also mentioned in the text.
The median score on the ConceptualCaptions dataset is 1.84, on
the Ngram Image Search dataset is 1.35, on the ICE-Title dataset
is 1.50, and on the ICE-Comments dataset is 1.48. Note that both
ICE-Title and ICE-Comments contain some text examples that are
mostly empty/consist only of vocabulary not present in the GloVe
embedding space. This results in a few zeros for ICE-Titles and a
large number of zeros for ICE-Comments.

of words in the paired text for that image, g be the glove
embedding function, then we define our quality score as:

quality (¢, d) = sum (topk (

1-— MVO € 0;,w € d)) 3)
g (o) [llg(w)l|

Here, top,, refers to the k highest-scoring pairs of words
w € d and objects o € O;. We use a sum of the top,, func-
tion here, rather than a direct max or a mean. The mean
function penalizes longer text and the use of articles, deter-
miners, etc. too heavily. The max function lacks fidelity,
scoring many pairs at perfect similarity. & is a hyperparam-
eter, which we choose to be 3. A good choice of k should
balance the likelihood of detecting reasonable text (which is
unlikely to mention every single object in the image) with
also rewarding text that is more directly descriptive of the
image. Further experimentation would be necessary to de-
termine the effect of k on the scoring of examples.



4. Datasets

Here we describe all datasets used in this work. Some
datasets are publicly available, some are not, and some were
collected by us for this work. We note the distinction when
discussing each dataset. In addition, we construct some spe-
cific datasets to probe the relatedness/quality metrics more
directly. Note that as all datasets are of different size, we
downsample each training set to 2 million examples to en-
sure equal comparison across each dataset.

4.1. Conceptual Captions

The ConceptualCaptions dataset is a high-quality im-
age caption dataset where images are sourced from the
web and text is source from corresponding HTML Alt-
text attribute [16]. It consists of approximately 3.3 million
(image, text) pairs. When this dataset was constructed,
candidate (image, text) pairs were filtered in three ways.
First, images were filtered to exclude non-JPEG images,
images where one dimension has fewer than 400 pixels, or
images with an aspect ratio greater than 2. Second, pairs
were filtered based on alt-text to exclude those without well-
formed English (e.g. existence of determiners, capitaliza-
tion, etc.). Third, pairs with no relationship between objects
detected in the image and associated text were removed.
This results in a dataset highly amenable for pretraining,
and which we show scores highly on both of our proposed
metrics.

4.2. Image CommEnting (ICE) Dataset

The ICE dataset [7] for image commenting consists of
images sourced from Reddit, along with the title and com-
ments on each post. While the original dataset consists of
only 1 million examples, we obtained the unfiltered super-
set of the data from the authors. This results in a dataset
large enough for our purposes (> 2 million examples), but
which has little to no filtering. From this superset of the
ICE dataset, we construct two pretraining datasets, which
we call ICE-Titles, and ICE-Comments.

ICE-Titles In the ICE-Titles pretraining dataset we pair
each image with its corresponding post title. This provides
a training set that is similar in structure to the Conceptual-
Captions dataset, as each image is paired with a short piece
of text where both image and text are uploaded by the same
user. The main difference between these two is the level
of filtering, as ConceptualCaptions filters out examples that
are deemed to be low quality. Therefore comparing these
two datasets provides a sense of the degree to which filter-
ing pretraining data affects downstream performance.

ICE-Comments In the ICE-Comments pretraining
dataset, we pair each image with its corresponding post

comments. The distribution of text in the post comments
is significantly different from the distribution in standard
captioning datasets. = Comment text mentions objects
present in the image much less frequently while using verb
part-of-speech (POS) words more frequently. Sentiment
words also occur more often as comments tend to express
subjective/emotional descriptions. Overall, by directly
comparing this to the ICE-Titles dataset, we can see the
effect of how pretraining text is generated, examine the
usefulness of training on more natural human conversa-
tions, and compare training on small, higher-quality text
against longer lower-quality text (where quality refers to
our quality measure from Section 3.2).

4.3. Ngram Image Search

For this dataset, we construct a set of (image, text) pairs
based on common English ngrams. We obtained a set of 2-
grams, 3-grams, 4-grams, and 5-grams from the Corpus of
Contemporary American English (COCA) [2]. Collected
n-grams were then scored based on several measures:

e Candidates which triggered word list filters for pornog-
raphy/profanity were removed using the Google Pro-
fanity List.

e Candidates received positive score for nouns (exclud-
ing proper nouns) and verbs

e Candidates received positive score for words which
matched known English (as defined by the Natural
Language Toolkit (NLTK) English word corpus [1]).

e Candidates received positive score for words that did
not occur in many ngrams to generate a diverse set of
text captions. This was limited, however to words that
appeared in at least 10 ngrams, to eliminate extremely
rare words, misspellings, etc.

N-grams were then sorted and the top ~2M n-grams
were selected (to match the size of the other datasets). The
final filtered set of n-grams consisted of 21% 2-grams, 22%
3-grams, 24% 4-grams, and 33% 5-grams. After collecting
these n-grams, we performed an image search to find corre-
sponding images. In each case, we simply selected the first
image result.

4.4. RandomCaptions

The RandomCaptions dataset is constructed from the
ConceptualCaptions dataset and consists of the same im-
ages and text. However, rather than the paired image text
present in the original dataset, each image is paired with a
random caption. This dataset is constructed specifically to
examine the relationship between our notions of relatedness
and quality. Since it contains the same text as the Conceptu-
alCaptions dataset, RandomCaptions scores very highly on



our relatedness metric. Obviously, however, it scores very
poorly on our quality metric.

This dataset disentangles the benefits of training on un-
paired visuolinguistic data from the benefits of training on
paired visuolinguistic data. Unpaired data may still be
highly related to the downstream task. As such, it en-
ables the model to independently train its visual processing
weights (masked objects can be predicted from unmasked
objects) and its text processing weights (masked text can
be predicted from unmasked text). It does not, however,
allow learning text-image grounding, as masked text can-
not be predicted from the unmasked objects, and masked
objects cannot be predicted from unmasked text. There-
fore pretraining on this dataset directly measures the impact
of learning the relationship between text and image, as op-
posed to learning how to process the modes independently.

4.5. Amalgam - Relatedness

This is an amalgam dataset constructed from the super-
set of all (image, text) pairs in all our datasets, filtered for
relatedness. Using Eq. 3.1 we score each (image, text)
pair, then select the 2.015 million highest scoring exam-
ples. These are split into a training set of 2 million exam-
ples and a validation set of 15 thousand examples. This
dataset directly tests our relatedness metric, and shows the
impact that relatedness to downstream task has on final per-
formance.

4.6. Amalgam - Quality

As with the ‘Amalgam - Relatedness’ dataset, this is
an amalgam dataset constructed from the superset of all
(image, text) pairs in our other datasets, filtered for qual-
ity. Using Eq. 3.2 we score each (image, text) pair, then
select the 2.015 million highest scoring examples. These
are split into a training set of 2 million examples and a val-
idation set of 15 thousand examples. This dataset directly
tests our quality metric, and shows the impact that quality
to downstream task has on final performance.

5. Downstream Tasks

We train on the same downstream visuolinguistic tasks
used in the original VILBERT paper. Below we describe the
problem proposed by each downstream task. As we do not
make modifications to the VILBERT fine-tuning procedure,
details of architecture and hyperparameters are omitted for
brevity (see Lu et al. [10] for these details).

5.1. Image Retrieval

Image Retrieval is the task of returning a specific image
from a large set of images, given a natural language descrip-
tion. We train this via the Flickr30k [21] dataset, which
consists of 31,000 images, each with five high-quality nat-
ural language descriptions. At training time, four options

are constructed from a given image, description pair: the
original image and description pair, the original image and
a random description, a random image and the original de-
scription, and a hard-negative image with the original de-
scription. Hard-negative images are sampled from the 100
nearest neighbors of the original image. At test time, sim-
ilarity is scored across all images in the test set, to better
simulate a “search”. This task tests the model’s ability to
detect and ground similarity between images and text, with
hard-negative images requiring a more fine grained ability
to detect similarities and discrepancies.

5.2. Grounded Referring Expressions

The Grounded Referring Expressions task requires lo-
calizing an area of an image given a natural language de-
scription of the area. These descriptions can be simple (e.g.
‘door’) or more extensive (e.g. ‘man in red shirt on horse’).
The task is trained by obtaining object detections from an
RCNN and reranking the set of object detections based on
similarity to the input text string. This has some similarities
to the Image Retrieval task, but requires a greater under-
standing of the individual objects in the image as well as
an understanding of the relations between the objects (‘on
top of’, ‘next to’, etc.). For training and test we use the
RefCOCO+ dataset [8].

5.3. Visual Question Answering (VQA)

VQA is the task of answering a natural language ques-
tion about a given input image. For this task we use the
VQAV2 dataset [6]. This dataset consists of 1.1 million
questions over all images in the COCO 2017 train/val/test
set. Questions and answers are both solicited from human
annotators, resulting in a wide variety of natural language.
Answers are pruned to 3129 possible answer classes, and
the model emits a distribution over these answer classes.

In addition, the dataset is specifically constructed to min-
imize linguistic bias. In the original VQA dataset, simple
ngram based methods could achieve very high performance
without looking at the image. The authors counteract this by
adding new (image, question) pairs to the dataset which
are visually similar and linguistically identical to other pairs
in the dataset, but which have different answers. This forces
a model to ground its answer in both the language and the
image.

5.4. Visual Commonsense Reasoning (VCR)

VCR is the task of answering a commonsense-reasoning
question about a given input image. While this may seem
similar to the VQA task, questions in the VCR dataset target
higher-order semantics and relationships that are implicitly
present in an image (e.g. “Why is person4 pointing at per-
sonl?”) rather than clearly present attributes of the image
(e.g. “What color is the ball?’).



Table 1. Results on downstream supervised tasks.

VQA [6] VCR [22] RefCOCO+ [8] Image Retrieval [21]
Pretraining Dataset minval Q—A QA—R val testA testB R1 R5 R10 Score
No Pretraining 67.887 67.611 67.536 70.273 77.192 60.565 48.000 78.600 86.720 O0.111
RandomCaptions 66917 69.145 69.997 70.106 76.196 60.810 49.160 79.240 87.100 0.131
ICE-Comments 68.480  70.193 70.773 70.450 77.209 61.076 50.980 79.900 87.540 0.380
Ngram Image Search 68.617 69.714 69952 71305 76.703 61.424 53.000 81.320 88.160 0.462
ICE-Title 68.383  70.570 71211 71379 77.297 62487 52720 81.520 89.300 0.610
ConceptualCaptions 69.050  71.587 73.302 71.844 78.187 62.671 55740 83.780 90.000 0.884
Amalgam - Relatedness ~ 69.150  71.945  73.623 72.104 78.257 62.671 55.580 83.600 90.160 0.922
Amalgam - Quality 69.150 71.761 73.182 71.677 77.628 63.080 56.940 85.160 90.780 0.930

Table 2. Average metric scores for each pretraining set.

Pretraining Dataset Relatedness  Quality
RandomCaptions 933.64 1.43
ICE-Comments 568.30 1.48
Ngram Image Search 128.46 1.35
ICE-Title 345.19 1.50
ConceptualCaptions 933.64 1.84
Amalgam - Relatedness 3011.31 2.00
Amalgam - Quality 1541.13 2.33

Each example in the VCR dataset [22] consists of four
entities - the image, question, answer, and rationale,
and the dataset consists of 110K images with 290K ques-
tions, answers, and rationales. VCR actually consists of
two tasks: question to answer (Q—A), question + answer
to rationale (QA—R). Each task is cast as a multiple choice
question, with the model being provided with the image and
input, as well as four possible outputs. Distractor outputs
are selected via ‘adversarial matching’ which attempts to
minimize the models ability to guess the answer via linguis-
tic biases.

6. Results

Table 1 shows results for all downstream supervised
tasks when comparing against different pretraining datasets.
Overall, we find that a rough ordering of performance im-
provement improvement emerges across different pretrain-
ing datasets and tasks. This can be seen in the final ‘Score’
column of the table, which displays the average normalized
score across all tasks. To compute this average normalized
score, we first normalize scores within each task by the fol-
lowing transformation:

Stask,t — 111y, Stask,u
maxXy Stask,u — M1y, Stask,u

Stask,t —

where t, u represent pretraining datasets and ssk; 1S the
score for a pretraining dataset ¢ on a particular downstream
task. This rescales all downstream task scores between 0
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Figure 3. Relatedness versus normalized performance measure for
all datasets. Marks from left to right represent Ngram Image
Search, ICE-Title, ICE-Comments, RandomCaptions, Conceptu-
alCaptions, Amalgam - Quality, and Amalgam - Relatedness.

and 1. The average of this normalized score across all tasks
gives us a way of measuring overall performance.

In addition, our measures of relatedness and quality both
correlated well with performance increases. Our related-
ness measure has a Spearman’s rank correlation of 0.577
with overall score (0.771 if we ignore the adversarially con-
structed RandomCaptions dataset), and our quality measure
has a Spearman’s rank correlation of 0.893 with the overall
score. See Figures 3-4 for plots of relatedness and quality
against normalized performance measures.

7. Discussion

Our quality and relatedness measures both correlated
well with normalized performance on the downstream
tasks. Our results show that this is true not only for existing
datasets, but also for datasets constructed to explicitly max-
imize these metrics, which suggests a causal relationship
between improving the metrics and increasing performance
on downstream tasks.
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all datasets. Marks from left to right represent Ngram Image
Search, RandomCaptions, ICE-Comments, ICE-Title, Conceptu-

alCaptions, Amalgam - Relatedness, and Amalgam - Quality.

7.1. Disentangling Quality and Relatedness

While both quality and relatedness are correlated with
final performance, they are also correlated with each other.
This is especially clear from the Amalgam - Quality and
Amalgam - Relatedness datasets. Although each dataset is
constructed to maximize one of the metrics, they both also
score second-highest on the other metric (see Table 2). This
makes it difficult to determine the effect of each metric on
performance.

First, we note that (ignoring the RandomCaptions
dataset), the quality metric correlates better with perfor-
mance (Spearman’s p 0.829) than the relatedness metric
(Spearman’s p 0.700). This suggests that higher quality
examples, which should help the model learn image-text
grounding and relationships, are more important than lower
quality but more related text and images.

To further examine this hypothesis, we can look at the
RandomCaptions dataset. This is a low-quality dataset with
minimal relationship between paired text and image. It is
also a high-relatedness dataset as the individual captions
are exactly the same as the ConceptualCaptions dataset on
which it is built. This dataset performs little better than no
pretraining at all, which suggests that the largest benefit of
pretraining is the ability of the model to learn image-text
grounding.

7.2. Limitations of Analysis

While the current set of experiments point to interest-
ing relationships between these simple metrics and perfor-
mance on downstream tasks, there are limitations in the cur-
rent methodology when it comes to investigating these rela-
tionships further.

First, collecting a data point in this approach requires
collecting a 2 million image-text pair dataset, pretraining a
relatively large model on this dataset, followed by finetun-
ing on several downstream tasks. We chose this methodol-
ogy as pretraining is generally most useful for large models
with relatively challenging downstream tasks. This gives
the results broad applicability, as the discovered relation-
ships are likely to hold true for large models, large pretrain-
ing datasets, and across many other downstream tasks. On
the other hand, speeding up the collection of data points
would allow clearer results and faster testing of new poten-
tial metrics.

Second, our downstream evaluations consist of broad,
general image understanding tasks. As a result, it is actually
difficult to construct a dataset of high-quality images that
are relatively unrelated to the downstream tasks. Analyzing
a more niche downstream task may help further disentan-
gle the effects of quality and relatedness of image-caption
pairs.

Finally, it is clear that the metrics tested do not capture
all the variance in the data. In particular, the Ngram Image
Search dataset scores poorly on both of our metrics, yet still
improves performance more than the ICE-Comments and
RandomCaptions datasets. Further experimentation could
help determine what aspect of the datasets our current met-
rics miss.

8. Future Work

Our results show that simple, inexpensive to calculate
metrics can help maximize pretraining utility across the
board for many downstream tasks. In the future, we hope to
apply these metrics to domains where the amount of data
dwarfs our ability to use it in pretraining. For example,
paired video and automatic speech recognition (ASR) data
suffers from this problem. Our metrics could help filter
the available data to find highly related segments of paired
video and ASR, so that we avoid training on data that pro-
vides no more benefit than a random caption.
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