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Abstract

Self-supervised pretraining has become a strong force in

both language and vision tasks. Current efforts to improve

the effects of pretraining focus on improving network archi-

tecture or defining new tasks to extract representations from

the data. We focus on a third axis, the data itself, to quantify

and measure how different sources and quality of data can

affect the learned representations. As pretraining datasets

grow larger and larger, the cost of pretraining will continue

to increase. This issue is especially acute for visuolingusitic

data, as the cost of storage and processing for image and

video data will rise quickly. We therefore examine four vi-

suolinguistic datasets (three preexisting datasets and one

collected by us) for their utility as pretraining datasets. We

define metrics for dataset quality and relevance, propose a

method for subsampling large corpuses for the data most

relevant to a set of downstream multimodal vision and lan-

guage tasks of interest, and show that this method increases

performance across the board for all downstream tasks.

1. Introduction

In the last several years, self-supervised pretraining has

emerged as a powerful tool for extracting information from

large, unlabeled datasets. In both natural language pro-

cessing and computer vision, a number of groups have

shown significant increases in performance across a vari-

ety of models and tasks by training representations on large

scale data, before transferring to smaller labeled datasets

[4, 20].

A standard pretraining pipeline consists of roughly three

choices: data selection, model selection, and pretraining

task/loss selection. Most work focuses on the latter two

parts of this pipeline, examining new models [10, 17] or

new tasks/losses [13, 19, 20]. Where data is studied, it is

mostly to look at the effect of data size, rather than data

quality or relevance [5, 18].

We believe that although the pretraining datasets of to-

day are still small enough to train on for multiple epochs,

datasets will grow increasingly larger to the point where it

will be infeasible to train on the full dataset (at least for most

organizations). Mahajan et al. [11] have already shown

that, in a billion-image scale dataset, ‘label space engineer-

ing’ - the process of pruning labels to only those relevant to

the downstream task in mind - can improve performance of

models. This will be an especially large issue for visuolin-

guistic datasets as the storage and processing of images and

videos will become too large for the average practitioner to

manage.

In this paper we ask several exploratory questions. Given

a fixed model, task, and data size, how does data quality and

data relevance affect performance on downstream tasks? Is

it possible to select pretraining data so as to maximize per-

fomance of a model on downstream tasks?

In order to answer these questions we analyze several

datasets consisting of paired image and text data: Conceptu-

alCaptions [16], ICE-Title, ICE-Comments [7], and Ngram

Image Search. More details about each dataset can be found

in Section 4.

We propose to score each example in a dataset along two

axes: quality and relevance, for which we propose two met-

rics based on GloVe vector [14] word similarity and TF-

IDF, respectively (see Section 3). Based on these metrics,

we sample from our four base datasets to construct several

additional pretraining sets designed to maximize/minimize

our metrics of quality and relevance.

Finally, for each dataset we pretrain a ViLBERT [10]

style model and evaluate on four downstream tasks: Vi-

sual Question Answering (VQA) [6], Visual Commonsense

Reasoning (VCR) [22], Grounded Referring Expressions

[8], and Image Retrieval [21]. We compare the performance

of our pretrained model on each downstream task, and find

that our quality and relevance metrics correlate well with
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performance on downstream tasks (Spearman’s ρ of 0.893

and 0.577, respectively). We also find that constructing

‘Amalgam’ datasets from the base datasets based on our

metrics enables us to improve pretraining utility even fur-

ther, boosting performance on all downstream tasks.

2. Related Work

2.1. Dataset Curation

The most common data ablation performed in recent

self-supervised learning papers is one of dataset size. This

examines the effects of pretraining on more and more data.

The story here has been relatively conistent: more data is

better [5, 10, 18]. However, this only tests one axis of data

selection. ConceptualCaptions [16], for example, is a rela-

tively high-quality image-text dataset. During its creation,

97% of candidate (image, text) pairs were filtered out for

quality issues. If dataset size is the only important axis,

we would expect that a lower quality version of Concep-

tualCaptions containing 100M (image, text) pairs would

necessarily make for a superior pretraining dataset.

Mahajan et al. [11] explore the question of engineering a

pretraining dataset more directly. They introduce a concept

called label-space engineering, where they prune a set of

hashtags across 1 billion images down to sets of 1.5k, 8.5k,

and 17k hashtags. These are pruned via WordNet synsets

[12] of ImageNet [3] classes, with higher thresholds for

‘relatedness’ creating smaller hashtag sets. They find that

pretraining on a smaller set of hashtags can improve per-

formance on some downstream tasks, suggesting that nois-

ier pretraining data can be less helpful. Inspired by their

techniques for filtering their data and labels, we define two

metrics to empirically measure dataset quality and related-

ness. We work with visuolinguistic data rather than pure

vision data, as this allows us a wider variety of downstream

tasks and makes the problem of defining quality and relat-

edness more difficult. We also test our hypotheses across

a variety of datasets collected from different sources and

with differing levels of effort and money placed into creat-

ing and filtering them. By comparing across methodologies

we can determine whether increased effort and cost of pre-

training dataset curation translates into increased gains for

downstream tasks.

2.2. Network Architecture and Pretraining Task

We chose to fix our model the ViLBERT model proposed

by Lu et al. [10] which allows us to train on a wide vari-

ety of image and text data, without careful tailoring of the

dataset for our model architecture. ViLBERT is a multi-

modal model designed to work with both visual and lin-

guistic inputs. For the visual component of the model, each

image is run through a pretrained object-detection network

to extract bounding boxes and visual features. For the text

component of the model, the input is preprocessed via a

byte-pair encoding and the resulting discrete tokens em-

bedded via a learned embedding layer. The visual features

are concatenated with the embedded tokens as input to the

model. The model is then trained via two tasks: masked

multi-modal modeling and multi-modal alignment predic-

tion.

For masked multi-modal modeling, 15% of inputs are

masked. When masking text features, the feature is replaced

with the special MASK token 80% of the time, with a ran-

dom token 10% of the time, and is left unchanged 10% of

the time. On output, the model is trained to re-predict the

masked token based on all unmasked inputs. When mask-

ing image features, the feature is zeroed out 90% of the time

and left unaltered 10% of the time. On output, the model

is trained to predict class probabilities of the original input

object, and to minimize the KL-divergence between these

class probabilities and the original ResNet class probabili-

ties.

For mutli-modal alignment prediction, the model re-

ceives as input either truly aligned image and text data or

a random pairing of image and text data. It must then pre-

dict wither the input image and text are aligned or random.

We evaluate our pretrained models using the same tasks

chosen in the VilBERT paper, namely Visual Question An-

swering (VQA), Visual Commonsense Reasoning (VCR),

Grounded Referential Expressions, and Image Retrieval.

3. Methods

We define two metrics of dataset relatedness and quality,

which we use to score each of our datasets. The both met-

rics are also used to curate “amalgam” datasets consisting

of high-scoring examples.

3.1. Relatedness

We use a TFIDF-based metric for determining the relat-

edness of the text in a given (image, text) pair to the text

in the downstream tasks. We first take all text across all our

base datasets (described in Sections 4.1-4.3), and compute

the TFIDF matrix:

Kd,w = freqd(w) log

(

|D|

freqD(w)

)

∀d ∈ D,w ∈ W (1)

Where D is the set of all text, W is the set of all

words, d is an individual document, w is an individual

word, freqd(w) is the number of times w appears in d, and

freqD(w) is the number of documents w appears in. This

defines a matrix K ∈ R
|D|×|W |.

Now, given a new document d′ (i.e. the text from a par-

ticular example in a downstream task), we encode it into

the same space as the query vector Qd′ and define the score
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Figure 1. Distribution of relatedness scores for the four base

datasets. As the maximum score for any query-document pair is

1, the total score can be interpreted as the number of downstream

task examples to which a document is highly relevant. The median

score on the ConceptualCaptions dataset is 933.6, on the Ngram

Image Search dataset is 128.5, on the ICE-Title dataset is 345.2,

and on the ICE-Comments dataset is 568.3.

for each document d as the cosine distance between the en-

coded pretraining text and the encoded downstream text.

The total score for a given document is simply the sum of

scores across all downstream text. If we let S be the set of

all downsteam text, then

relatedness(d) =
∑

d′∈S

KT
d Qd′

||Kd||||Qd′ ||
∀d ∈ D (2)

3.2. Quality

We define quality of data as similarity between the image

and text of an (image, text) pair. High quality data should

have a strong similarity between image and text, with text

referring to at least one if not more parts of the image. Low

quality data should have weak or no similarity between im-

age and text, and may even be missing text altogether.

To calculate similarity between image and text, we run

each image through an RCNN trained on Visual Genome

[15, 9]. We then examine the GloVe vectors [14] corre-

sponding to the 1600 Visual Genome classes and compare

them via cosine similarity to the GloVe vectors in the text.

The GloVe vectors used are pretrained on 840 billion tokens

from Common Crawl. Let o ∈ Oi be the set of objects de-

tected by the RCNN for a given image i, w ∈ d be the set
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Figure 2. Distribution of quality score for the four base datasets.

As the maximum score for any (image, text) pair is 3 (denoting

that three distinct objects in the image are exactly present in the

text), the score can be interpreted roughly as the number of distinct

objects present in the image that are also mentioned in the text.

The median score on the ConceptualCaptions dataset is 1.84, on

the Ngram Image Search dataset is 1.35, on the ICE-Title dataset

is 1.50, and on the ICE-Comments dataset is 1.48. Note that both

ICE-Title and ICE-Comments contain some text examples that are

mostly empty/consist only of vocabulary not present in the GloVe

embedding space. This results in a few zeros for ICE-Titles and a

large number of zeros for ICE-Comments.

of words in the paired text for that image, g be the glove

embedding function, then we define our quality score as:

quality(i, d) = sum

(

topk

(

1−
g(o)g(w)

||g(o)||||g(w)||
∀o ∈ Oi, w ∈ d

))

(3)

Here, topk refers to the k highest-scoring pairs of words

w ∈ d and objects o ∈ Oi. We use a sum of the topk func-

tion here, rather than a direct max or a mean. The mean
function penalizes longer text and the use of articles, deter-

miners, etc. too heavily. The max function lacks fidelity,

scoring many pairs at perfect similarity. k is a hyperparam-

eter, which we choose to be 3. A good choice of k should

balance the likelihood of detecting reasonable text (which is

unlikely to mention every single object in the image) with

also rewarding text that is more directly descriptive of the

image. Further experimentation would be necessary to de-

termine the effect of k on the scoring of examples.



4. Datasets

Here we describe all datasets used in this work. Some

datasets are publicly available, some are not, and some were

collected by us for this work. We note the distinction when

discussing each dataset. In addition, we construct some spe-

cific datasets to probe the relatedness/quality metrics more

directly. Note that as all datasets are of different size, we

downsample each training set to 2 million examples to en-

sure equal comparison across each dataset.

4.1. Conceptual Captions

The ConceptualCaptions dataset is a high-quality im-

age caption dataset where images are sourced from the

web and text is source from corresponding HTML Alt-

text attribute [16]. It consists of approximately 3.3 million

(image, text) pairs. When this dataset was constructed,

candidate (image, text) pairs were filtered in three ways.

First, images were filtered to exclude non-JPEG images,

images where one dimension has fewer than 400 pixels, or

images with an aspect ratio greater than 2. Second, pairs

were filtered based on alt-text to exclude those without well-

formed English (e.g. existence of determiners, capitaliza-

tion, etc.). Third, pairs with no relationship between objects

detected in the image and associated text were removed.

This results in a dataset highly amenable for pretraining,

and which we show scores highly on both of our proposed

metrics.

4.2. Image CommEnting (ICE) Dataset

The ICE dataset [7] for image commenting consists of

images sourced from Reddit, along with the title and com-

ments on each post. While the original dataset consists of

only 1 million examples, we obtained the unfiltered super-

set of the data from the authors. This results in a dataset

large enough for our purposes (> 2 million examples), but

which has little to no filtering. From this superset of the

ICE dataset, we construct two pretraining datasets, which

we call ICE-Titles, and ICE-Comments.

ICE-Titles In the ICE-Titles pretraining dataset we pair

each image with its corresponding post title. This provides

a training set that is similar in structure to the Conceptual-

Captions dataset, as each image is paired with a short piece

of text where both image and text are uploaded by the same

user. The main difference between these two is the level

of filtering, as ConceptualCaptions filters out examples that

are deemed to be low quality. Therefore comparing these

two datasets provides a sense of the degree to which filter-

ing pretraining data affects downstream performance.

ICE-Comments In the ICE-Comments pretraining

dataset, we pair each image with its corresponding post

comments. The distribution of text in the post comments

is significantly different from the distribution in standard

captioning datasets. Comment text mentions objects

present in the image much less frequently while using verb

part-of-speech (POS) words more frequently. Sentiment

words also occur more often as comments tend to express

subjective/emotional descriptions. Overall, by directly

comparing this to the ICE-Titles dataset, we can see the

effect of how pretraining text is generated, examine the

usefulness of training on more natural human conversa-

tions, and compare training on small, higher-quality text

against longer lower-quality text (where quality refers to

our quality measure from Section 3.2).

4.3. Ngram Image Search

For this dataset, we construct a set of (image, text) pairs

based on common English ngrams. We obtained a set of 2-

grams, 3-grams, 4-grams, and 5-grams from the Corpus of

Contemporary American English (COCA) [2]. Collected

n-grams were then scored based on several measures:

• Candidates which triggered word list filters for pornog-

raphy/profanity were removed using the Google Pro-

fanity List.

• Candidates received positive score for nouns (exclud-

ing proper nouns) and verbs

• Candidates received positive score for words which

matched known English (as defined by the Natural

Language Toolkit (NLTK) English word corpus [1]).

• Candidates received positive score for words that did

not occur in many ngrams to generate a diverse set of

text captions. This was limited, however to words that

appeared in at least 10 ngrams, to eliminate extremely

rare words, misspellings, etc.

N-grams were then sorted and the top ∼2M n-grams

were selected (to match the size of the other datasets). The

final filtered set of n-grams consisted of 21% 2-grams, 22%

3-grams, 24% 4-grams, and 33% 5-grams. After collecting

these n-grams, we performed an image search to find corre-

sponding images. In each case, we simply selected the first

image result.

4.4. RandomCaptions

The RandomCaptions dataset is constructed from the

ConceptualCaptions dataset and consists of the same im-

ages and text. However, rather than the paired image text

present in the original dataset, each image is paired with a

random caption. This dataset is constructed specifically to

examine the relationship between our notions of relatedness

and quality. Since it contains the same text as the Conceptu-

alCaptions dataset, RandomCaptions scores very highly on



our relatedness metric. Obviously, however, it scores very

poorly on our quality metric.

This dataset disentangles the benefits of training on un-

paired visuolinguistic data from the benefits of training on

paired visuolinguistic data. Unpaired data may still be

highly related to the downstream task. As such, it en-

ables the model to independently train its visual processing

weights (masked objects can be predicted from unmasked

objects) and its text processing weights (masked text can

be predicted from unmasked text). It does not, however,

allow learning text-image grounding, as masked text can-

not be predicted from the unmasked objects, and masked

objects cannot be predicted from unmasked text. There-

fore pretraining on this dataset directly measures the impact

of learning the relationship between text and image, as op-

posed to learning how to process the modes independently.

4.5. Amalgam ­ Relatedness

This is an amalgam dataset constructed from the super-

set of all (image, text) pairs in all our datasets, filtered for

relatedness. Using Eq. 3.1 we score each (image, text)
pair, then select the 2.015 million highest scoring exam-

ples. These are split into a training set of 2 million exam-

ples and a validation set of 15 thousand examples. This

dataset directly tests our relatedness metric, and shows the

impact that relatedness to downstream task has on final per-

formance.

4.6. Amalgam ­ Quality

As with the ‘Amalgam - Relatedness’ dataset, this is

an amalgam dataset constructed from the superset of all

(image, text) pairs in our other datasets, filtered for qual-

ity. Using Eq. 3.2 we score each (image, text) pair, then

select the 2.015 million highest scoring examples. These

are split into a training set of 2 million examples and a val-

idation set of 15 thousand examples. This dataset directly

tests our quality metric, and shows the impact that quality

to downstream task has on final performance.

5. Downstream Tasks

We train on the same downstream visuolinguistic tasks

used in the original ViLBERT paper. Below we describe the

problem proposed by each downstream task. As we do not

make modifications to the ViLBERT fine-tuning procedure,

details of architecture and hyperparameters are omitted for

brevity (see Lu et al. [10] for these details).

5.1. Image Retrieval

Image Retrieval is the task of returning a specific image

from a large set of images, given a natural language descrip-

tion. We train this via the Flickr30k [21] dataset, which

consists of 31,000 images, each with five high-quality nat-

ural language descriptions. At training time, four options

are constructed from a given image, description pair: the

original image and description pair, the original image and

a random description, a random image and the original de-

scription, and a hard-negative image with the original de-

scription. Hard-negative images are sampled from the 100

nearest neighbors of the original image. At test time, sim-

ilarity is scored across all images in the test set, to better

simulate a “search”. This task tests the model’s ability to

detect and ground similarity between images and text, with

hard-negative images requiring a more fine grained ability

to detect similarities and discrepancies.

5.2. Grounded Referring Expressions

The Grounded Referring Expressions task requires lo-

calizing an area of an image given a natural language de-

scription of the area. These descriptions can be simple (e.g.

‘door’) or more extensive (e.g. ‘man in red shirt on horse’).

The task is trained by obtaining object detections from an

RCNN and reranking the set of object detections based on

similarity to the input text string. This has some similarities

to the Image Retrieval task, but requires a greater under-

standing of the individual objects in the image as well as

an understanding of the relations between the objects (‘on

top of’, ‘next to’, etc.). For training and test we use the

RefCOCO+ dataset [8].

5.3. Visual Question Answering (VQA)

VQA is the task of answering a natural language ques-

tion about a given input image. For this task we use the

VQAv2 dataset [6]. This dataset consists of 1.1 million

questions over all images in the COCO 2017 train/val/test

set. Questions and answers are both solicited from human

annotators, resulting in a wide variety of natural language.

Answers are pruned to 3129 possible answer classes, and

the model emits a distribution over these answer classes.

In addition, the dataset is specifically constructed to min-

imize linguistic bias. In the original VQA dataset, simple

ngram based methods could achieve very high performance

without looking at the image. The authors counteract this by

adding new (image, question) pairs to the dataset which

are visually similar and linguistically identical to other pairs

in the dataset, but which have different answers. This forces

a model to ground its answer in both the language and the

image.

5.4. Visual Commonsense Reasoning (VCR)

VCR is the task of answering a commonsense-reasoning

question about a given input image. While this may seem

similar to the VQA task, questions in the VCR dataset target

higher-order semantics and relationships that are implicitly

present in an image (e.g. ‘Why is person4 pointing at per-

son1?’) rather than clearly present attributes of the image

(e.g. ‘What color is the ball?’).



Table 1. Results on downstream supervised tasks.

VQA [6] VCR [22] RefCOCO+ [8] Image Retrieval [21]

Pretraining Dataset minval Q→A QA→R val testA testB R1 R5 R10 Score

No Pretraining 67.887 67.611 67.536 70.273 77.192 60.565 48.000 78.600 86.720 0.111

RandomCaptions 66.917 69.145 69.997 70.106 76.196 60.810 49.160 79.240 87.100 0.131

ICE-Comments 68.480 70.193 70.773 70.450 77.209 61.076 50.980 79.900 87.540 0.380

Ngram Image Search 68.617 69.714 69.952 71.305 76.703 61.424 53.000 81.320 88.160 0.462

ICE-Title 68.383 70.570 71.211 71.379 77.297 62.487 52.720 81.520 89.300 0.610

ConceptualCaptions 69.050 71.587 73.302 71.844 78.187 62.671 55.740 83.780 90.000 0.884

Amalgam - Relatedness 69.150 71.945 73.623 72.104 78.257 62.671 55.580 83.600 90.160 0.922

Amalgam - Quality 69.150 71.761 73.182 71.677 77.628 63.080 56.940 85.160 90.780 0.930

Table 2. Average metric scores for each pretraining set.

Pretraining Dataset Relatedness Quality

RandomCaptions 933.64 1.43

ICE-Comments 568.30 1.48

Ngram Image Search 128.46 1.35

ICE-Title 345.19 1.50

ConceptualCaptions 933.64 1.84

Amalgam - Relatedness 3011.31 2.00

Amalgam - Quality 1541.13 2.33

Each example in the VCR dataset [22] consists of four

entities - the image, question, answer, and rationale,

and the dataset consists of 110K images with 290K ques-

tions, answers, and rationales. VCR actually consists of

two tasks: question to answer (Q→A), question + answer

to rationale (QA→R). Each task is cast as a multiple choice

question, with the model being provided with the image and

input, as well as four possible outputs. Distractor outputs

are selected via ‘adversarial matching’ which attempts to

minimize the models ability to guess the answer via linguis-

tic biases.

6. Results

Table 1 shows results for all downstream supervised

tasks when comparing against different pretraining datasets.

Overall, we find that a rough ordering of performance im-

provement improvement emerges across different pretrain-

ing datasets and tasks. This can be seen in the final ‘Score’

column of the table, which displays the average normalized

score across all tasks. To compute this average normalized

score, we first normalize scores within each task by the fol-

lowing transformation:

s̃task,t =
stask,t −minu stask,u

maxu stask,u −minu stask,u

where t, u represent pretraining datasets and stask,t is the

score for a pretraining dataset t on a particular downstream

task. This rescales all downstream task scores between 0
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Figure 3. Relatedness versus normalized performance measure for

all datasets. Marks from left to right represent Ngram Image

Search, ICE-Title, ICE-Comments, RandomCaptions, Conceptu-

alCaptions, Amalgam - Quality, and Amalgam - Relatedness.

and 1. The average of this normalized score across all tasks

gives us a way of measuring overall performance.

In addition, our measures of relatedness and quality both

correlated well with performance increases. Our related-

ness measure has a Spearman’s rank correlation of 0.577

with overall score (0.771 if we ignore the adversarially con-

structed RandomCaptions dataset), and our quality measure

has a Spearman’s rank correlation of 0.893 with the overall

score. See Figures 3-4 for plots of relatedness and quality

against normalized performance measures.

7. Discussion

Our quality and relatedness measures both correlated

well with normalized performance on the downstream

tasks. Our results show that this is true not only for existing

datasets, but also for datasets constructed to explicitly max-

imize these metrics, which suggests a causal relationship

between improving the metrics and increasing performance

on downstream tasks.
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Figure 4. Quality versus normalized performance measure for

all datasets. Marks from left to right represent Ngram Image

Search, RandomCaptions, ICE-Comments, ICE-Title, Conceptu-

alCaptions, Amalgam - Relatedness, and Amalgam - Quality.

7.1. Disentangling Quality and Relatedness

While both quality and relatedness are correlated with

final performance, they are also correlated with each other.

This is especially clear from the Amalgam - Quality and

Amalgam - Relatedness datasets. Although each dataset is

constructed to maximize one of the metrics, they both also

score second-highest on the other metric (see Table 2). This

makes it difficult to determine the effect of each metric on

performance.

First, we note that (ignoring the RandomCaptions

dataset), the quality metric correlates better with perfor-

mance (Spearman’s ρ 0.829) than the relatedness metric

(Spearman’s ρ 0.700). This suggests that higher quality

examples, which should help the model learn image-text

grounding and relationships, are more important than lower

quality but more related text and images.

To further examine this hypothesis, we can look at the

RandomCaptions dataset. This is a low-quality dataset with

minimal relationship between paired text and image. It is

also a high-relatedness dataset as the individual captions

are exactly the same as the ConceptualCaptions dataset on

which it is built. This dataset performs little better than no

pretraining at all, which suggests that the largest benefit of

pretraining is the ability of the model to learn image-text

grounding.

7.2. Limitations of Analysis

While the current set of experiments point to interest-

ing relationships between these simple metrics and perfor-

mance on downstream tasks, there are limitations in the cur-

rent methodology when it comes to investigating these rela-

tionships further.

First, collecting a data point in this approach requires

collecting a 2 million image-text pair dataset, pretraining a

relatively large model on this dataset, followed by finetun-

ing on several downstream tasks. We chose this methodol-

ogy as pretraining is generally most useful for large models

with relatively challenging downstream tasks. This gives

the results broad applicability, as the discovered relation-

ships are likely to hold true for large models, large pretrain-

ing datasets, and across many other downstream tasks. On

the other hand, speeding up the collection of data points

would allow clearer results and faster testing of new poten-

tial metrics.

Second, our downstream evaluations consist of broad,

general image understanding tasks. As a result, it is actually

difficult to construct a dataset of high-quality images that

are relatively unrelated to the downstream tasks. Analyzing

a more niche downstream task may help further disentan-

gle the effects of quality and relatedness of image-caption

pairs.

Finally, it is clear that the metrics tested do not capture

all the variance in the data. In particular, the Ngram Image

Search dataset scores poorly on both of our metrics, yet still

improves performance more than the ICE-Comments and

RandomCaptions datasets. Further experimentation could

help determine what aspect of the datasets our current met-

rics miss.

8. Future Work

Our results show that simple, inexpensive to calculate

metrics can help maximize pretraining utility across the

board for many downstream tasks. In the future, we hope to

apply these metrics to domains where the amount of data

dwarfs our ability to use it in pretraining. For example,

paired video and automatic speech recognition (ASR) data

suffers from this problem. Our metrics could help filter

the available data to find highly related segments of paired

video and ASR, so that we avoid training on data that pro-

vides no more benefit than a random caption.

References

[1] Steven Bird, Ewan Klein, and Edward Loper. Natural Lan-

guage Processing with Python. O’Reilly Media Inc., 2009.

4

[2] Mark Davies. English n-grams (based on data from the coca

corpus). https://www.ngrams.info, 2011. 4

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

The Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2009. 2

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In The Conference of



the Association for Computational Linguistics (ACL), 2019.

1

[5] P. Goyal, D. Mahajan, A. Gupta, and I. Misra. Scaling and

benchmarking self-supervised visual representation learn-

ing. In The International Conference on Computer Vision

(ICCV), 2019. 1, 2

[6] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Ba-

tra, and Devi Parikh. Making the v in vqa matter: Elevat-

ing the role of image understanding in visual question an-

swering. In The Conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 1, 5, 6

[7] Qiuyuan Huang, Yandong Guo, Oussama Elachqar, Ked-

har Nath Narahari, Kazushige Ito, Donald Brinkman, Xi-

aodong He, Lei Zhang, and Yu-Ting Kuo. Ice: A bench-

mark for human-like image commenting. Technical Report

MSR-TR-2018-30, pending approval from the Microsoft le-

gal team to release data., 2018. 1, 4

[8] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and

Tamara Berg. ReferItGame: Referring to objects in pho-

tographs of natural scenes. In The Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages

787–798, Doha, Qatar, 2014. Association for Computational

Linguistics. 1, 5, 6

[9] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A. Shamma, and et al. Visual genome:

Connecting language and vision using crowdsourced dense

image annotations. Int. J. Comput. Vision, 123(1):32–73,

May 2017. 3

[10] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vil-

bert: Pretraining task-agnostic visiolinguistic representations

for vision-and-language tasks. In Advances in Neural Infor-

mation Processing Systems (NeurIPS), pages 13–23. Curran

Associates, Inc., 2019. 1, 2, 5

[11] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In The European Conference on

Computer Vision (ECCV), 2018. 1, 2

[12] George A. Miller. Wordnet: A lexical database for english.

Commun. ACM, 38(11):39–41, 1995. 2

[13] Mehdi Noroozi, editor=”Leibe Bastian Favaro, Paolo”, Jiri

Matas, Nicu Sebe, and Max Welling. Unsupervised learning

of visual representations by solving jigsaw puzzles. In The

European Conference on Computer Vision (ECCV), pages

69–84, Cham, 2016. Springer International Publishing. 1

[14] Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. Glove: Global vectors for word representation. In

The Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 1532–1543, 2014. 1, 3

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems (NeurIPS), pages 91–99.

Curran Associates, Inc., 2015. 3

[16] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu

Soricut. Conceptual Captions: A Cleaned, Hypernymed, Im-

age Alt-text Dataset For Automatic Image Captioning. The

Conference of the Association for Computational Linguistics

(ACL), 1:2556–2565, 2018. 1, 2, 4

[17] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu

Wei, and Jifeng Dai. Vl-bert: Pre-training of generic visual-

linguistic representations, 2019. 1

[18] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and

Cordelia Schmid. Videobert: A joint model for video and

language representation learning. In The International Con-

ference on Computer Vision (ICCV), 2019. 1, 2

[19] Trieu H. Trinh, Minh-Thang Luong, and Quoc V. Le. Selfie:

Self-supervised pretraining for image embedding, 2019. 1

[20] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding, 2018.

1

[21] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-

maier. From image descriptions to visual denotations: New

similarity metrics for semantic inference over event descrip-

tions. The Conference of the Association for Computational

Linguistics (ACL), 2:67–78, 2014. 1, 5, 6

[22] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi.

From recognition to cognition: Visual commonsense reason-

ing. In The Conference on Computer Vision and Pattern

Recognition (CVPR), 2019. 1, 6


