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Abstract

In this paper, we propose a novel cross-modal varia-

tional alignment method in order to process and relate in-

formation across different modalities. The proposed ap-

proach consists of two variational autoencoder (VAE) net-

works which generate and model the latent space of each

modality. The first network is a multi-modal variational

autoencoder that maps directly one modality to the other,

while the second one is a single-modal variational autoen-

coder. In order to associate the two spaces, we apply vari-

ational alignment, which acts as a translation mechanism

that projects the latent space of the first VAE onto the one of

the single-modal VAE through an intermediate distribution.

Experimental results on four well-known datasets, cover-

ing two different application domains (food image analysis

and 3D hand pose estimation), show the generality of the

proposed method and its superiority against a number of

state-of-the-art approaches.

1. Introduction

Cross-modal learning has attracted increasing attention

recently due to the rapid growth of multi-modal data (im-

age, video, text, audio, depth, IR etc) and the need for

enhanced learning either by leveraging information from

one data modality to accomplish a given task in another,

or through the synergistic synthesis of information from

multiple modalities. Because of their general nature, they

have been extensively used in the literature for various

problems, such as audio retrieval from text [20], text-to-

image and image-to-text retrieval [24], sentiment analysis

from video, audio and text sources [22], synchronization

among different representations of music, like sheet mu-

sic and audio recordings [15], recipe (ingredients and in-

structions) retrieval from images and vice versa [27] and

3D hand pose estimation from images [30]. Recent cross-

modal frameworks involve neural networks as encoder and

decoder mechanisms in order to transition from one modal-

ity to another. Based on the way these frameworks model

the cross-modal objective, they are categorized as discrim-

inative and generative. Approaches that fall into the first

category model the probability of an outcome conditioned

on the given observation. Generative approaches, on the

other hand, model the underlying distribution of the ob-

served variables, thus obtaining valuable information re-

garding their origin.

Most recent approaches have adopted deep generative

models, such as VAEs, GANs or a combination of them, to

encode cross-modal data into a shared latent space [30, 34].

However, the main problem in these approaches is the fact

that each modality has completely different characteristics

from the others and, as a result, it is difficult to efficiently

model the heterogeneous modalities (like image, speech or

text) into a shared latent space. To address the problem of

learning meaningful mappings among embedding spaces,

we propose a novel variational alignment framework of la-

tent spaces, which performs the mapping of the latent space

of one modality onto the one of another modality. More

specifically, in this paper we present a cross-modal learn-

ing approach consisting of a number of variational autonen-

coder networks that aim to generate and model the latent

space corresponding to each modality and, at the same time,

align the different spaces through the modeling of an inter-

mediate latent space, generated by an additional variational

autoneconder network. The main contributions of this paper

are summarized as follows:

• We introduce a generic cross modal deep learning ap-

proach using variational autoendonder networks in or-

der to model the latent spaces of different modali-

ties as probability distributions. More specifically,

we propose the use of a pair of multimodal (M1-to-

M2) and single-modal (M2-to-M2) variational autoen-

coders with aligned latent spaces, where the aligned

latent space of the first modality can be directly used

by the decoder of the single-modal VAE network, out-

performing the state-of-the-art in different application

domains.

• We propose a novel cross-modal variational alignment
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of the probability distributions of latent spaces corre-

sponding to different modalities. By generating and

modeling an intermediate latent space through a vari-

ational network, we can achieve better alignment of

latent spaces as shown in the experimental results of

the paper.

• To demonstrate the generality and reproducibility of

the proposed method, we carried out extensive tests

in two challenging application domains: i) food im-

age analysis and ii) 3D hand pose estimation. Experi-

mental results with four well-known publicly available

datasets and comparison with over fifteen state-of-the-

art approaches show the great potential of the proposed

method.

The rest of this paper is organized as follows: Section 2

discusses related works in cross-modal approaches, while

in Section 3 the proposed framework is presented in detail.

Finally, Section 4 presents the experimental set-up and com-

parisons of the proposed framework against state-of-the-art

approaches, while conclusions are drawn in Section 5.

2. Related Work

In this section we present cross-modal frameworks utiliz-

ing neural networks as encoders and decoders. The frame-

works have been categorized into discriminative and gener-

ative. The proposed framework falls under the second cate-

gory.

Regarding discriminative approaches, Li et al. [11] ex-

tract features independently from RGB and depth modali-

ties and an attention mechanism is applied to the fused fea-

tures, for the task of object detection. For the same task, in

[4, 18, 29], the authors leverage semantic knowledge, ob-

tained from textual sources, in order to map images into

a rich semantic embedding space. Another approach pro-

posed by Aytar et al. [1] aims to learn cross-modal scene

representations for the task of zero-shot recognition and re-

trieval. Specifically, they regularize a cross-modal CNN to

get a joint embedding for different modalities, such as dif-

ferent visual domains and text. The joint representation is

initially acquired from a CNN and sentence embeddings are

mapped to it. In [17], the authors train a deep autoencoder

for cross modality (video and audio) feature learning, to re-

construct both modalities and thus locate correlations across

them. Cai et al. [2] employ a depth regularizer during train-

ing to improve the RGB-based method, exploiting depth in-

formation. Salvador et al. [27] and Carvalho et al. [3] em-

ploy a CNN model for obtaining image representations and

RNN models for obtaining recipe ingredient and cooking

instruction representations, which are utilized for image-to-

recipe and recipe-to-image retrieval. More recently, Sal-

vador et al. [26] presented a new framework for recipe gen-

eration from food images in which a CNN processes input

images and extracts relevant representations. Then ingredi-

ent and instruction decoder modules, utilizing the same at-

tention mechanism as in [32], convert these representations

into recipe ingredients and cooking instructions.

Concerning generative frameworks, Mueller et al. [14]

regress heatmaps for each joint and use a kinematic 3D hand

model to predict the 3D hand pose. Liong et al. [33] em-

ploy a variational method for cross-modal multimedia re-

trieval. A fusion network learns to produce binary codes,

by processing images and text. Subsequently, they train two

variational networks to produce the same code as the fusion

network. In this fashion, they achieve to encode both the

multi-modal and the single-modality data into the same rep-

resentation. In [28] the authors use a variational framework,

consisting of an encoder-decoder pair for each modality, for

the task of zero-shot and few-shot learning. At early stages,

they use encoder-decoder pairs for autoencoding purposes,

while afterwards they augment the training procedure with

alignment between different modalities and distributions.

Zhu et al. [39] employ the same network architecture as

[27] in order to produce recipe and image embeddings of the

same size. Then an unconventional GAN architecture with

one generator and two discriminators is used for improving

the aforementioned embeddings. The generator is trained

to (re)construct images from either recipe or image embed-

dings. The first discriminator is trained to distinguish be-

tween real and generated images, while the second between

images generated from image embeddings and recipe em-

beddings. The full architecture is used for image-to-recipe

and recipe-to-image retrieval. Moving in the same direc-

tion, Hao et al. [35] also use the base architecture of [27]

in order to obtain recipe and image embeddings, which are

aligned using a discriminator component to distinguish be-

tween them. The proposed architecture also employs these

embeddings for retrieval and cross-modal translation. This

last objective uses recipe embeddings for generating food

images through a GAN as well as image embeddings for

recovering ingredients.

As far as VAE-based approaches are concerned, Wan et

al. [34] use a combination of GANs and VAEs in order

to create two latent spaces, one for depth images and the

second one for hand poses. Afterwards they employ a net-

work to map the uniform distribution used in GAN into the

normal distribution generated by VAE. Spurr et al. [30] in-

troduce a VAE-based method that leverages different input

modalities, such as RGB and depth for hand pose estima-

tion. They encode each modality to a shared latent space

and decode a drawn sample to the respective modality. Ad-

ditionally, they enforce all modality embeddings to lie in

the same space, by alternating between decoding into dif-

ferent modalities. Yang et al. [37] follow a similar ap-

proach with one unified latent space. They propose a dis-

entangled VAE (dVAE) in order to learn similar latent rep-



resentation that can disentangle poses and other factors, like

viewpoint, background, etc. In contrast, the authors in [36]

utilize one latent space per input modality and provide two

ways of aligning these latent spaces, via KL divergence loss

and product of Gaussian Experts to improve the recogni-

tion results. In this paper, we propose a novel cross-modal

variational alignment of the probability distributions of la-

tent spaces corresponding to different modalities, in order

to further improve the overall performance of the network.

Compared to similar approaches in the literature, such as

[34], where a single neuron is used for aligning two distri-

butions of the same dimensionality, our method employs a

VAE network that aligns the distributions through a map-

ping to an intermediate distribution.

3. Method Description

Given two data modalities M1 and M2, our goal is to find

an effective approach in order to transition from M1 to M2.

One such approach consists of traditional encoder/decoder

modules, where an input sample from M1 is encoded into a

fixed point in latent space and then decoded into the other

modality M2. Another approach involves their variational

counterparts, in which the input from M1 is encoded into

a probability distribution and a sample from this distribu-

tion is decoded into M2. While both of these approaches

produce satisfactory results, it would be beneficial to the

overall performance of the architecture if extracted infor-

mation from both modalities M1 and M2 could be used for

transitioning into M2, but in such a way as to require only

modality M1 during evaluation.

To this end, the proposed architecture, illustrated in Fig-

ure 1, consists of three distinct variational branches in order

to accomplish this goal. The upper branch transitions from

modality M1 to M2, therefore learning a mapping of M1

into a distribution in a way that is aligned to the final goal.

The lower branch is a VAE network that maps M2 into it-

self, thus learning to project onto a distribution in a way that

favors the reconstruction process. The variational alignment

branch, in order to effectively combine the information ex-

tracted by the other branches and improve the overall per-

formance, learns to align the distributions produced by E1

and E2 in accordance with the target goal, acting as a trans-

lation mechanism between the two. An illustration of the

effectiveness of the variational alignment branch (mapper),

when applied to the domain of food image analysis, can be

seen in Figure 2. Food images (M1) are encoded through

both the image encoder E1 and the mapper VE/VD, while

ingredients (M2) are encoded by the ingredient encoder E2

and their projections are visualized using t-SNE. The im-

age projections through the mapper network (Os) are much

closer to the ingredient projections (Xs) than the image pro-

jections produced by E1 (triangles).

The training process for the architecture takes place in
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Figure 1. The proposed variational alignment architecture. The

upper branch transitions from modality M1 to M2 using encoder

E1 and decoder D1. The lower branch autoencodes M2 through

encoder E2 and decoder D2. The middle branch aligns the distri-

bution produced by E1 to the one produced by E2 using the vari-

ational encoder (VE) and decoder (VD), which map to and sample

from an intermediate distribution.

two distinct phases. The reason for this is that we want

the upper and lower variational branches to converge before

the variational alignment branch begins the aligning pro-

cess. During the first phase, the upper and lower branches

are trained in parallel, independently of each other. As

shown in Figure 1, the encoder Ei maps modality Mi

into latent space LSi and then a sample from this dis-

tribution is decoded by Di into modality M2, for both

networks (i ∈ {1, 2}). The encoder Ei produces fixed-

size vectors µi and σi as output, with dimensionality

di, which parametrize a Gaussian distribution N (µi,Σi),
where Σi = diag(σi(1)

2, . . . , σi(di)
2), from which a sam-

ple z is drawn. This sample then becomes the input to the

decoder Di which transitions to modality M2.

The weights of these branches are optimized according

to two objectives. The first one is that the produced µi and

σi vectors of Ei match those of a standard normal distri-

bution, by minimizing their Kullback–Leibler divergence

[10]:

LKL
i =

1

2

di
∑

j=1

(

σ2

i (j) + µ2

i (j)− lnσ2

i (j)− 1
)

(1)

The second objective depends on the task at hand. In the

case of classification tasks the objective is that the produced



label distribution ŷ matches the true label distribution y, by

minimizing their cross-entropy [16]:

LCE
i = −y log ŷi − (1− y) log (1− ŷi) (2)

In the case of regression tasks the objective is expressed

by the MSE loss:

LMSE
i =

1

K

K
∑

j=1

(y(j)− ŷi(j))
2 (3)

where K is the dimensionality of modality M2.

After these two branches have finished training, the sec-

ond training phase begins. During this phase, only the varia-

tional alignment branch (mapper) is trained, while both pre-

vious branches remain frozen. To this end, E1 encodes data

samples from M1, producing vectors µ
1

and σ1. These

vectors constitute the input to the mapper, which essentially

performs a re-parametrization of the distribution produced

by E1, through a mapping to an intermediate distribution.

The distribution parametrized by the mapper-generated µm

and σm is then used in order to draw a sample z, which

becomes the input to the decoder of the lower branch D2.

During this stage, in addition to the previous optimization

objectives, the variational alignment branch also optimizes

the Wasserstein distance [6] between the re-parametrized

distribution and the one produced by the encoder E2:

LW =
(

‖µm − µ2‖
2 + tr(Σm) + tr(Σ2)

−2tr
[

(
√

ΣmΣ2

√

Σm)1/2
]

)1/2 (4)

This can be further simplified, due to the covariance matri-

ces being diagonal:

LW =
(

‖µm − µ2‖
2 + ‖σm − σ2‖

2

)1/2

(5)

The aim of this objective is to better align the distribution

produced by the mapper to the one produced by E2, since

decoder D2 was trained with samples from the latter.

Finally, after the end of the second training phase, a fine-

tuning process follows where all network parameters are op-

timized at the same time. The final loss function that the

network optimizes takes the following form:

L =

2
∑

i=1

(

wr
iL

r
i − wKL

i LKL
i

)

−wKL
m LKL

m +wWLW (6)

where r can be CE or MSE.

Since training is performed in phases, during the first

phase wKL
m = wW = 0, in the second phase where the vari-

ational alignment network is trained wr
1
= wKL

i = 0, (i ∈
{1, 2}), while during fine-tuning all weights have non-zero

values.

Due to the generic nature of the proposed method,

modalities M1 and M2 can be of any type. In this work, two

modality pairs (M1,M2) have been studied, spanning two

different application domains: a) food images and ingredi-

ents (presented in Section 4.1) and b) RGB images of hand

poses and their corresponding 3D coordinates (presented in

Section 4.2).

4. Experimental Evaluation

To evaluate the proposed methodology and at the same

time demonstrate the generality of our approach, we con-

ducted extensive tests in two different and very challenging

application domains which have attracted recently a lot of

interest: i) food image analysis and ii) 3D hand pose estima-

tion. In the case of food image analysis, we focused on the

task of ingredient recognition from a single image. More

specifically, in this task we considered two modalities, food

images and text containing the ingredients, and applied vari-

ational alignment in order to map the latent space of food

images into that of text. On the other hand, in the sec-

ond application domain, we focused on the estimation of

3D hand pose configurations from images using a VAE net-

work to initially create the latent space of RGB images and

then map it into that of 3D hand pose configurations. Here

we have to note that in this task, one could also add more

modalities (e.g., depth information), apart from RGB im-

ages, in order to further improve the results. However, the

alignment of multiple latent spaces into a single latent space

is out of the scope of this paper. Experimental results with

four well-known datasets and comparison with a number of

state-of-the-art approaches show the superiority of the pro-

posed approach.

4.1. Food Image Analysis

4.1.1 Datasets

In order to evaluate the proposed framework for the task

of ingredient recognition, the publicly available Yummly-

28K [13] and Recipe1M [27] datasets were used. Yummly-

28K consists of 27, 638 recipes and images. Custom pre-

processing scripts were developed for this dataset so as to

ignore preparation methods, measuring units, etc. and only

extract food ingredients from the recipe text. In the end,

after grouping together similar ingredients (e.g., spaghetti

and macaroni) and discarding very rare ones, 265 unique

ingredients were identified. This process was necessary

since Yummly-28K has not been used in the literature for

this task, i.e. ingredient recognition. The dataset was ran-

domly split into 85% for training and 15% for testing, re-

sulting in 23, 493 recipes for training and 4, 145 for test-

ing. This dataset was used for evaluating the performance of

the proposed method against other variational frameworks.

Recipe1M consists of 252, 547 recipes for training, 54, 255



images
images (mapper)
ingredients

Figure 2. A t-SNE visualization of recipe projections from the image encoder (triangles), ingredient encoder (Xs) and mapper (Os) com-

ponents. Colours indicate different food categories. It is evident that image projections using the proposed mapper are better aligned to the

ingredient ones than image projections without variational alignment.

for validation and 54, 506 for testing, following the pre-

processing of [26]. In this dataset there may be more than

one image per recipe, while the total number of unique in-

gredients is 1, 488. In Recipe1M the proposed method was

evaluated against current state-of-the-art approaches in in-

gredient recognition. Two recipe examples from Yummly-

28K can be seen in Figure 3.

4.1.2 Implementation Details

In Yummly-28K all images were resized to 360 × 240, the

dimension with the highest frequency of occurrence, since

all images have the same aspect ratio. In Recipe1M im-

ages were resized to 256 in their shortest side. Following

[26], random crops of 224× 224 were used during training,

while a central crop of 224 × 224 was used during testing

for both datasets. We also adopted the data augmentation

scheme of [25], horizontally flipping images with p = 0.5
and randomly rotating by ±10 degrees. During testing no

data augmentation was performed, unless indicated by TTA

(test-time augmentation) next to the method name.

Regarding the components of the proposed framework,

the image encoder E1 is a DenseNet-121 model with two

additional convolutional and average pooling layers before

the feed-forward fully-connected layer. This component is

pre-trained on ImageNet. The ingredient encoder E1, both

ingredient decoders D1 and D2, as well as the variational

encoder VE and decoder VD components, are single-layer

fully-connected networks. The dimensionality of all latent

probability distributions was set to d = 512.

For comparison purposes on Yummly-28K, we have im-

plemented two other cross-modal VAE frameworks: CM-

VAE based on [30] and CADA-VAE based on [28]. CM-

VAE consists of an image encoder and decoder, as well as

an ingredient encoder and decoder, trained similarly to Var.

4 of [30] (img −→ img, ingr −→ ingr, img −→ ingr).

The image decoder was implemented as a 7-layer CNN

model, while the other components were the same as the

ones in our proposed framework. For CADA-VAE the train-

ing process involved all four possible paths (img −→ img,

ingr −→ ingr, img −→ ingr, ingr −→ img). As pro-

posed in [28], the image encoder and decoder processed

feature vectors extracted from images instead of the images

themselves, and were implemented as single-layer fully-

connected networks. Feature vectors were extracted using

the same DenseNet-121 architecture mentioned previously.

The ingredient encoder and decoder were fully-connected

networks as well, the same as our proposed method. An ad-

ditional classifier was trained in order to provide the final

ingredient recognition, as in [28], again implemented as a

single-layer FC network.

All methods were trained using the Adam optimizer [9]

with β1 = 0.9, β2 = 0.999 and a learning rate of 10−4,

which was scaled by 0.99 after every epoch. Performance

was measured using the F1 score (harmonic mean of preci-

sion and recall) and the Intersection over Union (IoU) met-

rics, applied to the lists of ground truth and predicted in-

gredients. In Yummly-28K we computed per-recipe F1 and

IoU and averaged the results at the end. In Recipe1M they

were computed using the code1 provided by [26].

4.1.3 Experimental Results on Yummly-28K

As can be seen in Table 1, where the ingredient recognition

results on Yummly-28K are presented, CM-VAE achieved

1https://github.com/facebookresearch/inversecooking



1 whole turkey

2 cups maple syrup

1 cup bourbon

1 tablespoon pickling spice

1 large carrot, scraped

1 celery rib

1 medium onion

chicken breast

seasoned salt

BBQ sauce

cheese slices

Figure 3. Two recipes consisting of images and corresponding ingredients from Yummly-28K.

an F1 score of 39.80 and an IoU of 26.35. CADA-VAE,

which employs an explicit distribution alignment objective,

was able to improve upon these results by 0.95 in F1 and by

0.8 in IoU. The next two approaches on the table, indicated

by + Mapper, refer to augmented versions of the CM-VAE

and CADA-VAE architectures with the proposed mapper

component. In order to showcase the effectiveness of this

component, it was added after the aforementioned architec-

tures had finished training and their weights were frozen. In

other words, if we remove the mapper component, i.e., the

proposed variational alignment framework, from the CM-

VAE + Mapper model, its performance is the same as CM-

VAE, since the image encoder and ingredient decoder com-

ponents were frozen in CM-VAE + Mapper; only the map-

per component was able to adjust its weights. We see than in

both cases the addition of the mapper improved the results

of the baseline methods. CM-VAE + Mapper was 0.77 and

0.65 ahead in terms of F1 and IoU compared to its base-

line, while CADA-VAE + Mapper improved the baseline

results by 0.25 in F1 and by 0.3 in IoU metrics. The pro-

posed approach was able to outperform CM-VAE by 5.79
points in F1 and 5.26 points in IoU and CADA-VAE by

4.84 F1 and 4.46 IoU points. Employing test-time augmen-

tation provided an increase of 1.64 and 1.36 in F1 and IoU

respectively, compared to the baseline.

Method F1 IoU

CM-VAE 39.80 26.35
CADA-VAE 40.75 27.15
CM-VAE + Mapper 40.57 27.00
CADA-VAE + Mapper 41.00 27.45
Proposed 45.59 31.61
Proposed + TTA 47.23 32.97

Table 1. Ingredient recognition results of various cross-modal vari-

ational methods on Yummly-28K.

4.1.4 Experimental Results on Recipe1M

On the large-scale Recipe1M dataset, the proposed method

was evaluated against state-of-the-art approaches in ingredi-

ent recognition from food images. The experimental results

are shown in Table 2. The first two approaches, RI2L and

RI2LR [27], are retrieval-based, so their predictions corre-

spond to the ingredients of the closest-matching recipe. Re-

ported results for these methods are from [26]. The next

two models are non-variatonal and have feed-forward fully-

connected (FFTD) and transformer-based (TFset) classifiers

[26]. As we can see, the proposed method outperformed

the retrieval approaches by a large margin, namely by 17.35
and 16.05 points in terms of F1. The proposed method sur-

passed the FFTD approach, which has the same classifier,

by 3.24 F1 and 2.79 IoU points, while it managed to outper-

form even the TFset approach with the transformer-based

classifier by 0.57 and 0.5 in terms of F1 and IoU. Test-time

augmentation provided further improvements to the recog-

nition rate of the proposed framework, widening the differ-

ence to the transformer-based network to 1.44 F1 and 1.27
IoU points.

Method F1 IoU

RI2L [27] 31.83 18.92
RI2LR [27] 33.13 19.85
FFTD [26] 45.94 29.82
TFset [26] 48.61 32.11
Proposed 49.18 32.61
Proposed + TTA 50.05 33.38

Table 2. Ingredient recognition results on Recipe1M.

4.2. 3D Hand Pose Estimation

4.2.1 Datasets

In regard to the task of 3D hand pose estimation, our method

is evaluated on two publicly available datasets, Rendered

Handpose Dataset (RHD) [40] and Stereo Hand Pose Track-

ing Benchmark (STB) [38]. RHD is a synthetic dataset con-

taining rendered hand images from 20 characters perform-

ing 39 actions. It consists of 41258 images for training and

2728 images for evaluation, with 320× 320 resolution. For

each sample both 3D and 2D hand pose, as well as depth

map and segmentation mask are provided. This dataset

is higlhy challenging as it contains heavily occluded fin-

gers, visual diversity and noise. STB includes 12 sequences

with 6 different backgrounds of finger counting and random

poses. Each of these sequences consists of 1500 frames,



with a resolution of 640 × 480, resulting in 18k samples,

15k for training and 3k for testing. 3D keypoint annotations

are provided and consequently a camera intrinsic matrix can

be utilized to obtain 2D keypoint locations.

In order to evaluate the performance of our proposed

method, we use the two most common metrics on hand

pose estimation field, mean End-Point-Error (EPE) and

Area Under the Curve (AUC) on the Percentage of Cor-

rect Keypoints(PCK). Mean EPE measures the average eu-

clidean distance between ground-truth and predicted key-

points, while PCK is the mean percentage of predicted key-

points below different error thresholds, in comparison to the

correct keypoint location.

4.2.2 Implementation Details

We performed the same data pre-processing as previous

works [40, 30, 37, 8], to be directly comparable. We uti-

lized 2D annotations in both datasets to create a bounding

box around the hand region. Afterwards, we randomly ro-

tated it in the range [−45◦, 45◦], applied random vertical

flip with p = 0.5 and resized the image to 256×256. At test

time, no data augmentation was conducted and the bound-

ing box was resized to 256 × 256. In addition handedness,

palm center and scale of the hand were provided during both

training and testing. Since RHD provides the location of the

wrist-joint, while in contrast STB gives the location of the

palm-joint, we shifted the wrist-joint in RHD into the palm

one, in order to make annotations on both datasets consis-

tent, following [40, 30]. Importantly, as [12] indicated, self-

occlusion of the hand results in different observations for

the same pose. For that reason, we moved the center of the

hand to the center of the bounding box and accordingly ro-

tated the 3D pose. Thus the 3D centroid of the hand aligned

with the camera’s z-axis and the one-to-many mapping for

the image-pose pairs was alleviated. This is the same pro-

cedure as in [36].

Resnet-18 [7] was employed as E1 to encode RGB im-

ages. We adjusted the last fully connected layer such as

to predict the mean and variance of a normal distribution

for a given sample. As far as 3D hand pose encoder, E1,

and decoders, D1 and D2 are concerned, we used 6 fully

connected layers, with 512 units per layer, while each of

the mapper components consists of a single fully connected

layer. In our experiments we set batch size to 64 for RHD

and to 32 for STB, as it is considerably smaller, and used

the Adam optimizer with a learning rate of 10−4, which

was scaled by 0.99 after each epoch.

4.2.3 Experimental Results on RHD and STB

In this section, we compare the proposed method against

a number of hand pose estimation state-of-the-art meth-

ods. Initially, we use the mean EPE metric to compare our

method with other RGB-to-3D methods, i.e. Zimmerman

et al. [40], Spurr et al. [30] and Yang et al. [37] using

both RHD and STB datasets. The experimental results of

this comparison are presented in Table 3. As we can see,

the proposed method outperforms all other methods provid-

ing 15.61 and 6.93 mean EPE on RHD and STB datasets,

respectively. More specifically, the proposed cross-modal

variational alignment approach achieves improvements up

to 4.12 and 4.34 mean EPE in RHD and 1.63 and 1.73
mean EPE in STB from the cross-modal deep Variational

Autoencoder [30] and the disentangled Variational Autoen-

coder (dVAE) [37] respectively, showing its great potential

to align the two latent spaces and boost significantly the net-

work’s performance. As we mentioned in the introduction

of this section, there are other works, e.g., [36, 5, 8], that

utilize multiple modalities during training, such as cloud

points, heatmaps and depth maps, guiding their network to

benefit from different latent spaces, however, the alignment

of multiple latent spaces into a single latent space is out of

the scope of this paper and can be studied in a future work.

Method RHD STB

Zimmerman et al. [40] 30.42 8.68
Yang/Yao et al. [37] ∗ 19.95 8.66
Spurr et al. [30] ∗ 19.73 8.56
Proposed ∗

15.61 6.93
∗VAE-based methods

Table 3. 3D hand pose recognition results.

Finally, we compare the PCK curves with a number of

state-of-the-art methods on both datasets. More specifically,

as shown in Figure 4, our framework surpasses all state-of-

the-art methods [40, 30, 37] on RHD dataset performing

0.907 AUC. Similarly, as illustrated in Figure 5, the pro-

posed method achieves the highest AUC score, i.e., 0.997,

on STB dataset outperforming all other existing methods

[40, 21, 30, 14, 37, 2, 19, 23, 31]. Figure 6 visualizes several

pose predictions of our method compared to plain RGB-

to-3D network, in order to demonstrate the crucial contri-

bution of our cross-modal variational alignment approach.

Results prove that our framework is capable of mitigating

the challenges of this task, such as self-occlusions, and con-

sequently improves recognition performance.

5. Conclusions

In this work a novel approach for cross-modal variational

alignment of latent spaces was presented. The proposed ap-

proach aligns the latent distributions of two VAE models,

processing modalities M1 and M2, through the use of an

additional VAE component that explicitly incorporates the

minimization of their distance into its optimization objec-

tives. The generic nature of this approach allows it to be



Figure 4. AUC on PCK curve: Comparison to state-of-

the-art methods on RHD

Figure 5. AUC on PCK curve: Comparison to state-of-

the-art methods on STB

Figure 6. A comparison between 3D poses. Left column depicts ground-truth joints (green), our framework’s predictions are shown in

middle column (blue) and poses acquired without the mapper branch are in right column (red).

applied to any type of data modality pairs. Experimen-

tal results in two different and very challenging applica-

tion domains have demonstrated the effectiveness of our

method compared to state-of-the-art approaches. As future

work, the proposed framework could be extended to provide

aligned representations for more than two modalities.
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