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Abstract

Representation learning for Whole Slide Images (WSIs)

is pivotal in developing image-based systems to achieve

higher precision in diagnostic pathology. We propose a

two-stage framework for WSI representation learning. We

sample relevant patches using a color-based method and

use graph neural networks to learn relations among sam-

pled patches to aggregate the image information into a sin-

gle vector representation. We introduce attention via graph

pooling to automatically infer patches with higher rele-

vance. We demonstrate the performance of our approach

for discriminating two sub-types of lung cancers, Lung Ade-

nocarcinoma (LUAD) & Lung Squamous Cell Carcinoma

(LUSC). We collected 1,026 lung cancer WSIs with the

40× magnification from The Cancer Genome Atlas (TCGA)

dataset, the largest public repository of histopathology im-

ages and achieved state-of-the-art accuracy of 88.8% and

AUC of 0.89 on lung cancer sub-type classification by ex-

tracting features from a pre-trained DenseNet model.

1. Introduction

Large archives of digital scans in pathology are gradually

becoming a reality. The amount of information stored in

such archives is both impressive and overwhelming. How-

ever, there is no convenient provision to access this stored

knowledge and make it available to pathologists for diag-

nostic, research, and educational purposes. This limitation

is mainly due to the lack of techniques for representing

WSIs. The characterization of WSIs offers various chal-

lenges in terms of image size, complexity and color, and

definitiveness of diagnosis at the pathology level, also the

sheer amount of effort required to annotate a large number

of images. These challenges necessitate inquiry into more

effective ways of representing WSIs.

The recent success of “deep learning” has opened
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promising horizons for digital pathology. This has moti-

vated both AI experts and pathologists to work together

in order to create novel diagnostic algorithms. This op-

portunity has become possible with the widespread adop-

tion of digital pathology, which has increased the demand

for effective and efficient analysis of Whole Slide Images

(WSIs). Deep learning is at the forefront of computer vi-

sion, showcasing significant improvements over conven-

tional methodologies on visual understanding. However,

each WSI consist of billions of pixel and therefore, deep

neural networks cannot process them. Most of the recent

work analyzes WSIs at the patch level, which requires man-

ual delineation from an expert. Therefore, the feasibility

of such approaches is rather limited for larger archives of

WSIs. Moreover, most of the time, labels are available for

the entire WSI, and not for individual patches. To learn a

representation of a WSI, it is, therefore, necessary to lever-

age the information present in all patches. Hence, multiple

instance learning (MIL) is a promising approach for learn-

ing WSI representation.

MIL is a type of supervised learning approach which

uses a set of instances known as a bag. Each bag has an

associated label instead of individual instances. MIL is thus

a natural candidate for learning WSI representation. We ex-

plore the application of graph neural networks for MIL. We

propose a framework that models a WSI as a fully con-

nected graph to extract its representation. The proposed

method processes the entire WSI at the highest magnifi-

cation level; it requires a single label of the WSI with-

out any patch-level annotations. Furthermore, modeling

WSIs as fully-connected graphs enhance the interpretabil-

ity of the final representation. We treat each instance as

a node of the graph to learn relations among nodes in an

end-to-end fashion. Thus, our proposed method not only

learns the representation for a given WSI but also models

relations among different patches. We explore our method

for classifying two subtypes of lung cancer, Lung Adeno-

carcinoma (LUAD) and Lung Squamous Cell Carcinoma

(LUSC). LUAD and LUSC are the most prevalent subtypes
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of lung cancer, and their distinction requires visual inspec-

tion by an experienced pathologist. In this study, we used

WSIs from the largest publicly available dataset, The Can-

cer Genome Atlas (TCGA) [30], to train the model for lung

cancer subtype classification. We propose a novel architec-

ture using graph neural networks for learning WSI repre-

sentation by modeling the relation among different patches

in the form of the adjacency matrix. Our proposed method

achieved an accuracy of 89% and 0.93 AUC. The contribu-

tions of the paper are 3-folds, i) a graph-based method for

representation learning of WSIs, and ii) a novel adjacency

learning layer for learning connections within nodes in an

end-to-end manner, and iii) visualizing patches which are

given higher importance by the network for the prediction.

The paper is structured as follows: Section 2 briefly cov-

ers the related work. Section 3 discusses Graph Convolution

Neural Networks (GCNNs) and deep sets. Section 4 ex-

plains the approach, and experiments & results are reported

in Section 5.

2. Related Work

With an increase in the workload of pathologists, there

is a clear need to integrate CAD systems into pathology

routines [21, 24, 23, 10]. Researchers in both image anal-

ysis and pathology fields have recognized the importance

of quantitative image analysis by using machine learning

(ML) techniques [10]. The continuous advancement of

digital pathology scanners and their proliferation in clinics

and laboratories have resulted in a substantial accumulation

of histopathology images, justifying the increased demand

for their analysis to improve the current state of diagnostic

pathology [24, 21].

Histopathology Image Representation. To develop CAD

systems for histopathology images (WSIs), it is crucial to

transform WSIs into feature vectors that capture their di-

agnostic semantics. There are two main methods for char-

acterizing WSIs [2]. The first method is called sub-setting

method, which considers a small section of a large pathol-

ogy image as an essential part such that the processing of a

small subset substantially reduces processing time. A ma-

jority of research studies in the literature have used the sub-

setting method because of its speed and accuracy. How-

ever, this method requires expert knowledge and interven-

tion to extract the proper subset. On the other hand, the

tiling method segments images into smaller and controllable

patches (i.e., tiles) and tries to process them against each

other [11], which requires a more automated approach. The

tiling method can benefit from MIL; for example, Ilse et

al. [15] used MIL with attention to classify breast and colon

cancer images.

Due to the recent success of artificial intelligence (AI)

in computer vision applications, many researchers and

physicians expect that AI would be able to assist physicians

in many tasks in digital pathology. However, digital

pathology images are difficult to use for training neural

networks. A single WSI is a gigapixel file and exhibits high

morphological heterogeneity and may as well as contain

different artifacts. All in all, this impedes the common use

of deep learning [6].

Multiple Instance Learning (MIL). MIL algorithms as-

sign a class label to a set of instances rather than to individ-

ual instances. The individual instance labels are not neces-

sarily important, depending on the type of algorithm and its

underlying assumptions. [3]. Learning representation for

histopathology images can be formulated as a MIL prob-

lem. Due to the intrinsic ambiguity and difficulty in obtain-

ing human labeling, MIL approaches have their particular

advantages in automatically exploiting the fine-grained in-

formation and reducing efforts of human annotations. Isle

et al. used MIL for digital pathology and introduces a dif-

ferent variety of MIL pooling functions [16]. Sudarshan

et al. used MIL for histopathological breast cancer image

classification [26]. Permutation invariant operator for MIL

was introduced by Tomczak et al. and successfully applied

to digital pathology images [27]. Graph neural networks

(GNNs) have been used for MIL applications because of

their permutation invariant characteristics. Tu et al. showed

that GNNs can be used for MIL, where each instance acts

as a node in a graph [28]. Anand et al. proposed a GNN

based approach to classify WSIs represented by graphs of

its constituent cells [1].

3. Background

Graph Representation. A graph can be fully represented

by its node list V and adjacency matrix A. Graphs can

model many types of relations and processes in physical,

biological, social, and information systems. A connection

between two nodes Vi and Vj is represented using an edge

weighted by aij .

Graph Convolution Neural Networks (GCNNs). GCNNs

generalize the operation of convolution from grid data to

graph data. A GCNN takes a graph as an input and trans-

forms it into another graph as the output. Each feature node

in the output graph is computed by aggregating features of

the corresponding nodes and their neighboring nodes in the

input graph. Like CNNs, GCNNs can stack multiple layers

to extract high-level node representations. Depending

upon the method for aggregating features, GCNNs can be

divided into two categories, namely spectral-based and

spatial-based. Spectral-based approaches define graph

convolutions by introducing filters from the perspective

of graph signal processing. Spectral convolutions are

defined as the multiplication of a node signal by a kernel.



This is similar to the way convolutions operate on an

image, where a pixel value is multiplied by a kernel value.

Spatial-based approaches formulate graph convolutions as

aggregating feature information from neighbors. Spatial

graph convolution learns the aggregation function, which is

permutation invariant to the ordering of the node.

ChebNet. It was introduced by Defferrard et al. [5]. Spec-

tral convolutions on graphs are defined as the multiplication

of a signal x ∈ RN (a scalar for every node) with a filter

g(θ) = diag(θ) parameterized by θ ∈ RN in the Fourier

domain, i.e.,

gθ ⊛ x = UgθU
Tx,

where U is the matrix of eigenvectors of the normalized

graph Laplacian L = IN − D−
1

2AD−
1

2 . This equation

is computationally expensive to calculate as multiplication

with the eigenvector matrix U is O(N2). Hammond et

al. [13] suggested that that gθ can be well-approximated by

a truncated expansion in terms of Chebyshev polynomials

Tk(x), i.e,

gθ′(Λ) ≈

K∑

k=0

θ′Tk(Λ).

The kernels used in ChebNet are made of Chebyshev

polynomials of the diagonal matrix of Laplacian eigenval-

ues. ChebNet uses kernel made of Chebyshev polynomials.

Chebyshev polynomials are a type of orthogonal polynomi-

als with properties that make them very good at tasks like

approximating functions.

GraphSAGE. It was introduced by Hamilton et al. [12].

GraphSAGE learns aggregation functions that can induce

the embedding of a new node given its features and neigh-

borhood. This is called inductive learning. GraphSAGE

is a framework for inductive representation learning on

large graphs that can generate low-dimensional vector

representations for nodes and is especially useful for graphs

that have rich node attribute information. It is much faster

to create embeddings for new nodes with GraphSAGE.

Graph Pooling Layers. Similar to CNNs, pooling layers

in GNNs downsample node features by pooling operation.

We experimented with Global Attention Pooling, Mean

Pooling, Max Pooling, and Sum Pooling. Global Attention

Pooling [22] was introduced by Li et al. and uses soft

attention mechanism to decide which nodes are relevant to

the current graph-level task and gives the pooled feature

vector from all the nodes.

Universal Approximator for Sets. We use results from

Deep Sets [32] to get the global context of the set of patches

representing WSI. Zaheer et al. proved in [32] that any set

can be approximated by ρ
∑

(φ(x)) where ρ and φ are some

function, and x is the element in the set to be approximated.

4. Method

The proposed method for representing a WSI has two

stages, i) sampling important patches and modeling them

into a fully-connected graph, and ii) converting the fully-

connected graph into a vector representation for classifica-

tion or regression purposes. These two stages can be learned

end-to-end in a single training loop. The major novelty of

our method is the learning of the adjacency matrix that de-

fines the connections within nodes. The overall proposed

method is shown in Figure 1 and Figure 2. The method can

be summarized as follows.

1. The important patches are sampled from a WSI using

a color-based method described in [18]. A pre-trained

CNN is used to extract features from all the sampled

patches.

2. The given WSI is then modeled as a fully-connected

graph. Each node is connected to every other node

based on the adjacency matrix. The adjacency matrix

is learned end-to-end using Adjacency Learning Layer.

3. The graph is then passed through a Graph Convolution

Network followed by a graph pooling layer to produce

the final vector representation for the given WSI.

The main advantage of the method is that it processes

entire WSIs. The final vector representation of a WSI can

be used for various tasks—classification (prediction cancer

type), search (KNN search), or regression (tumor grading,

survival prediction) and others.

Patch Selection and Feature Extraction. We used the

method for patch selection proposed in [18]. Every WSI

contains a bright background that generally contains irrele-

vant (non-tissue) pixel information. We removed non-tissue

regions using color thresholds. Segmented tissue is then

divided into patches. All patches are grouped into a pre-set

number of categories (classes) via a clustering method. A

portion of all clustered patches (e.g., 10%) are randomly

selected within each class. Each patch obtained after patch

selection is fed into a pre-trained DenseNet [14] for feature

extraction. We further feed these features to trainable fully

connected layers and obtain final feature vectors each of

dimension 1024 representing patches.

Graph Representation of WSI. We propose a novel

method for learning WSI representation using GCNNs.

Each WSI is converted to a fully-connected graph, which

has the following two components.



Figure 1: Transforming a WSI to a fully-connected graph. A WSI is represented as a graph with its nodes corresponding

to distinct patches from the WSI. A node feature (a blue block beside each node) is extracted by feeding the associated

patch through a deep network. A single context vector, summarizing the entire graph is computed by pooling all the node

features. The context vector is concatenated with each node feature, subsequently fed into adjacent learning block. The

adjacent learning block uses a series of dense layers and cross-correlation to calculate the adjacency matrix. The computed

adjacency matrix is used to produce the final fully-connected graph. In the figure, the thickness of the edge connecting two

nodes corresponds to the value in the adjacency matrix.

1. Nodes V : Each patch feature vector represents a node

in the graph. The feature for each node is the same as

the feature extracted for the corresponding patch.

2. Adjacency Matrix A: Patch features are used to learn

the A via adjacency learning layer.

Adjacency Learning Layer. Connections between nodes

V are expressed in the form of the adjacency matrix A.

Our model learns the adjacency matrix in an end-to-end

fashion in contrast to the method proposed in [28] that

thresholds the ℓ2 distance on pre-computed features. Our

proposed method also uses global information about the

patches while calculating the adjacency matrix. The idea

behind using the global context is that connection between

two same nodes/patches can differ for different WSIs; there-

fore, elements in the adjacency matrix should depend not

only on the relation between two patches but also on the

global context of all the patches.

1. Let W be a WSI and w1, w2, . . . wn be its patches.

Each patch wi is passed through a feature extraction

layer to obtain corresponding feature representation

xi.

2. We use the theorem by Zaheer et al. [32] to obtain the

global context from the features xi. Feature vectors

from all patches in the given WSI are pooled using a

pooling function φ to get the global context vector c.

Mathematically,

c = φ(x1, x2, . . . , xn). (1)

Zaheer et al. showed that such a function can be used

as an universal set approximator.

3. The global context vector c is then concatenated to

each feature vector xi to obtain concatenated feature

vector x′

i which is passed through MLP layers to ob-

tain new feature vector x∗

i · x∗

i are the new features

that contain information about the patch as well as the

global context.

4. Features x∗

i are stacked together to form a feature ma-

trix X
∗ and passed through a cross-correlation layer to

obtain adjacency matrix denoted by A
n×n

where each

element aij in A shows the degree of correlation be-

tween the patches wi and wj . We use aij to represent

the edge weights between different nodes in the fully

connected graph representation of a given WSI.

Graph Convolution Layers. Once we implemented the

graph representation of the WSI, we experimented with two

types of GCNN: ChebNets and GraphSAGE Convolution,

which are spectral and spatial methods, respectively. Each

hidden layer in GCNN models the interaction between

nodes and transforms the feature into another feature space.

Finally, we have a graph pooling layer that transforms node

features into a single vector representation. Thus, a WSI

can now be represented by a condensed vector, which can

be further used to do other tasks such as classification,

image retrieval, etc.

General MIL Framework. Our proposed method can be

used in any MIL framework. The general algorithm for

solving MIL problems is as follows:

1. Consider each instance as a node and its corresponding

feature as the node features.



Figure 2: Classification of a graph representing a WSI. A fully connected graph representing a WSI is fed through a graph

convolution layer to transform it into another fully-connected graph. After a series of transformations, the nodes of the final

fully-connected graph are aggregated to a single condensed vector, which is fed to an MLP for classification purposes.

2. The global context of the bag of instances is learned to

calculate the adjacency matrix A.

3. A fully connected graph is constructed with each in-

stance as a node and aij in A representing the edge

weight between Vi and Vj .

4. Graph convolution network is used to learn the repre-

sentation of the graph, which is passed through a graph

pooling layer to get a single feature vector representing

the bag of instances.

5. The single feature vector from the graph can be used

for classification or other learning tasks.

5. Experiments

We evaluated the performance of our model on two

datasets i) a popular benchmark dataset for MIL called

MUSK1 [7], and ii) 1026 lung slides from TCGA

dataset [11]. Our proposed method achieved a state-of-the-

art accuracy of 92.6% on the MUSK1 dataset. We further

used our model to discriminate between two sub-types of

lung cancer—Lung Adenocarcinoma (LUAD) and Lung

Squamous Cell Carcinoma (LUSC).

MUSK1 Dataset. It has 47 positive bags and 45 negative

bags. Instances within a bag are different conformations of

a molecule. The task is to predict whether new molecules

will be musks or non-musks. We performed 10 fold

cross-validation five times with different random seeds.

We compared our approach with various other works in

literature, as reported in Table 1. The miGraph [33] is

based on kernel learning on graphs converted from the

bag of instances. The latter two algorithms, MI-Net [29],

and Attention-MIL [15], are based on DNN and use

either pooling or attention mechanism to derive the bag

embedding.

Algorithm Accuracy

mi-Graph [33] 0.889

MI-Net [29] 0.887

MI-Net with DS [29] 0.894

Attention-MIL [15] 0.892

Attention-MIL with gating [15] 0.900

Ming Tu et al. [28] 0.917

Proposed Method 0.926

Table 1: Evaluation on MUSK1.

LUAD vs LUSC Classification. Lung Adenocarcinoma

(LUAD) and Lung Squamous Cell Carcinoma (LUSC) are

two main sub-types of non-small cell lung cancer (NSCLC)

that account for 65-70% of all lung cancers [9]. Auto-

mated classification of these two main subtypes of NSCLC

is a crucial step to build computerized decision support and

triage systems.

We obtained 1,026 hematoxylin and eosin (H&E)

stained permanent diagnostic WSIs from TCGA reposi-

tory [11] encompassing LUAD and LUSC. We selected

relevant patches from each WSI using a color-based patch

selection algorithm described in [18, 19]. Furthermore,

we extracted image features from these patches using

DenseNet [14]. Now, each bag in this scenario is a set

of features labeled as either LUAD or LUSC. We trained

our model to classify bags as two cancer subtypes. The

highest 5-fold classification AUC score achieved was

0.92, and the average AUC across all folds was 0.89. We

performed cross-validation across different patients, i.e.,

training was performed using WSIs from a totally different

set of patients than the testing. The results are reported

in Table 2. We achieved state-of-the-art accuracy using

the transfer learning scheme. In other words, we extracted

patch features from an existing pre-trained network, and the

feature extractor was not re-trained or fine-tuned during the

training process. The Figure 5 shows the receiver operating

curve (ROC) for one of the folds.



Figure 3: Six patches from two WSIs diagnosed with LUSC and LUAD, respectively. The six patches are selected, such that

the first three (top row) are highly “attended” by the network, whereas the last three (bottom row) least attended. The first

patch in the upper row is the most attended patch (more important) and the first patch in the lower row in the least attended

patch (less important).

Algorithm AUC

Coudray et al. [4] 0.85

Khosravi et al. [20] 0.83

Yu et al. [31] 0.75

Proposed method 0.89

Table 2: Performance of various methods for LUAD/LUSC

predictions using transfer learning. Our results report the

average of 5-fold accuracy values.

Inference. One of the primary obstacles for real-world

application of deep learning models in computer-aided

diagnosis is the black-box nature of the deep neural

networks. Since our proposed architecture uses Global

Attention Pooling [22], we can visualize the importance

that our network gives to each patch for making the final

prediction. Such visualization can provide more insight

to pathologists regarding the model’s internal decision

making. The global attention pooling layer learns to map

patches to “attention” values. The higher attention values

signify that the model focuses more on those patches.

We visualize the patches with high and low attention

values in Figure 3. One of the practical applications of

our approach would be for triaging. As new cases are

queued for an expert’s analysis, the CAD system could

highlight the regions of interests and sort the cases based

on the diagnostic urgency. We observe that patches with

higher attention values generally contain more nuclei. As

Figure 4: t-SNE visualization of feature vectors extracted

after the Graph Pooling layer from different WSIs. The two

distinct clusters for LUAD and LUSC demonstrate the effi-

cacy of the proposed model for disease characterization in

WSIs. The overlap of two clusters contain WSIs that are

morphologically and visually similar.

morphological features of nuclei are vitals for making

diagnostic decisions [25], it is interesting to note this

property is learned on its own by the network. Figure 4

shows the t-SNE plot of features vectors for some of the

WSIs. It shows the clear distinction between the two cancer

subtypes, further favoring the robustness of our method.

Implementation Details. We used PyTorch Geometric

library to implement graph convolution networks [8]. We
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Figure 5: The ROC curve of prediction.

used pre-trained DenseNet [14] to extract features from

histopathology patches. We further feed DenseNet features

through three dense layers with dropout (p = 0.5).

Ablation Study. We tested our method with various differ-

ent configurations for the TCGA dataset. We used two lay-

ers in Graph Convolution Network—ChebNet and SAGE

Convolution. We found that ChebNet outperforms SAGE

Convolution and also results in better generalization. Fur-

thermore, we experimented with different numbers of filters

in ChebNet, and also different pooling layers—global atten-

tion, mean, max, and sum pooling. We feed the pooled rep-

resentation to two fully connected Dense layers to get the

final classification between LUAD and LUSC. All the dif-

ferent permutations of various parameters result in 32 dif-

ferent configurations, the results for all these configurations

are provided in Table 3. It should be noted that the results

reported in the previous sections are based on Cheb-7 with

mean pooling.

6. Conclusion

The accelerated adoption of digital pathology is coincid-

ing with and probably partly attributed to recent progress in

AI applications in the field of pathology. This disruption in

the field of pathology offers a historic chance to find novel

solutions for major challenges in diagnostic histopathology

and adjacent fields, including biodiscovery. In this study,

we proposed a technique for representing an entire WSI

as a fully-connected graph. We used the graph convolu-

tion networks to extract the features for classifying the lung

WSIs into LUAD or LUSC. The results show the good per-

formance of the proposed approach. Furthermore, the pro-

posed method is explainable and transparent as we can use

attention values and adjacency matrix to visualize relevant

patches.
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[5] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in neural infor-

mation processing systems, pages 3844–3852, 2016. 3

[6] Neofytos Dimitriou, Ognjen Arandjelović, and Peter D Caie.
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